四川省资阳市2017年中考数学试卷(含答案解析)
四川省资阳市高中阶段学校招生统一考试数学试卷.doc

四川省资阳市高中阶段学校招生统一考试数学试卷全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.–3的绝对值是()A.3 B.–3 C.±3 D.92.下列计算正确的是()A.a+2a2=3a3B.a2·a3=a6C.32()a=a9D.a3÷a4=1a-(a≠0)3.吴某打算用同一大小的正多边形地板砖铺设家中的地面,则该地板砖的形状不能是()A.正三角形B.正方形C.正六边形D.正八边形4.若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则()A.k<0 B.k>0 C.b<0 D.b>05的结果是()A.2x B.±2x C.D.±6.在数轴上表示不等式组11,21xx⎧≥-⎪⎨⎪->-⎩的解集,正确的是()7.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°8.按下图中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是()9.用a、b、c、d四把钥匙去开X、Y两把锁,其中仅有a钥匙能够打开X锁,仅有b钥匙能打开Y锁.在求“任意取出一把钥匙能够一次打开其中一把锁”的概率时,以下分析正确的是()A.分析1、分析2、分析3 B.分析1、分析2C.分析1 D.分析210.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是()A.563B.25 C.1123D.56第Ⅱ卷(非选择题共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.甲、乙两人进行跳远训练时,在相同条件下各跳10次的平均成绩相同,若甲的方差为0.3,乙的方差为0.4,则甲、乙两人跳远成绩较为稳定的是_________(填“甲”或“乙”).12.方程组25,4x yx y-=⎧⎨+=⎩的解是_____________.13.若两个互补的角的度数之比为1∶2,则这两个角中较小..角的度数是_____________.14.如图,已知直线AD、BC交于点E,且AE=BE,欲证明△AEC≌△BED,需增加的条件可以是__________________(只填一个即可).15.若点A(–2,a)、B(–1,b)、C(1,c)都在反比例函数y=kx(k<0)的图象上,则用“<”连接a 、b 、c 的大小关系为___________________. 16.若n 为整数,且n ≤x <n +1,则称n 为x 的整数部分.通过计算301111198019801980+++个和301111200920092009+++个的值,可以确定x =11111119801981198220082009+++++的整数部分是______.三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)解方程:2103x x --=.18.(本小题满分7分)如图,已知□ABCD 的对角线AC 、BD 相交于点O ,AC =12,BD =18,且△AOB 的周长l =23,求AB 的长.19.(本小题满分8分)已知Z 市某种生活必需品的年需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)在一定范围内分别近似满足下列函数关系式:y 1= –4x +190,y 2=5x –170.当y 1=y 2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y 1<y 2时,称该商品的供求关系为供过于求;当y 1>y 2时,称该商品的供求关系为供不应求.(1)(4分) 求该商品的稳定价格和稳定需求量;(2)(4分) 当价格为45(元/件)时,该商品的供求关系如何?为什么? 20.(小题满分8分)根据W 市统计局公布的数据,可以得到下列统计图表.请利用其中提供的信息回答下列问题:W市近3年人均GDP(元)(1)(3分)从2006年到2008年,W市的GDP哪一年比上一年的增长量最大?(2)(3分)2008年W市GDP分布在第三产业的约是多少亿元?(精确到0.1亿元)(3)(2分)2008年W市的人口总数约为多少万人?(精确到0.1万人)21.(本小题满分8分)某市在举行“5.12汶川大地震”周年纪念活动时,根据地形搭建了一个台面为梯形(如图所示)的舞台,且台面铺设每平方米售价为a元的木板.已知AB=12米,AD=16米,∠B=60°,∠C=45°,计算购买铺设台面的木板所用资金是多少元.(不计铺设损耗,结果不取近似值)22.(本小题满分8分)已知关于x的一元二次方程x2+kx–3=0,(1)(4分)求证:不论k为何实数,方程总有两个不相等的实数根;(2)(4分)当k=2时,用配方法解此一元二次方程.23.(本小题满分8分)如图,已知四边形ABCD、AEFG均为正方形,∠BAG=α(0°<α<180°).(1)(6分)求证:BE=DG,且BE⊥DG;(2)(2分)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB 所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)24.(本小题满分9分)如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C.连结BC,作CD⊥BC,交AY于点D.(1)(3分)求证:△ABC∽△ACD;(2)(6分)若P是AY上一点,AP=4,且sin A=35,①如图2,当点D与点P重合时,求R的值;②当点D与点P不重合时,试求PD的长(用R表示).图1 图2 25.(本小题满分9分)如图,已知抛物线y=12x2–2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y 轴于点C,连结O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.(1)(3分)求直线l的函数解析式;(2)(3分)求点D的坐标;(3)(3分)抛物线上是否存在点Q,使得S△DQC= S△DPB? 若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.。
2017年四川省资阳市中考数学试卷(含答案版)

