连通器与帕斯卡原理

合集下载

流体静力学中的帕斯卡定律与连通器原理

流体静力学中的帕斯卡定律与连通器原理
XXX,a click to unlimited possibilities
帕斯卡定律与连通器原理
汇报人:XXX
目录
添加目录项标题
01
帕斯卡定律
02
连通器原理
03
Part One
单击添加章节标题
Part Two
帕斯卡定律
定律定义
帕斯卡定律是指封闭液体或气体系统中的压力,在不受外部压力影响的情况下,将均匀地作用在液体的各个面上
连通器原理的证明方法有多种,其中最简单的是利用伯努利定锅炉水位计、水塔等。
连通器原理是指当两个开口容器由一共同的底部分开并处于同一高度时,两个容器的液体将达到平衡状态,且各容器内的液面高度相等。
原理的数学表达式为:ρ1 * g * h1 = ρ2 * g * h2,其中ρ1、ρ2为两个容器的液体密度,h1、h2为两个容器的液面高度。
液压电梯:利用帕斯卡定律,通过液体的压力来驱动电梯升降
气瓶压力控制:利用帕斯卡定律,通过气瓶的压力来控制气体流量
汽车刹车系统:利用帕斯卡定律,通过液体的压力来控制刹车力度
定律推导
帕斯卡定律的推导基于流体静力学的基本原理。
通过分析连通器中液体在不同高度下的压力分布,可以证明帕斯卡定律。
推导过程中需要使用到压强的概念和计算公式。
帕斯卡定律的推导过程展示了流体静力学的基本规律和原理。
Part Three
连通器原理
原理定义
连通器原理的数学表达式为:h1=h2,其中h1和h2分别为两个容器的液位高度。
连通器原理是指当两个开口容器由一个共同的连通部分连接时,容器中的液体在重力或压力作用下,会保持相同的液位高度。
连通器原理的应用广泛,包括管道、锅炉、容器等设备的设计和制造。

专题气体--密闭气体压强的计算

专题气体--密闭气体压强的计算

专题:密闭气体压强的计算一、平衡态下液体封闭气体压强的计算1. 理论依据① 液体压强的计算公式 p = ρgh 。

② 液面与外界大气相接触。

则液面下h 处的压强为 p = p 0 + ρgh③ 帕斯卡定律:加在密闭静止液体(或气体)上的压强能够大小不变地由液体(或气体)向各个方向传递(注意:适用于密闭静止的液体或气体)④ 连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平面上的压强是相等的。

2、计算的方法步骤(液体密封气体)① 选取假想的一个液体薄片(其自重不计)为研究对象② 分析液体两侧受力情况,建立力的平衡方程,消去横截面积,得到液片两面侧的压强平衡方程 ③ 解方程,求得气体压强例1P 0,水银的密度为ρ,管中水银柱的长度均为h 。

均处于静止状态练1:计算下图中各种情况下,被封闭气体的压强。

(标准大气压强p0=76cmHg ,图中液体为水银练2、如图二所示,在一端封闭的U 形管内,三段水银柱将空气柱A 、B 、C 封在管中,在竖直放置时,AB 两气柱的下表面在同一水平面上,另两端的水银柱长度分别是h 1和h 2,外界大气的压强为p 0,则A 、B 、C 三段气体的压强分别是多少?、练3、 如图三所示,粗细均匀的竖直倒置的U 型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1和2。

已知h 1=15cm ,h 2=12cm ,外界大气压强p 0=76cmHg ,求空气柱1和2的压强。

θ二、平衡态下活塞、气缸密闭气体压强的计算1. 解题的基本思路(1)对活塞(或气缸)进行受力分析,画出受力示意图;(2)列出活塞(或气缸)的平衡方程,求出未知量。

注意:不要忘记气缸底部和活塞外面的大气压。

例2 如下图所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M 。

不计圆板与容器内壁之间的摩擦。

若大气压强为P 0,则被圆板封闭在容器中的气体压强P 等于( )A. P Mg S 0+cos θB. P Mg S 0cos cos θθ+C. P Mg S 02+cos θD. P Mg S 0+练习4:三个长方体容器中被光滑的活塞封闭一定质量的气体。

