无功补偿原理及无功就地补偿
电动机就地无功补偿

电动机就地无功补偿
工矿企业消耗的无功功率中,异步电动机约占70%,因此对于异步电动机采用就地无功功率补偿以提高供电系统的功率因数,节约电能,减少运行费用以及提高电能质量,就有重要的意义;
电动机无功功率就地补偿的作用
就地补偿是在异步电动机附近设置电容器,对异步电动机进行无功功率补偿,这是最有效的补偿方法;其作用:
可减少供电网,配电变压器,低压配电线路的负荷电流;
可减少配电线路的导线截面和企业配电变压器的容量;
可减少企业配变及配电网的功率损耗;
补偿点的无功经济当量最大,因而将损效果更好;
可降低电动机的起动电流;
电动机无功功率就地补偿方式
将电容器装在箱内,至于电动机附近,对其进行单独就地补偿;将电容器直接接到电动机的端子上或保护设备的末端,称为直接单独就地补偿;将电容器接到保护设备的前端,采用控制设备,电容器采用熔断器保护,称为控制式单独就地补偿;
电动机无功功率就地补偿的应用范围
长期连续运行的电动机,经常轻载或空载运行的电动机;
离供电变压器距离较远的电动机,一般不小于10米,
单台容量较大的电动机,一般高压电动机不小于90千瓦,低压动机不小于千瓦;
Y系列380伏三相异步电动机就地补偿电容器容量kvar。
无功补偿

无功补偿的意义
谐波电流会对供电系统中的电器设备产生损害,不仅 造成企业检修费用提高,而且对供电系统的安全稳定运行 埋下很大隐患。 基于以上分析,要求企业必须对供电系统存在的此类 危害进行治理。无功功率补偿技术(SVC)是一种挖掘现有
电力资源潜力、改善电能质量、消除此类事故隐患的行之
有效的方法之一,对供电系统的安全稳定运行具有非常重 大的意义。
吴佳祥
无功补偿
无功补偿的意义 无功补偿的基本原理
提高功率因数的方法
无功补偿的意义
随着我国电力工业的不断发展大范围的高压输电 网络逐渐发展形成,同时对电网无功功率的要求也日
益严格。无功功率如同有功功率一样,是保证电力系
统的电能质量、降低电能损耗以及保证其安全运行所 部不可缺少的部分。电网无功功率不平衡将导致系统 电压的巨大波动,严重时会导致用电设备的损坏,出 现系统电压崩溃和稳定破坏事故。
无功补偿的意义
研究无功功率,可以解决现代电力系统中与无功功率相关的一 系列技术问题。与无功功率相关的技术问题很多,主要有:
1.无功功率静态稳定问题; 2.电容性无功功率引起的发电机自励磁问题; 3.因潜供电流引起的单相快速自动重合闸电弧不能熄灭问题;
4.冲击性无功负荷的调节问题;
5.无功功率中的高次谐波公害和闪变问题; 6.跟随馈电系统引起的负荷功率因数的变化与改善问题。
无功补偿的基本原理
无功补偿的基本原理实质上就是把具有容性功率 负荷的装置与感性功率负荷并联接在同一电路上, 能量
在两种负荷之间相互交换。这样, 感性负荷所需要的
无功功率可由容性负荷输出的无功功率来补偿。即把 原来是由电网或者变压器提供的无功功率, 改为由交 流电力电容器来提供。
矿热炉低压无功补偿技术规范