2017年四川省资阳市中考数学试题(本试卷满分120分;考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017四川省资阳市,第1题,3分)-2的绝对值是 ( )A .±2B .2C .一2D .122.(2017四川省资阳市,第2题,3分)如图所示的立体图形的主视图是( )A .B .C .D .3.(2017四川省资阳市,第3题,3分)下列运算正确的是 ( )A .222()x y x y +=+B .235()x x =C .2x x =D .623x x x ÷=4.(2017四川省资阳市,第4题,3分)如今网络购物已成为一种常见的购物方式,2016年11月11日当天某电商平台的交易额就达到了1107亿元,用科学记数法表示为(单位:元) ( ) A ,101.10710⨯ B .111.10710⨯ C .120.110710⨯ D .121.10710⨯5.(2017四川省资阳市,第5题,3分)如图,BE 平分∠DBC ,点A 是BD 上一点,过点A 作AE ∥BC 交BE 于点E ,∠DAE=56°,则∠E 的度数为( )A .56°B .36°C .26°D .28°6.(2017四川省资阳市,第6题,3分)一组数据5,2,6,9,5,3的众数、中位数、平均数分别是( )A .5,5,6B .9,5,5C .5,5,5D .2,6,57.(2017四川省资阳市,第7题,3分)如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,将Rt △ABC 绕点A 逆时针旋转30°后得到△ADE ,则图中阴影部分的面积为 ( )A .1312πB .34πC .43πD .2512π 8.(2017四川省资阳市,第8题,3分)若一次函数y=mx+n (m ≠0)中的m ,n 是使等式12m n =+成立的整数,则一次函数y=mx+n (m ≠0)的图象一定经过的象限是 ( )A .一、三B .三、四C .一、二D .二、四9.(2017四川省资阳市,第9题,3分)如图,在矩形ABCD 中,AB=2,AD=22,点E 是CD 的中点,连接AE ,将△ADE 沿直线AE 折叠,使点D 落在点F 处,则线段CF 的长度是 ( )A .1B .22C .23D .23 10.(2017四川省资阳市,第10题,3分)如图,抛物线2y ax bx c =++(a ≠0)的顶点和该抛物线与y 轴的交点在一次函数y=kx+1(k ≠0)的图象上,它的对称轴是x =1,有下列四个结论:①abc <0,②13a <-,③a=-k ,④当0<x <1时,ax+b >k ,其中正确结论的个数是( )A .4B .3C .2D .1第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分,请把答案填在题中的横线上)11.(2017四川省资阳市,第11题,3分)使分式21x -有意义的x 取值范围是________. 12.(2017四川省资阳市,第12题,3分)一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是________.13.(2017四川省资阳市,第13题,3分)边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC=________度.14.(2017四川省资阳市,第14题,3分)关于x 的一元二次方程2(1)(21)0a x a x a -+++=有两个不相等的实数根,则a 的取值范围是_______.15.(2017四川省资阳市,第15题,3分)如图,点A 是函数16y x =-图象上一点,连接AO 交反比例函数2k y x=(k ≠0)的图象于点B ,若BO=2AB ,则k________.16.(2017四川省资阳市,第16题,3分)按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是________.三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(2017四川省资阳市,第17题,7分) 先化简,再求值:2211(1)28x x x x+--÷,其中x=2. 18.(2017四川省资阳市,第18题,8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;(3)现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.19.(2017四川省资阳市,第19题,8分)如图,AB 是半圆的直径,AC 为弦,过点C 作直线DE 交AB 的延长线于点E .若∠ACD=60°,∠E=30°.(1)求证:直线DE 与半圆相切;(2)若BE=3,求CE 的长.20.(2017四川省资阳市,第20题,8分)如图,一次函数1y kx b =+(k ≠0)的图象与反比例函数2m y x=(m ≠0,x <0)的图象交于点A (-3,1)和点C ,与y 轴交于点B ,△AOB 的面积是6.(1)求一次函数与反比例函数的解析式;(2)当x <0时,比较1y 与2y 的大小.21.(2017四川省资阳市,第21题,9分)四川省安岳县盛产柠檬和柚子两种水果,今年,某公司计划用两种型号的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载满运,且只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载袖子可共装载33吨,若用2辆汽车装载柠檬、3辆汽车装载柚子可共装载32吨.(1)求每辆汽车可装载柠檬或柚子各多少吨?(2)据调查,全部销售完后,每吨柠檬可获利700元、每吨柚子可获利500元,计划用20辆汽车运输,且柚子不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元?22.(2017四川省资阳市,第22题,9分)如图,光明中学一教学楼顶上竖有一块高为AB 的宣传牌,点E 和点D 分别是教学楼底部和外墙上的一点(A ,B ,D ,E 在同一直线上),小红同学在距E 点9米的C 处测得宣传牌底部点B 的仰角为67°,同时测得教学楼外墙外点D 的仰角为30°,从点C 沿坡度为1:3的斜坡向上走到点F 时,DF 正好与水平线CE 平行.(1)求点F 到直线CE 的距离(结果保留根号);(2)若在点F 处测得宣传牌顶部A 的仰角为45°,求出宣传牌AB 的高度(结果精确到0.0l ). (注:sin67°≈0.92,tan67°≈2.36,2≈1.41,3≈1.73)23.(2017四川省资阳市,第23题,11分)在△ABC 中,AB=AC >BC ,D 是BC 上一点,连接AD ,作△ADE ,使AD=AE ,且∠DAE=∠BAC ,过点E 作EF ∥BC 交AB 于F ,连接FC .(1)如图1.①连接BE ,求证:△AEB ≌△ADC :②若D 是线段BC 的中点,且AC=6,BC=4,求CF 的长;(2)如图2,'若点D 在线段BC 的延长线上,且四边形CDEF 是矩形,当AC=m ,BC=n 时,求CD 的长(用含m ,n 的代数式表示).24.(2017四川省资阳市,第24题,12分)如图,抛物线2(1)4y a x =++(a ≠0)与x 轴交于A ,C 两点,与直线y=x-1交于A ,B 两点,直线AB 与抛物线的对称轴交于点E .(1)求抛物线的解析式;(2)若点P 在直线AB 上方的抛物线上运动.①点P 在什么位置时,△ABP 的面积最大,求出此时点P 的坐标;②当点P 与点C 重合时,连接PE ,将△PEB 补成矩形,使△PEB 上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.答案。
四川省资阳市中考数学试卷

四川省资阳市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·洛宁模拟) ﹣9的相反数是()A .B . ﹣C . 9D . ﹣92. (2分)(2019·广元) 函数的自变量x的取值范围是()A .B .C .D .3. (2分)已知多项式x2+a能用平方差公式在有理数范围内分解因式,那么在下列四个数中a可以等于()A.9 B.4 C.﹣1 D.﹣2A . 9B . 4C . -1D . -24. (2分)(2019·禅城模拟) 如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A . 8,9B . 8,8.5C . 16,8.5D . 16,10.55. (2分)下面四个几何体中,左视图是四边形的几何体共有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2019八下·乌拉特前旗开学考) 某地区开展“二十四节气”标识系统设计活动,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A .B .C .D .7. (2分)如图,将矩形ABCD沿对角线BD对折,使点C落在C′处,BC′交AD于F,下列不成立的是()A . AF=C′FB . BF=DFC . ∠BDA=∠ADC′D . ∠ABC′=∠ADC8. (2分)如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A . 5B . 7C . 8D . 109. (2分)Rt△ABC在平面坐标系中摆放如图,顶点A在x轴上,∠ACB=90°,CB∥x轴,双曲线经过CD点及AB的中点D,S△BCD=4,则k的值为()A . 8B . ﹣8C . ﹣10D . 1010. (2分)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是()A . x<yB . x>yC . x≤yD . x≥y二、填空题 (共8题;共8分)11. (1分)(2017·泰兴模拟) 9的平方根是________.12. (1分) (2017七上·江门月考) “天鸽”为今年以来登陆我国较强的台风,据民政部8月25日通报,台风“天鸽”已造成直接经济损失达121.8亿元.数据“121.8亿”用科学记数法可表示为________.13. (1分) (2018八上·自贡期末) 若,则的值为________14. (1分)抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线________ .15. (1分)现有一圆心角为120°,半径为9cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则围成的圆锥的高为________ cm.16. (1分) (2016八上·上城期末) 在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是________.17. (1分)如图,PA、PB分别切⊙O于A、B,点C、M是⊙O上的点,∠AMB=60°,过点C作的切线交PA、PB于E、F,△PEF的外心在PE上.已知PA=3,则AE的长为________.18. (1分) (2016八上·临河期中) 如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=________度.三、解答题 (共10题;共97分)19. (10分)先化简,再求值:(1)(a+b)2+(a﹣b)(2a+b)﹣3a2,其中,.(2),其中.20. (10分)解下列方程:(1) 2x2﹣4x﹣5=0.(2) x2﹣4x+1=0.(3)(y﹣1)2+2y(1﹣y)=0.21. (10分)如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.(1)求证:∠PCD=∠PDC;(2)求证:OP是线段CD的垂直平分线.22. (6分)(2013·河南) 从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解”雾霾天气的主要原因“,随机调查了该市部分市民,并对调查结果进行整理.绘制了如下尚不完整的统计图表.组别观点频数(人数)A大气气压低,空气不流动80B地面灰尘大,空气湿度低mC汽车尾气排放nD工厂造成的污染120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=________,n=________.扇形统计图中E组所占的百分比为________%;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?23. (11分)学校举行广播操比赛,八年级三个班的各项得分及三项得分的平均数如下(单位:分).服装统一进退场有序动作规范三项得分平均分一班80848884二班97788085三班90788484根据表中信息回答下列问题:(1)学校将“服装统一”、“队形整齐”、“动作规范”三项按2:3:5的比例计算各班成绩,求八年级三个班的成绩;(2)由表中三项得分的平均数可知二班排名第一,在(1)的条件下,二班成绩的排名发生了变化,请你说明二班成绩排名发生变化的原因.24. (10分)(2018·贺州) 如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD 交CE的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.25. (10分) (2019八上·秀洲期末) 一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系如图中线段OC所示.根据图像进行以下研究:(1)甲、乙两地之间的距离为________km;(2)线段AB的表达式为________,线段OC的表达式为________;(3)设快、慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数表达式,并画出函数的图像.26. (10分) (2019七上·顺德期末) 某校开设篮球、足球、乒乓球、排球四个项目的选修课,为了解同学们的报名情况,随机抽取了部分学生进行调査,将获得的数据进行整理,绘制了如下两幅不完整的统计图,请你根据统计图提供的信息,完成下列问题:(1)把条形统计图1补充完整,写出图2中C所在扇形的圆心角是________°;(2)若该校有3000名学生,请你估计全校大约有多少名学生会选修足球课.27. (10分) (2016九上·北仑月考) 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM的面积;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为点的四边形为平行四边形?若存,请求出Q点坐标;若不存在,请说明理由.28. (10分) (2017八下·潮阳期末) 如图,矩形OABC在平面直角坐标系内(O为坐标原点),点A在x轴上,点C在y轴上,点B的坐标为(﹣4,4 ),点E是BC的中点,现将矩形折叠,折痕为EF,点F为折痕与y轴的交点,EF交x轴于G且使∠CEF=60°.(1)求证:△EFC≌△GFO;(2)求点D的坐标;(3)若点P(x,y)是线段EG上的一点,设△PAF的面积为s,求s与x的函数关系式并写出x的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共97分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、28-1、28-2、。
最新整理资阳市中考数试题及答案.doc

资阳市 高中阶段学校招生统一考试数 学一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是 A .4B .2C .-2D .2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有 A .D 点B .A 点C .A 点和D 点D .B 点和C 点3.下列运算正确的是 A .(ab )5=ab 5B .a 8÷a 2=a 6C .(a 2)3=a 5D .(a -b )2=a 2-b 24.如图2,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是 A .α的余角只有∠BB .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补5.下列说法正确的是A .频数是表示所有对象出现的次数B .频率是表示每个对象出现的次数C .所有频率之和等于1D .频数和频率都不能够反映每个对象出现的频繁程度6. 5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C ,峰顶的温度为(结果保留整数)A .-26°CB .-22°CC .-18°CD .22°C图2图17.已知a 、b 、c 分别是三角形的三边,则方程(a + b )x 2 + 2cx + (a + b )=0的根的情况是A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根8.已知矩形ABCD 的边AB =15,BC =20,以点B 为圆心作圆,使A 、C 、D 三点至少有一点在⊙B 内,且至少有一点在⊙B 外,则⊙B 的半径r 的取值范围是A .r >15B .15<r <20C .15<r <25D .20<r <259.在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 210.如图3,已知Rt △ABC ≌Rt △DEC ,∠E =30°,D 为AB 的中点,AC =1,若△DEC 绕点D 顺时针旋转,使ED 、CD 分别与Rt △ABC 的直角边BC相交于M 、N ,则当△DMN 为等边三角形时,AM 的值为AB.3C.3D .1二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD 中,对角线AC 、BD 交于点O ,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20xx 0__________. 13.若A (1x ,1y )、B (2x ,2y )在函数12y x的图象上,则当1x 、2x 满足_______________时,1y >2y .14.如图5,校园内有一块梯形草坪ABCD ,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF ,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).图4图5图315.资阳市某学校初中20xx级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(21 2x x--2144x x-+)÷222x x-,其中x=1.18.(本小题满分7分)如图7,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC 交AC于点F.(1)点D是△ABC的________心;(2)求证:四边形DECF为菱形.图7图619.(本小题满分8分)惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1)3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区?(2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A袋中放着分别标有数字1、2、3的三个小球,B袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放..回.地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.·22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少?(结果可保留根号)23.(本小题满分10分)阅读下列材料,按要求解答问题:如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a,得a 2-b 2=)2-b 2=2b 2=b ·c .即a 2-b 2= bc .于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a 2-b 2=bc 都成立. (1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.图8图9-1 图9-2图9-324.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O ′,交y 轴的负半轴于点C ,连接AC 、BC ,过A 、B 、C 三点作抛物线.(1)求抛物线的解析式;(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,连结BD ,求直线BD 的解析式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD ?如果存在,请求出点P 的坐标;如果不存在,请说明理由.资阳市 高中阶段学校招生统一考试数学试题参考答案及评分意见说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几图10个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB. 二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可;12(或34; 13.答案不唯一,x 1<x 2<0,或 0<x 1<x 2,或210x x <<或122,3x x ==-等之一均可;14. 4; 15.10 ; 16.9,12; 三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x -–21(2)x -]×(2)2x x - ················································· 3分=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x - =12–2(2)x x - ···················································································· 4分=22(2)x x --–2(2)x x - =12x- ···························································································· 5分 当x =1时,原式=121- ······················································································· 6分= 1 ·································································································· 7分 说明:以上步骤可合理省略 .18.(1) 内. ····················································································· 2分 (2) 证法一:连接CD ,······································································· 3分 ∵ DE ∥AC ,DF ∥BC ,∴ 四边形DECF 为平行四边形,·························································· 4分 又∵ 点D 是△ABC 的内心,∴ CD 平分∠ACB ,即∠FCD =∠ECD , ················································ 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC∴ FC =FD , ···················································································· 6分 ∴ □DECF 为菱形. ·········································································· 7分 证法二:图7 过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ························· 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH .∴DH =DI . ······················································································ 4分 ∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ··························································· 5分 ∴S □DECF =CE ·DH =CF ·DI ,∴CE =CF . ······················································································ 6分 ∴□DECF 为菱形. ··········································································· 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, ······································ 1分 ∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区.······································································································ 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x )辆, ······························· 3分 由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩······························································ 5分解得:1.5≤x ≤5 ·················································································· 6分 注意到x 为正整数,∴x =2,3,4,5 ····················································· 7分 ∴安排甲、乙两种货车方案共有下表4种:······································································································ 8分 说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程...也给全分. 20.(1) 大双的设计游戏方案不公平. ··················································· 1分 可能出现的所有结果列表如下:或列树状图如下:0·············································· 4分∴P(大双得到门票)= P(积为偶数)=46=23, P(小双得到门票)= P(积为奇数)=13, ······················································ 6分∵23≠13,∴大双的设计方案不公平. ···················································· 7分 (2) 小双的设计方案不公平. ······························································· 9分 参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y =2kx的图象经过点(1,1), ∴1=2k ···························································································· 1分 解得k =2, ······················································································· 2分∴反比例函数的解析式为y =1x. ·························································· 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, ············································· 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A (12-,–2).················································································· 6分(3) P 1(32,–2),P 2(52-,–2),P 3(52,2).(每个点各1分)·························· 9分22. (1) 在Rt △BPQ 中,PQ =10米,∠B =30°, 则BQ =cot30°×PQ=····························································· 2分 又在Rt △APQ 中,∠P AB =45°, 则AQ =cot45°×PQ =10,即:AB=(+10)(米); ············································· 5分图8(2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B =30°,AB=+10,∴ AE =sin30°×AB =12(+10), ····································· 7分 ∵∠CAD =75°,∠B =30°,∴ ∠C =45°, ··············································································· 8分 在Rt △CAE 中,sin45°=AE AC, ∴AC)米) ············································ 10分23. (1) 由题意,得∠A =90°,c =b ,a,∴a 2–b 2b )2–b 2=b 2=bc . ·········································· 3分(2) 小明的猜想是正确的. ··········································· 4分理由如下:如图3,延长BA 至点D ,使AD =AC =b ,连结CD ,··············································································· 5分则ΔACD 为等腰三角形.∴∠BAC =2∠ACD ,又∠BAC =2∠B ,∴∠B =∠ACD =∠D ,∴ΔCBD 为等腰三角形,即CD =CB =a , ································ 6分又∠D =∠D ,∴ΔACD ∽ΔCBD , ·································· 7分 ∴AD CD CD BD =.即b a a b c=+.∴a 2=b 2+bc .∴a 2–b 2= bc ······· 8分 (3) a =12,b =8,c =10. ············································· 10分24.(1) ∵以AB 为直径作⊙O ′,交y 轴的负半轴于点C ,∴∠OCA +∠OCB =90°,又∵∠OCB +∠OBC =90°,∴∠OCA =∠OBC ,又∵∠AOC = ∠COB =90°, ∴ΔAOC ∽ ΔCOB , ············································································ 1分 ∴OA OC OC OB=. 又∵A (–1,0),B (9,0), ∴19OC OC =,解得OC =3(负值舍去). ∴C (0,–3),······································································································ 3分 设抛物线解析式为y =a (x +1)(x –9),图9-3图10答案图1∴–3=a (0+1)(0–9),解得a =13, ∴二次函数的解析式为y =13(x +1)(x –9),即y =13x 2–83x –3. ························· 4分 (2) ∵AB 为O ′的直径,且A (–1,0),B (9,0),∴OO ′=4,O ′(4,0), ········································································· 5分 ∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,∴∠BCD =12∠BCE =12×90°=45°, 连结O ′D 交BC 于点M ,则∠BO ′D =2∠BCD =2×45°=90°,OO ′=4,O ′D =12AB =5. ∴D (4,–5). ···················································································· 6分 ∴设直线BD 的解析式为y =kx +b (k ≠0)∴90,4 5.k b k b +=⎧⎨+=-⎩··················································· 7分 解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y =x –9. ································ 8分(3) 假设在抛物线上存在点P ,使得∠PDB =∠CBD ,解法一:设射线DP 交⊙O ′于点Q ,则BQ CD =.分两种情况(如答案图1所示):①∵O ′(4,0),D (4,–5),B (9,0),C (0,–3).∴把点C 、D 绕点O ′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q 1重合,因此,点Q 1(7,–4)符合BQ CD =,∵D (4,–5),Q 1(7,–4), ∴用待定系数法可求出直线DQ 1解析式为y =13x –193. ······························ 9分 解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得1192x y ⎧=⎪⎪⎨⎪=⎪⎩2292x y ⎧+=⎪⎪⎨⎪=⎪⎩∴点P 1坐标为),[坐标为)不符合题意,舍去].······································································································ 10分 ②∵Q 1(7,–4),∴点Q 1关于x 轴对称的点的坐标为Q 2(7,4)也符合BQ CD =.∵D (4,–5),Q 2(7,4).∴用待定系数法可求出直线DQ 2解析式为y =3x –17.································· 11分。
四川省资阳市安岳县2017届九年级上期中数学试卷含答案解析

试卷第1页,总18页○……○…………班级:_________○……○…………绝密★启用前四川省资阳市安岳县2017届九年级上期中数学试卷含答案解析题号 一 二 三 得分注意事项:1.本试卷共XX 页,三个大题,满分110分,考试时间为1分钟。
请用钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
一、单选题(共30分)评卷人 得分1.(3分)A. x≥﹣2B. x >﹣2C. x≥2D. x≤22.关于x 的一元二次方程(a ﹣2)x 2+x+a 2﹣4=0的一个根是0,则a 的值为( )(3分) A. 2 B. ﹣2 C. 2或﹣2 D. 03.下列运算正确的是( )(3分)A.试卷第2页,总18页……外…………○……线…………○…………内…………○……线…………○…… B.C.D.4.关于x 的一元二次方程(m ﹣2)x 2+2x+1=0有实数根,则m 的取值范围是( )(3分) A. m≤3 B. m <3 C. m <3且m≠2 D. m≤3且m≠25.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的平均增长率为x ,则下列方程正确的是( )(3分) A. 1.4(1+x)=4.5 B. 1.4(1+2x)=4.5 C. 1.4(1+x)2=4.5D. 1.4(1+x)+1.4(1+x)2=4.56.如图,已知直线a∥b∥c,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( )(3分)A. 4B. 4.5试卷第3页,总18页……○…………内…………○…………装……○…………订…………○…………线………学校:___________姓名:_____班级:___________考号:___________……○…………外…………○…………装……○…………订…………○…………线……… C. 5 D. 5.5 7.(3分) A.B.C. D.8.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE∥AC,若S △BDE :S △CDE =1:3,则S △DOE :S △AOC 的值为( )(3分)A.B.C.试卷第4页,总18页…………装…………○…………订………线…………○……※※请※※不※※要※※在※※装※※订※※线※※内※…………装…………○…………订………线…………○…… D.9.(3分) A. (2,1) B. (3,1) C. (2,3) D. (3,3) 10.(3分) A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共24分)评卷人 得分试卷第5页,总18页………内…………装…………○…………订…………○…………○……__姓名:___________班级:__________考号:___________………外…………装…………○…………订…………○…………○……11.(3分)12.设x 1、x 2是一元二次方程x 2﹣5x ﹣1=0的两实数根,则x 12+x 22的值为 .(3分)13.如图,在直角三角形ABC 中(∠C=90°),放置边长分别3,4,x 的三个正方形,则x 的值为 .(3分)14.(3分)15.若关于x 的方程x 2+3x+a=0有一个根为﹣1,则另一个根为 .(3分)16.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m ,它的影子BC=1.6m ,木竿PQ 的影子有一部分落在了墙上,PM=1.2m ,MN=0.8m ,则木竿PQ 的长度为 m.(3分)17.方程x 2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .(3分)。
2017年四川省各市中考数学试题汇编(1)(含参考答案与解析)

2017年四川省各市中考数学试题汇编(1)(含参考答案)(word版,9份)目录1.四川省成都市中考数学试题及参考答案 (2)2.四川省攀枝花市中考数学试题及参考答案 (15)3.四川省自贡市中考数学试题及参考答案 (36)4.四川省泸州市中考数学试题及参考答案 (53)5.四川省宜宾市中考数学试题及参考答案 (70)6.四川省绵阳市中考数学试题及参考答案 (87)7.四川省眉山市中考数学试题及参考答案 (109)8.四川省南充市中考数学试题及参考答案 (125)9.四川省达州市中考数学试题及参考答案 (136)2017年四川省成都市中考数学试题及参考答案A 卷(共100分)一、选择题(本大题共10 个小题,每小题3 分,共30 分).1. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上010C 记作010C +,则03C -表示气温为 ( ) A.零上03C B.零下03C C.零上07C D.零下07C2. 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A. B. C. D.3. 总投资647 亿元的西域高铁预计2017 年11月竣工,届时成都到西安只需3 小时,上午游武侯区,晚上看大雁塔将成为现实.用科学计数法表示647 亿元为( )A.864710⨯B.96.4710⨯C.106.4710⨯D. 116.4710⨯4. x 的取值范围是( )A.1x ≥B. 1x >C. 1x ≤D.1x < 5. 下列图标中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.6. 下列计算正确的是 ( )A.5510a a a +=B. 76a a a ÷=C. 326a a a =D.()236aa -=-7. 学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为( )A.70 分,70 分B.80 分,80 分C. 70 分,80 分D.80 分,70 分 8. 如图,四边形ABCD 和A B C D '''' 是以点O 为位似中心的位似图形,若:2:3OA OA '= ,则四边形ABCD 与四边形A B C D ''''的面积比为( )A. 4:9B. 2:5C. 2:3 9. 已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A.-1 B. 0 C. 1 D.210. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A. 20,40abc b ac <-> B.20,40abc b ac >-> C. 20,40abc b ac <-< D.20,40abc b ac >-< 二、填空题(本大题共4 个小题,每小题4 分,共16 分).11.)1=________________.12. 在ABC ∆中,::2:3:4A B C ∠∠∠=,则A ∠的度数为______________.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图像相交于点()2,1A .当2x <时,1y2y .(填“>”或“<”)14.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交,AB AD 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若2,3DQ QC BC ==,则平行四边形ABCD 周长为 .三、解答题(本大题共6 个小题,共54 分)15.(12112sin 452-⎛⎫+ ⎪⎝⎭.(2)解不等式组:()2731423133x x x x ⎧-<-⎪⎨+≤-⎪⎩①② . 16.化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中1x = .17. 随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类, 并将检查结果绘制成下面两个统计图.(1)本次调查的学生共有__________人,估计该校1200 名学生中“不了解”的人数是__________人. (2)“非常了解”的4 人有12,A A 两名男生,12,B B 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18. 科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4 千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求,B C 两地的距离.19. 如图,在平面直角坐标系xOy 中,已知正比例函数12y x =的图象与反比例函数ky x=的图象交于(),2,A a B -两点.(1)求反比例函数的表达式和点B 的坐标;(2)P 是第一象限内反比例函数图像上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若POC ∆的面积为3,求点P 的坐标.20. 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线;(2)若AE 为H 的中点,求EFFD的值; (3)若1EA EF ==,求圆O 的半径.B 卷(共50分)一、填空题(本大题共5 个小题,每小题4 分,共20 分) 21. 如图,数轴上点A 表示的实数是_____________.22.已知12,x x 是关于x 的一元二次方程250x x a -+=的两个实数根,且221210x x -=,则a =___________. 23.已知O 的两条直径,AC BD 互相垂直,分别以,,,AB BC CD DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为1P ,针尖落在O 内的概率为2P ,则12P P =______________.24.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,P x y ⎛⎫'⎪⎝⎭称为点P 的 “倒影点”.直线1y x =-+上有两点,A B ,它们的倒影点,A B ''均在反比例函数ky x=的图像上.若AB =k =____________.25.如图1,把一张正方形纸片对折得到长方形ABCD ,再沿ADC ∠的平分线DE 折叠,如图2,点C 落在点C '处,最后按图3所示方式折叠,使点A 落在DE 的中点A '处,折痕是FG .若原正方形纸片的边长为6cm ,则FG =_____________cm .二、解答题(共3个小题 ,共30分)26. 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x ,(单位:千米),乘坐地铁的时间1y 单位:分钟)是关于x 的一次函数, 其关系如下表:(1)求1y 关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间. 27.问题背景:如图1,等腰ABC ∆中,0,120AB AC BAC =∠=,作AD BC ⊥于点D ,则D 为BC的中点,01602BAD BAC ∠=∠=,于是2BC BD AB AB== 迁移应用:如图2,ABC ∆和ADE ∆都是等腰三角形,0120BAC ADE ∠=∠=,,,D E C 三点在同一条直线上,连接BD .① 求证:ADB AEC ∆≅∆;② 请直接写出线段,,AD BD CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,0120BAC ∠=,在ABC ∠内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接,CE CF . ① 证明:CEF ∆是等边三角形; ② 若5,2AE CE ==,求BF 的长.28.如图1,在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,AB =(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '.(1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C '上的对应点为P ',设M 是C 上的动点,N 是C '上的动点,试探究四边形PMP N '能否成为正方形,若能,求出m 的值;若不能,请说明理由.试卷答案A 卷一、选择题1-5:BCCAD 6-10: BCADB. 二、填空题11. 1; 12. 40°; 13. <; 14. 15. 三、解答题15.(1)解:原式1241432-⨯+=-= (2)解:①可化简为:2733x x -<-,4x -<,∴4x >-; ②可化简为:213x ≤-,∴1x ≤- ∴ 不等式的解集为41x -<≤-. 16.解:原式=()()2211211111111x x x x x x x x x -+--+÷==+-+++,当1x =时,原式=. 17.解:(1)50,360;(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为1112212212112122A B A B A B A B B A B A B A B A 、、、、、、、 共8种.∴82123P ==. 18.解:过点B 作BD AC ⊥,由题060,4BAD AB ∠==,∴0cos602AD AB ==,∵0145∠=, ∴045CBD ∠=,∴BD CD =,∵0sin 60BD AB ==∴CD =∴0cos 45BC BD ==19.解:(1)把(),2A a -代入12y x =,4a ⇒=-, ∴()4,2A --, 把()4,2A --代入ky x=,8k ⇒=, ∴8y x=, 联立812y x y x ⎧=⎪⎪⎨⎪=⎪⎩4x ⇒=-或4x =,∴()4,2B ;(2)如图,过点P 作//PE y 轴,设8,P m m ⎛⎫⎪⎝⎭,AB y kx b =+,代入A B 、两点, 12AB y x ⇒=, ∴1,2C m m ⎛⎫ ⎪⎝⎭, 118322POCS m m m ∆=-=,1862m m m -=,2862m m -=⇒=,218622m m -=⇒=,∴P ⎛ ⎝⎭或()2,4P . 20.(1)证明: 连接OD ,∵OB OD =,∴OBD ∆是等腰三角形, OBD ODB ∠=∠ ①,又在ABC ∆中, ∵AB AC =, ∴ABC ACB ∠=∠ ②,则由①②得,ODB OBD ACB ