MRI造影剂ppt
合集下载
磁共振成像(Magnetic-Resonance-Imaging-)PPT课件

1、钆与大分子的复合物
利用钆喷替酸葡甲胺(Gd-DTPA)与大分子 物质如白蛋白、葡聚糖等连接,形成分子量 超过2000道尔顿的大分子复合物,使造影剂 在血管内停留时间延长。
-
8
2、极小超顺磁氧化铁颗粒
其基本成分与网状内皮细胞性造影 剂相仿,但直径要小得多(约为 20~30nm),可以躲过网状内皮系 统的廓清作用,因而在血液中的滞 留时间明显延长,最后仍被网状内 皮细胞清除。
按造影剂的生物学分布,可分为细胞外间 隙非特异性分布造影剂、进入细胞内或细 胞膜结合造影剂、血池分布造影剂等。
-
4
1、细胞外造影剂
Gd-DTPA为离子型细胞外液造影剂, 不具有组织特异性,但可用于全身MR 增强扫描。目前临床上Gd-DTPA
主要用于以下几个方面:
-
5
Gd-DTPA应用
(1)脑和脊髓病变,由于Gd-DTPA不能透
MR造影剂及其应用
1044601 任志衡
-
1
磁共振成像(Magnetic Resonance Imaging )
利用原子核在强磁场内发生共 振所产生的信号经图像重建的 成像技术,人进入外磁场前, 质子处于无序状态,进入磁场, 呈有序状态。
-
2
-
3
MR造影剂
磁共振成像造影剂的分类
MRI造影剂一定能影响周围组织的磁学性质, 目前我国医学界一般把MRI造影剂分为以下 三类:顺磁性、铁磁性、超顺磁性。
-
10
4、肝细胞特异性造影剂
这类造影剂由于其特殊的分子结构,因而能 被肝细胞特异性地摄取。目前,该类对比剂 已经在临床上得到应用。临床上,肝细胞特 异性对比剂主要用于提高肝脏肿瘤的检出率。
1、钆螯合物
利用钆喷替酸葡甲胺(Gd-DTPA)与大分子 物质如白蛋白、葡聚糖等连接,形成分子量 超过2000道尔顿的大分子复合物,使造影剂 在血管内停留时间延长。
-
8
2、极小超顺磁氧化铁颗粒
其基本成分与网状内皮细胞性造影 剂相仿,但直径要小得多(约为 20~30nm),可以躲过网状内皮系 统的廓清作用,因而在血液中的滞 留时间明显延长,最后仍被网状内 皮细胞清除。
按造影剂的生物学分布,可分为细胞外间 隙非特异性分布造影剂、进入细胞内或细 胞膜结合造影剂、血池分布造影剂等。
-
4
1、细胞外造影剂
Gd-DTPA为离子型细胞外液造影剂, 不具有组织特异性,但可用于全身MR 增强扫描。目前临床上Gd-DTPA
主要用于以下几个方面:
-
5
Gd-DTPA应用
(1)脑和脊髓病变,由于Gd-DTPA不能透
MR造影剂及其应用
1044601 任志衡
-
1
磁共振成像(Magnetic Resonance Imaging )
利用原子核在强磁场内发生共 振所产生的信号经图像重建的 成像技术,人进入外磁场前, 质子处于无序状态,进入磁场, 呈有序状态。
-
2
-
3
MR造影剂
磁共振成像造影剂的分类
MRI造影剂一定能影响周围组织的磁学性质, 目前我国医学界一般把MRI造影剂分为以下 三类:顺磁性、铁磁性、超顺磁性。
-
10
4、肝细胞特异性造影剂
这类造影剂由于其特殊的分子结构,因而能 被肝细胞特异性地摄取。目前,该类对比剂 已经在临床上得到应用。临床上,肝细胞特 异性对比剂主要用于提高肝脏肿瘤的检出率。
1、钆螯合物
造影剂(课堂PPT)

6
常用造影剂分类
❖ X线和CT造影剂:
碘类、钡类及CO2造影剂
❖ 核磁(MRI)造影剂:
静脉内使用:钆类、铁类及锰类造影剂 胃肠内使用:铁类造影剂
❖ 超声(US)造影剂:
微泡注射剂。目前国内唯一上市的是第二代产 品 声诺维(SonoVue® SF6 )
7
一、X线造影剂
1. X线造影剂-碘造影剂分类(按化学特性)
12
单层磷脂
疏水链
亲水端
SonoVue® (声诺维,六氟化硫)化学结构
是目前唯一在国内上市的US造影剂,其增强持续时间达 3-8min , 稳定性更高,安全性和耐受性良好。
13
1 造影剂发展及分类 2 造影剂相关安全问题 3 造影剂外渗处理 4 造影剂安全使用策略
14
造影剂不良反应类型
过敏样反应 (特异质反应) 非过敏样反应(非特异质反应) 迟发型不良反应
钆特醇(Gadoterido)
11
三、超声(US)造影剂
类型 第一代
第二代
代表药物
Albunex, Levovist
Optison, SonoVue
特点
✓ 微泡内包裹空气 ✓ 增强持续时间较短(1-5min) ✓ 即使在很低的超声声波振动下也易被破坏
✓ 微泡内包裹碳氟类惰性气体 ✓ 增强持续时间较长
✓ 低蛋白血症、低血 红蛋白血症;
✓ 心力衰竭; ✓ 高龄(年龄>70岁) ✓ 低钾血症; ✓ 副球蛋白血症。
32
造影剂剂量是CIN的独立危险因素
研究发现,造影剂的剂量与肾功能损害的程度 相关,当造影剂量<30ml时,急性CIN发生率为26%; 而造影剂量>30ml时,急性CIN发生率为79%。造影 剂每增加5ml,CIN的危险就增加65%。
常用造影剂分类
❖ X线和CT造影剂:
碘类、钡类及CO2造影剂
❖ 核磁(MRI)造影剂:
静脉内使用:钆类、铁类及锰类造影剂 胃肠内使用:铁类造影剂
❖ 超声(US)造影剂:
微泡注射剂。目前国内唯一上市的是第二代产 品 声诺维(SonoVue® SF6 )
7
一、X线造影剂
1. X线造影剂-碘造影剂分类(按化学特性)
12
单层磷脂
疏水链
亲水端
SonoVue® (声诺维,六氟化硫)化学结构
是目前唯一在国内上市的US造影剂,其增强持续时间达 3-8min , 稳定性更高,安全性和耐受性良好。
13
1 造影剂发展及分类 2 造影剂相关安全问题 3 造影剂外渗处理 4 造影剂安全使用策略
14
造影剂不良反应类型
过敏样反应 (特异质反应) 非过敏样反应(非特异质反应) 迟发型不良反应
钆特醇(Gadoterido)
11
三、超声(US)造影剂
类型 第一代
第二代
代表药物
Albunex, Levovist
Optison, SonoVue
特点
✓ 微泡内包裹空气 ✓ 增强持续时间较短(1-5min) ✓ 即使在很低的超声声波振动下也易被破坏
✓ 微泡内包裹碳氟类惰性气体 ✓ 增强持续时间较长
✓ 低蛋白血症、低血 红蛋白血症;
✓ 心力衰竭; ✓ 高龄(年龄>70岁) ✓ 低钾血症; ✓ 副球蛋白血症。
32
造影剂剂量是CIN的独立危险因素
研究发现,造影剂的剂量与肾功能损害的程度 相关,当造影剂量<30ml时,急性CIN发生率为26%; 而造影剂量>30ml时,急性CIN发生率为79%。造影 剂每增加5ml,CIN的危险就增加65%。
磁共振MRIPPT课件

Beijing Hospital
反转恢复( IR)
• STIR序列:短TI时的反转恢复(IR) 这种short TI的IR称STIR序列,用于脂肪
抑制。 • FLAIR(Fluid-Attenuated Inversion
Recovery)序列:用于抑制自由水。
Beijing Hospital
快速自旋回波 ( FSE)序列
长TR(大于2000毫秒) 长TE(大于50毫秒)
T1WI :
短TR (400-800毫秒) 短TE(小于20毫秒)
Beijing Hospital
T1WI
如何区分T1WI、T2WI
• 看水和脂肪
• T1WI:水(如脑脊液、 尿液)呈低信号(黑) 脂肪呈很高信号(很白)
• T2WI:水呈很高信号 (很白),脂肪信号降 低(灰白)。
Beijing Hospital
Beijing Hospital
横向弛豫
• 也称为T2弛豫, 简单地说,T2弛 豫就是横向磁化 矢量减少的过程。 常常用T2值来描 述组织T2弛豫的 快慢
梯度磁场
超导型磁体内有三套线圈: •磁体线圈 •梯度线圈 •射频(RF)线圈(具有发射和接受功能) 磁体线圈提供均匀的高磁场
快速自旋回波的意义
常规T2WI上可以极大的缩短检查时间; T2对比上有较大选择性,如有效的TE时间; 是进行水成像的基础如: 脊髓造影、MRCP、MRUP及脑室造影等;
• 回波时间(Echo Time, TE):为激发 后到测量回波的时间;
• 翻转角(Flip Angle,FA):RF的角度
Beijing Hospital
自旋回波SE Spin echo
最基本的序列: 90°——180°—— 信号
反转恢复( IR)
• STIR序列:短TI时的反转恢复(IR) 这种short TI的IR称STIR序列,用于脂肪
抑制。 • FLAIR(Fluid-Attenuated Inversion
Recovery)序列:用于抑制自由水。
Beijing Hospital
快速自旋回波 ( FSE)序列
长TR(大于2000毫秒) 长TE(大于50毫秒)
T1WI :
短TR (400-800毫秒) 短TE(小于20毫秒)
Beijing Hospital
T1WI
如何区分T1WI、T2WI
• 看水和脂肪
• T1WI:水(如脑脊液、 尿液)呈低信号(黑) 脂肪呈很高信号(很白)
• T2WI:水呈很高信号 (很白),脂肪信号降 低(灰白)。
Beijing Hospital
Beijing Hospital
横向弛豫
• 也称为T2弛豫, 简单地说,T2弛 豫就是横向磁化 矢量减少的过程。 常常用T2值来描 述组织T2弛豫的 快慢
梯度磁场
超导型磁体内有三套线圈: •磁体线圈 •梯度线圈 •射频(RF)线圈(具有发射和接受功能) 磁体线圈提供均匀的高磁场
快速自旋回波的意义
常规T2WI上可以极大的缩短检查时间; T2对比上有较大选择性,如有效的TE时间; 是进行水成像的基础如: 脊髓造影、MRCP、MRUP及脑室造影等;
• 回波时间(Echo Time, TE):为激发 后到测量回波的时间;
• 翻转角(Flip Angle,FA):RF的角度
Beijing Hospital
自旋回波SE Spin echo
最基本的序列: 90°——180°—— 信号
肝脏特异性造影剂普美显MR应用ppt医学课件

当FNH样病变表现为HCP普遍信号增高,可
以出现中心疤痕于门脉期信号减退、HCP低 信号,类似于HCC。当搞不清时,应当停止 随访,可以采取活检。
二、肝细胞肝癌
平扫:T1WI多呈低信号,少数为高信号,或
者在低信号基础上局部呈高信号。T2WI多为 高信号,一些分化好的HCC呈等或者略低信 号可以表现为T1WI明显高信 号,T2WI和T2WI*明显低信号。
动态增强:典型情况下,HCC(80%)在动脉期明 显强化,门脉期信号减退(图6)。不到20%的 HCC表现为少血供(往往是分化好的肿瘤)。小 HCC(多数分化好)往往信号均匀。大HCC(多数 中度分化或者分化差)可以表现形态各异,包括镶 嵌式(图7),包膜,结中结,以及以卫星灶的形 式向包膜外延伸。肿瘤包膜在延迟期表现为比周围 肝实质更高的信号。包膜破坏,包膜外延伸或者缺 乏包膜,这些都预后差。
图8,HCC,A-F平扫、动脉期、门脉期、延迟5分钟、延迟10分钟、HCP。富血供 HCC,门脉期信号减退,HCP摄取普美显。
一、肝硬化相关结节
1、肝硬化再生和退变结节
良性肝硬化结节<2cm,T1WI呈等或高信号 ,T2WI呈等或低信号,DWI呈等信号。含脂 结节或变性结节表现为在反相位图像上信号 减低。含铁结节或铁质沉着结节表现为T2WI 和T2WI*明显低信号(图2)。
注射造影剂后,大部分良性硬化结节 在动脉期和静脉期表现为与周围肝实质 类似的强化。一些良性硬化结节在动脉 期强化,在静脉期退为等信号。
在肝胆期表现为等信号。
铁质沉着和变性结节在肝胆期表现为低信 号,有可能和早期HCC混淆。有些良性结节 在HCP表现为高信号(图3)。机制不明, 但是OATP过多表达或者MDRs负调节可能 起作用。这些结节可能被误认为FNH样病变 或者HCP高信号的不典型HCC。小的良性硬 化结节在动脉期强化,HCP低信号,可能不 能和小HCC区别。
MRI造影剂PPT演示课件

• 晶体核心包被以葡聚糖右旋糖酐或其他物质,包 覆后的SPIO由于具有一定的超顺磁性,使T2加权 图像信号明显下降。
• 纳米直径粒径大于50nm(包括修饰层)的超顺磁氧 化铁纳米颗粒肝脏和脾脏组织内就被巨噬细胞吞 噬了,主要分布于肝脏和脾脏组织内。
• 粒径小于50nm(包括修饰层)的超顺氧化铁纳米颗
•1
MRI造影剂的原理
• 氢核是多种组织的 MRI信号源 ,造影剂本身不产 生信号 ,它主要影响组织内氢核系统的弛豫时间, 从而与周围组织形成对比。MRI造影剂一定是磁 性物质 ,能同氢核发生磁性的相互作用。造影剂主 要是通过影响T1 弛 豫 时 间 、T2 弛 豫 时 间 来改变信 号强度。
• 自旋-晶格弛豫时间T1(磁共振信号呈高信号)和 自旋-自旋弛豫时间T2(磁共振信号呈低信号)
•8
粒因具有较长的血液半衰期而能到达如淋巴结、
肿瘤、血管内皮细胞等组织中。
•5
Fe3O4纳米粒子的合成
1共沉淀法 2热分解法 3水热法 4微乳液法 5溶胶-凝胶法 6 超声化学法
•6
合成方法比较
•7
共沉淀法
共沉淀法是目前使用最普遍的方法,其特征是简单易用,原理可用方程式 表示,Fe2 ++ 2Fe3 ++ 8OH→ Fe3O4+ 4H2O
MRI造影剂的原理
• 磁共振成像(MRI, Magnetic Resonance Imaging)是一项 基于核磁共振原理的先进医学影像诊断技术,是八十年代 以来医学影像学中的最新成就之一。它是利用生物体内不 同组织在外加磁场影响下产生不同的磁共振信号来成像的 。磁共振信号的强弱取决于组织内水分子中质子的弛豫时 间。在临床磁共振成像中,30%以上的诊断须用磁共振成 像对比剂(MRI Contrast Agent)。对比剂是用来缩短成像 时间、提高成像对比度和清晰度的一种成像增强试剂。它 能改变体内局部组织中水质子的弛豫速率,提高正常与患 病部位的成像对比度,从而显示体内器官的功能状态。
• 纳米直径粒径大于50nm(包括修饰层)的超顺磁氧 化铁纳米颗粒肝脏和脾脏组织内就被巨噬细胞吞 噬了,主要分布于肝脏和脾脏组织内。
• 粒径小于50nm(包括修饰层)的超顺氧化铁纳米颗
•1
MRI造影剂的原理
• 氢核是多种组织的 MRI信号源 ,造影剂本身不产 生信号 ,它主要影响组织内氢核系统的弛豫时间, 从而与周围组织形成对比。MRI造影剂一定是磁 性物质 ,能同氢核发生磁性的相互作用。造影剂主 要是通过影响T1 弛 豫 时 间 、T2 弛 豫 时 间 来改变信 号强度。
• 自旋-晶格弛豫时间T1(磁共振信号呈高信号)和 自旋-自旋弛豫时间T2(磁共振信号呈低信号)
•8
粒因具有较长的血液半衰期而能到达如淋巴结、
肿瘤、血管内皮细胞等组织中。
•5
Fe3O4纳米粒子的合成
1共沉淀法 2热分解法 3水热法 4微乳液法 5溶胶-凝胶法 6 超声化学法
•6
合成方法比较
•7
共沉淀法
共沉淀法是目前使用最普遍的方法,其特征是简单易用,原理可用方程式 表示,Fe2 ++ 2Fe3 ++ 8OH→ Fe3O4+ 4H2O
MRI造影剂的原理
• 磁共振成像(MRI, Magnetic Resonance Imaging)是一项 基于核磁共振原理的先进医学影像诊断技术,是八十年代 以来医学影像学中的最新成就之一。它是利用生物体内不 同组织在外加磁场影响下产生不同的磁共振信号来成像的 。磁共振信号的强弱取决于组织内水分子中质子的弛豫时 间。在临床磁共振成像中,30%以上的诊断须用磁共振成 像对比剂(MRI Contrast Agent)。对比剂是用来缩短成像 时间、提高成像对比度和清晰度的一种成像增强试剂。它 能改变体内局部组织中水质子的弛豫速率,提高正常与患 病部位的成像对比度,从而显示体内器官的功能状态。
《造影剂应基本知识》课件

XIV. CT造影剂的特点
CT造影剂具有高密度和对比度,能够帮助医生更清晰地观察和诊断疾病,常 用于CT扫描和血管造影等检查。
VIII. 造影剂的注意事项
1 避免与其他药物混合
在使用造影剂期间,应避免与其他药物同时使用,以避免不必要的相互作用。
2 密切观察患者反应
在使用造影剂后,应密切关注患者的症状和反应,及时采取相应措施。
3 合理检查周期
根据患者的具体情况和需要,制定合理的检查周期,以避免过度或频繁使用造影剂。
IX. 造影剂的注射方式
3 评估功能状态
通过观察造影剂在器官或血管中的流动情况,评估功能的正常与否。
IV. 造影剂的常见应用
放射性造影剂
用于X射线和核医学检查,如CT扫 描、放射性示踪等。
超声造影剂
用于超声检查,增强器官和血流 的可见性,提高诊断准确率。
磁共振造影剂
用于MRI检查,通过增加对比度, 使图像更清晰。
V. 造影剂的规范使用
造影剂应基本知识
这份PPT课件将为您介绍关于造影剂的基本知识,包括定义、分类、作用、应 用、注意事项等内容。通过本课件,您将全面了解造影剂在放射医学中的重 要性和应用。
I. 什么是造影剂?
造影剂是指在医学影像学中使用的特定物质,通过口服、注射等方式进入人体,用以突出某些组织和器官的形态、 结构、功能等,以便进行诊断和治疗。
根据不同检查的需要,造影剂可以通过静脉注射、动脉注射、腔内注射等方 式进入体内,以达到最佳效果。
X. 造影剂的制备和保存
造影剂在使用之前需要进行相应的制备和保存措施,以确保其质量和稳定性。 具体要求应根据造影剂的类型和使用说明来执行。
XI. 静脉造影剂和动脉造影剂的区别
7-MRI-造影剂

低浓度时,T1加权上信号强度与浓度成正比,T1像 中,含造影剂部分显示为高密度,称阳性造影剂。 高浓度时,T2时间缩短加速,导致信号强度下降。 T2像中,含造影剂部分显示为低密度,称阴性造影剂
MR造影剂(Contrast Agent)
超顺磁性物质 具有磁矩的小粒子或晶体紧密聚
集而成,无磁场情况下,为无序排列。在外磁场中,
MR造影剂(Contrast Agent)
MR造影剂可克服普通成像方法的限制,通过改
变组织的弛豫时间,来改变组织的信号强度,提高
组织的对比。
物质按在磁场中产生的磁化分为:
抗磁性物质 人体中绝大数有机物
顺磁性物质 核外电子不成对电子,具有较大
磁矩如铬、锰、钆、铁。
MR造影剂(Contrast Agent)
MR伪影
颅内有金属物
化学位移伪影
腹部呼吸伪影
MR伪影
由于层面选择脉
冲的非理想性,
导致激励范围扩
Байду номын сангаас
大至相邻层面,
使部分容积效应
进一步增加。
多层面采集信号时造成伪影 左:层面无间隙 右:层面有10mm间隙
假牙齿形成的伪影
心脏运动伪影
运动不补偿
运动补偿
皮带
病人离开颅脑表面线圈
空间分辨率
MR的视野一般为 40-50 cm 图像矩阵为128、256或、512
具有较大的磁性。如超顺磁氧化 铁(SPIO)。 铁磁性物质 为紧密排列的一组原子组成的晶 体,排列有序一次弱化后,既使无外磁场作用,仍 有磁性。
超顺磁与铁磁性造影剂
由于磁矩很大(比GD-DTPA大100倍),称之
为磁敏性造影剂,能造成磁场不均匀,水分子
磁共振造影剂与肝脏病变课件

C.
Gd-DOTA
非选择性细胞间隙分布类造影剂
A. B.
T1WI显示强化 团状注射+动态增强才有意义
根据不同的动脉血液供应1,2
1. Hamm B, Thoeni RF, Gould RG, et al. Radiology 1994;190:417 2. Ohtomo K, Itai Y, Yoshikawa K, et al. Radiology 1987;163:27
Inphase & Outphase
在回波采集时,水质子和脂肪质子处于相 同相位,信号相加——Inphase; 水质子和脂肪质子处于相反相位,信号相 减——Outphase
Inphase 1.5T 1.0T 4,8,12msce 2,6,10msce Outphase 2,6,10msce 4,8,12msce
1
2
3
4
5
6
7
8
9
肝海绵状血管瘤
动脉期无强化
延迟5分钟强化
局灶结节增生-FNH
A. B.
T1WI呈等(60%)、低(34%)或稍高信号(6%) T2WI2/3呈高信号、1/3呈低信号
C. 疤痕T2WI呈高、等或低信号动态增强显示动
脉期明显强化,门静脉期及延迟期呈略高信 号或低信号;中心疤痕延迟强化
C.
D.
MRI
血管造影
E.
F.
内窥镜
核医学——ECT/PETFra bibliotek肝脏MRI
A. B. C.
平扫——PD/T2/T1WI/FEISTA/DWI MRS——1H/31PMRS 增强MRI
细胞外造影剂 网状内皮细胞造影剂 肝胆造影剂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MRI造影剂的分类
• 我国科学界一般把MRI造影剂分成3种,顺 磁性物质、铁磁性物质和超顺磁性物。
• 顺磁性螯合物对组织的T1、T2均有影响, 铁磁性物质和超顺磁性物质几乎不影响组 织的T1值,而显著改变组织的T2。
各种MRI造影剂的临床应用
SUCCESS
THANK YOU
2020/1/2
Fe4O3纳米粒子
一般情况下,在惰性气体保护下,铁盐和亚铁盐溶液按2:1(或更大) 的比例进行混合,于一定温度下加入过量的NH4OH或者NaOH,将pH值调至8-14 范围内,高速搅拌下进行共沉淀反应,沉淀转化为Fe3O4纳米颗粒后,经过洗 涤、过滤、干燥等步骤得到Fe3O4纳米颗粒粉末。Fe3O4纳米颗粒的尺寸和形 状与使用的铁盐种类(比如氯化物、硫酸盐或硝酸盐)、Fe2+/ Fe3+的比例、 反应温度、pH值以及溶液的离子强度等都有关系。一旦合成条件固定后,所 合成的Fe3O4纳米颗粒的质量是可重复的。用共沉淀法合成的Fe3O4纳米颗粒 的饱和磁化强度一般比其块体材料的饱和磁化强度92 emu/g Fe要小。
MRI造影剂的原理
• 氢核是多种组织的 MRI信号源 ,造影剂本身不产 生信号 ,它主要影响组织内氢核系统的弛豫时间, 从而与周围组织形成对比。MRI造影剂一定是磁性 物质 ,能同氢核发生磁性的相互作用。造影剂主 要是通过影响T1弛豫时间、T2弛豫时间来改变信 号强度。
• 自旋-晶格弛豫时间T1(磁共振信号呈高信号)和 自旋-自旋弛豫时间T2(磁共振信号呈低信号)
• 磁性纳米粒子最具代表性的即为SPIO,SPIO的有 效成分是Fe4O3。
• 晶体核心包被以葡聚糖右旋糖酐或其他物质,包 覆后的SPIO由于具有一定的超顺磁性,使T2加权 图像信号明显下降。
• 纳米直径粒径大于50nm(包括修饰层)的超顺磁氧 化铁纳米颗粒肝脏和脾脏组织内就被巨噬细胞吞 噬了,主要分布于肝脏和脾脏组织内。
• 粒径小于50nm(包括修饰层)的超顺氧化铁纳米颗 粒因具有较长的血液半衰期而能到达如淋巴结、 肿瘤、血管内皮细胞等组织中。
Fe3O4纳米粒子的合成
1共沉淀法 2热分解法 3水热法 4微乳液法 5溶胶-凝胶法 6 超声化学法
合成方法比较
共沉淀法
共沉淀法是目前使用最普遍的方法,其特征是简单易用,原理可用方 程式表示,Fe2 ++ 2Fe3 ++ 8OH→ Fe3O4+ 4H2O
MRI造影剂
1. MRI造影剂的原理及分类 2.四氧化三铁纳米粒子的合成方法
MRI造影剂的原理
• 磁共振成像(MRI, Magnetic Resonance Imaging)是一项 基于核磁共振原理的先进医学影像诊断技术,是八十年代 以来医学影像学中的最新成就之一。它是利用生物体内不 同组织在外加磁场影响下产生不同的磁共振信号来成像的。 磁共振信号的强弱取决于组织内水分子中质子的弛豫时间。 在临床磁共振成像中,30%以上的诊断须用磁共振成像对 比剂(MRI Contrast Agent)。对比剂是用来缩短成像时间、 提高成像对比度和清晰度的一种成像增强试剂。它能改变 体内局部组织中水质子的弛豫速率,提高正常与患病部位 的成像对比度,从而显示体内器官的功能状态。
SUCCESSTHANK OU2020/1/2