矿热炉低压无功补偿技术规范1.总则1.1 为了降低矿热炉短网的无功补偿损耗,促进矿热炉行业的节能,提高矿热炉炉变和短网电效率,充分发挥矿热炉低压无功补偿的节能效果。
2. 矿热炉低压无功补偿工作原理1 矿热炉低压无功补偿装置并联于短网末端,由低压交流滤波电容器、滤波电抗器组成LC滤波补偿回路进行分相就地补偿。
减少短网无功功率损耗,同时吸收因不平衡负载和电弧冶炼产生的谐波(以3、5次特征谐波为主),降低其三相的不平衡度,有效提高功率因数。
2.1 主回路由补偿短网、隔离开关、熔断器、接触器、低压交流滤波电容器、滤波电抗器等组成。
2.2控制系统由控制器、高压侧信号变送、控制指令信号、投切驱动单元、现场指令信号、界面信息控制及低压侧保护信号等组成。
3技术要求3.1 电压3.1.1 电容器电抗器两端工作电压不大于其额定电压。
3.1.2 电抗器两端工作电压和电容器两端工作电压之比(回路的实际电抗率)应符合表规定:3.1.2.1 针对3次谐波,实际电抗率应不小于12%。
3.1.2.2针对5次谐波,实际电抗率应不小于7%。
4.谐波矿热炉低压无功补偿装置不应该放大高压侧系统谐波,并符合GB/T14549的规定。
4.1 温度设备正常运行时,工作环境温度应不大于50℃,与环境温度相比,电容器的外表最高温升和电抗器的外面及其热点最高温升(B级绝缘)应符合:4.1.1 电容器外表最高温升≦10℃。
电抗器外表面最高温升≦20℃。
电抗器热点最高温升≦32℃。
5. 功率因数5.1 功率因数月平均值不低于0.90.5.2 滤波电容器应符合GB3983.1要求,两端运行电压应长期低于其额定电压的95%。
5.3 滤波电抗器应符合GB10229要求,两端运行电压应长期低于其额定电压的95%。
5.4 接触器其支路投切涌流应不大于额定电流的2倍,在现场供电电压波动、磁场或其它干扰时应可靠投切,不能产生跳动和误动。
5.5 隔离开关其额定电流选取不低于该支路最大运行电流的1.3倍。
关于电力系统电压与无功补偿问题探讨

关于电力系统电压与无功补偿问题探讨电力系统中无功补偿对电力系统的重要性越来越受到重视,合理地投停使用无功补偿设备,对调整电网电压、提高供电质量、抑制谐波干扰、保证电网安全运行都有着十分重要的作用。
如果系统无功电源不足,则会使电网处于低电压水平上的无功功率平衡,即靠电压降低、负荷吸收无功功率的减少来弥补无功电源的不足。
同样,如果由于电网缺乏调节手段或无功补偿元件的不合理运行使某段时间无功功率过剩,也会造成整个电网的运行电压过高。
因此,要维持整个系统的电压水平,就必须有足够的无功电源来满足系统负荷对无功功率的需求和补偿线路和变压器中的无功功率损耗。
一、无功功率就地补偿的概念无功补偿装置的分布,首先要考虑调压的要求,满足电网电压质量指标。
同时,也要避免无功功率在电网内的长距离传输,减少电网的电压损耗和功率损耗。
无功功率补偿的原则是做到无功功率分层分区平衡,就是要做到哪里有无功负荷就在那里安装无功补偿装置。
这既是经济上的需要,也是无功电力特征所必需的,如果不这样做,就达不到最佳补偿的目的,解决不了无功电力就地平衡的问题。
二、无功功率的平衡在电力系统中,频率与有功功率是一对统一体,当有功负荷与有功电源出力相平衡时,频率就正常,达到额定值50Hz,而当有功负荷大于有功出力时,频率就下降,反之,频率就会上升。
电压与无功功率也和频率与有功功率一样,是一对对立的统一体。
当无功负荷与无功出力相平衡时,电压就正常,达到额定值,而当无功负荷大于无功出力时,电压就下降,反之,电压就会上升。
电压与无功功率之间的关系要比频率与有功功率之间的关系复杂得多,大体上有以下几点:2.1在一个并列运行的电力系统中,任何一点的频率都是一样的,而电压与无功电力却不是这样的。
当无功功率平衡时,整个电力系统的电压从整体上看是会正常的,是可以达到额定值的,即便是如此,也是指整体上而已,实际上有些节点处的电压并不一定合格,如果无功不是处于平衡状态时,那么情况就更复杂了,当无功出力大于无功负荷时,电压普遍会高一些,但也会有个别地方可能低一些,反之,也是如此。
用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法无功补偿的原理:电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理.集中补偿电容器作为补偿装置有两种方法:串联补偿和并联补偿。
串联补偿是把直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。
这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。
并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。
这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。
按电容器安装的位置不同,通常有三种方式。
1.集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。
可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。
2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端所高压或低压母线上,也称为分散补偿。
这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。
但是分组补偿的效果比较明显,采用得也较普遍。
3.就地补偿将电容器或电容器组装设在异步或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。
无功补偿的意义及原理

四、无功补偿的意义及原理人们对有功功率的理解非常容易,而要深刻认识无功功率却并不轻而易举的.在正弦电路中,无功功率的概念是清楚的,而在含有谐波时,至今尚无公认的无功功率定义。
但是,对无功功率这一概念的重要性和无功补偿重要性的认识,却是一致的。
无功功率应包含对基波无功功率的补偿和对谐波无功功率的补偿。
无功功率对供电系统和负荷的运行都是十分重要的。
电力系统网络元件的阻抗主要是电感性的。
因此,粗略地说,为了输送有功功率,就要求送电端和受电端有一相位差,这在相当宽的范围内可以实现。
而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现.不仅大多网络元件消耗无功功率,大多数负载也需要消耗无功功率。
网络元件和负载所需要的无功功率必须从网络中某个地方获得。
显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。
合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。
无功补偿的作用主要有以下几点:(1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗;(2)稳定受电端及电网的电压,提高供电质量。
在长距离输电线路合适的地点设置动态无功补偿装置,还可以改善输系统的稳定性,提高输电能力;(3)在电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。
(一).无功补偿的物理意义无功功率只是描述了能量交换的幅度,而并不消耗功率。
图中的单相电路就是这方面的一个例子,其负载为一阻感负载。
电阻消耗有功功率,而电感则在一周期内的一部分时间把从电源吸收的能量储存起来,另一部分时间再把储存的能量向电源和负载释放,并不消耗能量.无功功率的大小表示了电源和负载电感之间交换能量的幅度。
电源向负载提供这种功率是阻感负载内在的需要,同时也对电源的输出带来一定的影响。
下图是带有阻感负载的三相电路,为了和上图对照,假设u、R、L的参数均和上图相同,且为对称三相电路。
配电线路线损、无功补偿(09)

2、无功补偿的目的:提高功率因数 (1)减少无功的占用比例; (2)减少无功电流在电阻上的电能损耗; (3)减少电压损失。
线路功率损失为
为了减少功率损失,只有减少线路输送 的无功功率。有功负荷不变时,感性无功 功率QL越大,损耗就越大,为降低无功功 率QL,通常是在电路中并联电容器,产生 电容性无功功率QC,补偿一部分QL。
式中:I0%—配电变压器空载电流百分数 Ud%—配电变压器 阻抗电压百分数 Se—配电变压器的额定容量(kvA) β—配电变压器 负荷率
注意: 1、补偿电容器可接在高压侧,也可接在低压侧,效 果是相同的。 2、现在使用的电容器有两种:干式金属化低压电容 器;油浸式高压电容器。 3、安装接线方式:通过低压熔断器直接接在配电变 压器二次出线,与配电变压器同台架设。存在问题 是,当电源缺相时可能发生铁磁谐振过电压。 4、补偿容量必须小于配电变压器的空载无功容量。 QC=(0.95~0.98)Q0
主干、分支导线截面相同时,各分支长度相等
4)损失功率 三相三线a=1,三相四线a值以主干线导线截面查表 5)多线路
式中: M 台区线路数 I 台区总电流 Re1 等值电阻
6)下户线 单相下户线
三相或三相四线下户线
解: 线路中电流为: 线路有功功率损失为: 线路无功功率损失为:
电容器熔丝保护接线图
5、电容器组投入或退出运行时的注意事项: 1)正常情况下,电容器组的投入或退出运行应根据系统无 功潮流、负荷功率因数和电压等情况确定。 2)电容器组所接母线的电压超过电容器额定电压的1.1倍或 的电流超过额定电流的1.3倍时,电容器组应退出运行; 电容器室温度超出±40℃范围时,亦应退出运行; 3)当电容器组发生下列情况之一时,应立即退出运行:电 容器爆炸;电容器喷油或起火;瓷套管发生严重放电、闪 络;接点严重过热或熔化;电容器内部或放电设备有严重 异常响声;电容器外壳有异形膨胀。
10kv线路无功补偿

1 绪论1.1概述无功功率补偿,简称无功补偿,在电子供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素[3]。
在配电网中电源供给负载的电功率有有功功率和无功功率两种,有功功率是用电设备将电能转换成其他形式能量以保证正常运行所需的电功率,而无功功率也不是无用的功率,在电网中作用也很大。
接在电网中的大多数用电设备是利用电磁感应实现能量转换和传递的。
如发电机、变压器、电动机等,就是通过磁场来完成机械能与电能之间的转换的。
以异步电动机为例,电机从电网吸收的大部分电功率转换成了机械功率从转轴上输出给了机械设备,这部分功率就是有功功率;而电动机还要从电网吸收另外一部分电功率,用来建立交变磁场,这部分功率不是被消耗,而是在电网与电动机之间不断的进行交换(吸收与释放),这就是无功功率。
在电网中没有纯阻性的设备,因而功率因数都在01之间,而大部分用电设备如电动机、变压器等在运行时因电磁感应原理为建立感应磁场都需要Q>0的无功功率,此外电网中线路线损、变压器自损(铁损、铜损等)也增加不少无功,无功补偿就是利用电容提供Q<0的无功来提高功率因数,减少电网输送的无功功率,也就是在电能计量表上减少了电能的消耗,达到节能、降损的目的。
因此,解决无功补偿问题,对提高电能质量,降低电网损耗,节约能源有着极为重要的意义。
1.2课题研究背景随着科学技术发展和人民生活水平的提高,各种类型用电设备得到了广泛的应用,对电压质量的要求也越来越高。
但是,由于配电网结构,运行变化等原因,我国配电网损耗,电压合格率等技术指标与发达国家相比有较大差距。
由于电压不合格等原因造成用户电器烧毁的现象仍然存在,而网损过高使得生产的宝贵电能白白浪费,并且影响电力企业的经济效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引用无功补偿原理及无功就地补偿
电容器自动补偿原理及无功补偿计算
一、KL-4T 智能无功功率自动补偿控制器
1、补偿原理
JKL-4T 智能无功功率自动补偿控制器采用单片机技术,投入区域、延时时间、过压切除门限等参数已内部设定,利用程序控制固态继电器和交流接触器复合工作方式,投切电容器的瞬间过渡过程由固态继电器执行,正常工作由接触器执行(投入电容时,先触发固态继电器导通,再操作交流接触器上电,然后关断固态继电器;切除电容时先触发固态继电器导通,再操作交流接触器断电,然后关断固态继电器),具有电压过零投入、电流过零切除、无拉弧、低功耗等特点。
2、计算方法及投切依据
以电压为判据进行控制,无需电流互感器,适用于末端补偿,以保证用户电压水平。
1)电压投切门限
投入电压门限范围 175V ~210V 出厂预置 175V
切除电压门限范围230V ~240V 出厂预置232V
回差 0V ~22V 出厂预置 22V
2)欠压保护门限(电压下限)170V ~175V 出厂预置 170V
3)过压保护门限(电压上限)242V ~260V 出厂预置 242V
4)投切延时 1S ~600S 出厂预置 30S
3、常见故障及处理办法
用户端电压过低而电容器不能投入。
1)电压低于欠压保护门限。
2)三相电压严重不平衡。
二、JKL-4C 无功补偿控制器
1、补偿原理
JKL-4C 无功补偿控制器采用单片机技术,投切组数、投切门限、延时时间、过压切除门限等参数可由用户自行整定。
取样物理量为无功电流,取样信号相序自动鉴别、转换、无须提供互感器变比及补偿电容容量,自行整定投切门限,满量程跟踪补偿,无投切振荡,适应于谐波含量较大的恶劣现场工作。
2、计算方法及投切依据
依据《DL/T597-1996低压无功补偿器订货技术条件》无功电流投切,目标功率因数为限制条件。
1)当电网功率因数低于COSФ预置且电网无功电流大于1.1Ic时(Ic为电容器所产生无功电流,由控制器自动计算),超过延时时间,补偿电容器自动投入。
2)当相位超前或电压处于过压、欠压状态时,控制器切除电容器。
3、常见故障及处理办法
1)显示-.50 。
取样电压电流线接错,应为线电压和另外一相流。
2)功率因数显示较低而不投入电容。
目标功率因数设置过低或负荷过小或者过压保护门限设置过低。
三、PDK2000配电综合测控仪
1、补偿原理
PDK2000配电综合测控仪采用DSP技术,其控制部分包括投切组数、投切门限、编码方式、延时时间、过压切除门限等参数可由用户自行整定。
取样物理量为无功功率,取样信号相序自动鉴别、转换,满量程编码跟踪补偿,无投切振荡,适应于精确补偿的现场工作。
2、计算方法及投切依据
依据《DL/T597-1996低压无功补偿器订货技术条件》无功功率投切,目标功率因数为限制条件。
1)当电网功率因数低于COSФ预置且电网无功功率大于门限值(门限系数*电容容量)时,超过延时时间,补偿电容器自动投入。
2)投切时以所设编码方式投切,优先投切容量较大的合适的电容,然后投切较小的电容,以达到最小的投切次数和最优化的补偿容量。
3)当三相不平衡时,可以使用角型投切方案或星加角型投切方案。
当使用星加角型投切方案时,优先投切星型中较大的电容,当不够星型补偿时,优先投切角型中较大的电容,直至各项均达到较好的补偿效果。
4)相位超前或电压处于过压、欠压状态时,控制器切除电容器。
3、常见故障及处理办法
1)无电压或电流。
一般为电压电流线没有接好。
2)液晶屏不显示。
一般为电源没有接好。
3)功率因数显示较低而不投入电容。
目标功率因数设置过低或负荷过小或者过压保护门限设置过低.。