初中物理连通器

初中物理连通器

秋季学期第五讲连通器我们已经学习了液体压强,液体压强的计算公式和固体压强,液体压强有许多的应用,其中连通器是我们接触到最常见的。

图1 洗手池,注意下端弯曲的连接部分图2. 水坝神奇的水闸系统你是否留意过家里的洗脸池下面水管,按常理来看,笔直的管子更容易让水流入下水道中,为什么却要做成如图1所示弯弯的一段呢?你是否思考过长江上的发电站水坝内外的船怎么样才能穿过大坝?你是否考虑过为什么教学楼内开水器的水位计能够显示炉内水的高度?很多显而易见却容易被忽略的生活现象,往往蕴含着很多有趣的物理知识,只要有发现的眼睛,就不会找不到物理的规律。

一、连通器及其原理连通器:上端开口,下部相连通的容器图3. 连通器原理我们已经知道在一个U型管中,如果只装一种液体不流动时,容器中的各个液面总是保持相平。

如图3所示,底端CD处,由帕斯卡定律,在界面处所产生的压强应该相等(或者同一截面压力相等),当液面静止时,根据压强相等有= p p 左右,=gh ghρρ左右所以此时有=h h左右这就是连通器的原理。

连通器的这个特点,可以解释很多生活中的现象。

【例题1】留心观察居民楼里的下水管(比如你家住在二楼,走进卫生间向上看,就能见到三楼的下水管),你会发现水池、抽水马桶的下水管有一段是弯成U形的,如图1所示.你知道这一段弯管有什么作用吗?说说它的工作原理.【例题2】烧水用的水壶,应用了什么原理?图4. 水壶【例题3】如图5所示,公路两侧的甲、乙两条水渠由路面下的倾斜涵洞相连,两渠水面相平,涵洞中的水流方向,正确的说法是A、水从水渠乙流向水渠甲B、水从水渠甲流向水渠乙C、因水面相平,水不流动D、以上说法都不对图5. 涵洞【例题4】在连通器的两端分别装有清水和煤油,液面相平,如图6所示,如果将阀门K打开,则()A、煤油向右流动B、清水向左流动C、均不流动D、无法判断【考点总结】要判断连通器中各液面是否相平时,首先要知道连通器里装的是不是同种液体。

连通器和帕斯卡原理

连通器和帕斯卡原理

连通器和帕斯卡原理连通器:(1)定义:. 上端开口,下部相连通的容器(2)原理:连通器里装一种液体且液体不流动时,各容器的液面保持相平(3)应用:茶壶、锅炉水位计、乳牛自动喂水器、船闸等都是根据连通器的原理来工作的。

大气压1、概念:大气对浸在它里面的物体的压强叫做大气压强,简称大气压,--般有po表示。

说明:“大气压”与“气压”(或部分气体压强)是有区别的,如高压锅内的气压一指部分气体压强。

高压锅外称大气压。

2、产生原因:因为空气受重力并且具有流动性。

3、大气压的存在一实验证明:历史上著名的实验一马德堡半球实验。

小实验--覆杯实验、瓶吞鸡蛋实验、皮碗模拟马德堡半球实验。

4、大气压的实验测定:托里拆利实验。

(1)实验过程:在长约1m,一端封闭的玻璃管里灌满水银,将管口堵住,然后倒插在水银槽中放开堵管口的手指后,管内水银面下降一些就不在下降,这时管内外水银面的高度差约为760mm。

(2)原理分析:在管内,与管外液面相平的地方取一液片,因为液体不动故液片受到上下的压强平衡。

即向.上的大气压=水银柱产生的压强。

(3)结论:大气压p o=760mmHg=76cmHg=1.01x105Pa(其值随着外界大气压的变化而变化)(4)说明:A实验前玻璃管里水银灌满的目的是:使玻璃管倒置后,水银上方为真空;若未灌满,则测量结果偏小。

B本实验若把水银改成水,则需要玻璃管的长度为10.3 mC将玻璃管稍上提或下压,管内外的高度差不变,将玻璃管倾斜,高度不变,长度变长。

标准大气压:支持76cm水银柱的大气压叫标准大气压。

1标准大气压=760mmHg=76cmHg= 1.01x l05Pa2标准大气压=2.02 X l05Pa,可支持水柱高约20.6m5、大气压的特点:(1)特点:空气内部向各个方向都有压强,且空气中某点向各个方向的大气压强都相等。

大气压随高度增加而减小,且大气压的值与地点、天气、季节、的变化有关。

一般来说,晴天大气压比阴天高,冬天比夏天高。

【高中物理】专题封闭气体的压强和气体变质量问题 高中物理同步备课(人教版2019选择性必修第三册)

【高中物理】专题封闭气体的压强和气体变质量问题  高中物理同步备课(人教版2019选择性必修第三册)

例题分析
例:如图所示,长50 cm的玻璃管开口向上竖直放置,用15 cm长的水银柱封闭了一
段20 cm长的空气柱,外界大气压强相当于75 cm水银柱产生的压强。现让玻璃管自
由下落。不计空气阻力,求稳定时气柱的长。(可以认为气柱温度没有变化)
解析:假设自由下落过程中,水银没有溢出。根据玻意耳定律得
p1l1S=p2l2S
为p0=76 cmHg.如果使玻璃管绕底端在竖直平面内缓慢地转动一周,求在开口向下和转回到原
来位置时管中空气柱的长度(在转动过程中没有发生漏气,气体状态变化可视为等温变化)。
法二:在气体与水银相接触处,水银柱上取一液片为研
究对象,其处于静止状态,根据受力平衡确定气体各状
态的压强。
解析:
玻璃管开口向上时
知识点拨
1.一只手握住玻璃管中部,在管内灌满水银,排出空气,用另一只手指紧紧堵住
玻璃管开口端并把玻璃管小心地倒插在盛有水银的槽里,待开口端全部浸入水银槽
内时放开手指,将管子竖直固定,当管内水银液面停止下降时,读出此时水银液柱
与水槽中水平液面的竖直高度差,约为760mm。
2.逐渐倾斜玻璃管,发现管内水银柱的竖直高度不变。
析,列平衡方程求气体压强。
(2)①pA=p0-ph=71 cmHg
②pA=p0-ph=66 cmHg
③pA=p0+ph=(76+10×sin30°)cmHg=81 cmHg
④pA=p0-ph=71 cmHg pB=pA-ph=66 cmHg
例题分析
例:如图所示,在长为57 cm的一端封闭、另一端开口向上的竖直玻璃管内,用4 cm高
(1)玻璃管水平放置时,管内气体的长度。
(2)玻璃管开口竖直向下时,管内气体的长度。(假设水银没有流出)

[连通器的原理]连通器的原理

[连通器的原理]连通器的原理

[连通器的原理]连通器的原理[连通器的原理]连通器的原理篇一 : 连通器的原理连通器的原理教学目的1(常识性了解连通器的原理。

[)2(知道连通器的应用,能举出日常生活中应用连通器的例子。

3(知道船闸是连通器的应用之一,知道船只通过船闸的简单过程。

教具演示用:连通器装置、用橡皮管连接的U形管、漏斗、茶壶、船闸的活动挂图。

教学过程一、旧课复习、引入新课1(复习提问简述液体压强的规律。

写出计算液体压强的公式。

课堂练习:题目:如图1所示的容器,甲、乙两管横截面积相等,等于1厘米2,内装水,水面到容器底部的距离为20厘米,问:A、B两处受到的压强各是多大, 此题要求学生在下面做,另让两位同学在黑板上做,做后进行评讲。

2(引入新课:由以上计算讲述,容器甲、乙两部分底部连通,我们把上端开口,下部连通的容器叫做连通器,由此引入新课。

二、进行新课1(读图:读课本中图10—19、图10—20和图10—21,观察它们的共同特点,像这三幅图,上都开口,下部连通的容器叫做连通器。

2(演示连通器如图2所示,在连通器内装入红水,平放在讲桌上,在水不流动时,几个容器中的水面有什么关系,教师可用尺子平放在几个容器的水面处,启发学生回答出上面观察到的现象。

用黑板刷把连通器的底坐垫成斜的,又观察几个容器中的水面是否相平,让学生回答,水面仍然相平。

3(小结实验结果:由以上实验可知:连通器里的水不流动时,各容器中的水面总保持相平。

4(演示课本中图10—22,将图中右面的玻璃管上提和下放,观察其现象跟上面得出的结论是否相同,验证上面所得结论,加深学生对连通器这一特点的认识。

5(讲述:由课本中图10—23所示,设液片AB的面积为S,左、右两管内水深分别为h左和h右,由于水不流动,即液片AB左、右两面所受二力平衡,这两个力同作用于液片AB上,则左、右两管中的水对液片AB的压强相等;因为两管中同是水,只有两管水深相等,压强才能相等。

即h左=h右,所以左、右两管水面总保持相平。

液压传动考试总结

液压传动考试总结

一:名词解释1.帕斯卡原理: 在密封容器中的静止液体,当一处受到压力时,这个压力将通过液体传到连通器的任意点上,而且其压力值处处相等。

又称静压传递原理。

2.系统压力: (系统中液压泵的排油压力。

)3.何谓液体的粘性和粘度?粘度的表示方法有哪些?答:液体在外力作用下流动时,分子间的内聚力要阻止分子间的相对运动而产生的一种内摩擦力。

表示粘性大小的物理量称为粘度。

粘度的表示方法有动力粘度、运动粘度和相对粘度三种表示方法。

4.动力黏度:表征流体黏性的内摩擦系数或绝对黏度 .5.运动粘度: (动力粘度μ和该液体密度ρ之比值。

)6.液动力: (流动液体作用在使其流速发生变化的固体壁面上的力。

)7.沿程压力损失: (液体在管中流动时因粘性摩擦而产生的损失。

)8.局部压力损失: (液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失)9.排量: (液压泵每转一转理论上应排出的油液体积;液压马达在没有泄漏的情况下,输出轴旋转一周所需要油液的体积。

)10.变量泵: (排量可以改变的液压泵。

)11.恒功率变量泵: (液压泵的出口压力p 与输出流量q 的乘积近似为常数的变量泵。

)12.困油现象: (液压泵工作时,在吸、压油腔之间形成一个闭死容积,该容积的大小随着传动轴的旋转发生变化,导致压力冲击和气蚀的现象称为困油现象。

)13.差动连接: (单活塞杆液压缸的左、右两腔同时通压力油的连接方式称为差动连接。

)14.往返速比(单活塞杆液压缸小腔进油、大腔回油时活塞的运动速度v 2与大腔进油、小腔回油时活塞的运动速度v 1的比值。

)15.滑阀的中位机能: (三位滑阀在中位时各油口的连通方式,它体现了换向阀的控制机能。

)16.溢流阀的压力流量特性: (在溢流阀调压弹簧的预压缩量调定以后,阀口开启后溢流阀的进口压力随溢流量的变化而波动的性能称为压力流量特性或启闭特性。

帕斯卡原理完整ppt课件

帕斯卡原理完整ppt课件
背景
帕斯卡在研究液体传递压强的过 程中,发现了这一原理,为流体 力学的发展奠定了基础。
原理表述及意义
原理表述
帕斯卡原理指出,在密闭容器内的液体,对容器各 个部分施加的压强是相等的,且这个压强能够不变 地被液体向各个方向传递。
意义
帕斯卡原理揭示了液体传递压强的规律,为液压传 动、水力学等领域提供了重要的理论依据。
液压元件选型
针对特定应用场合,选择 合适的液压泵、马达、阀 等液压元件,确保系统性 能稳定可靠。
系统优化方法
通过仿真分析、试验验证 等手段,对液压系统进行 优化改进,提高系统效率 和响应速度。
液压传动装置性能提升
传动效率提升
可靠性增强
采用高效液压泵和马达,降低系统内 部泄漏和摩擦损失,提高液压传动装 置的总效率。
启动设备
接通电源,启动设备,观察压力 表显示是否正常。
06
帕斯卡原理相关实验设计与操 作
Chapter
实验目的和步骤安排
实验目的 验证帕斯卡原理,即液体在密闭容器内传递压强的规律。
探究液体压强与深度、密度的关系。
实验目的和步骤安排
实验步骤
1. 准备实验器材,包括压强计、容器、液体(水、油等)等。
结果分析与讨论
结果分析
根据实验数据,分析液体在密闭容器内传递压强的规律,并与帕斯卡原理进行比 对。
结果讨论
探讨实验结果与帕斯卡原理的一致性,分析可能存在的误差来源,并提出改进意 见。
04
帕斯卡原理在工程技术中应用
Chapter
液压系统设计与优化
液压系统设计原则
根据工程需求,综合考虑 系统压力、流量、温度等 参数,进行液压系统的整 体设计。
打气筒把手
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档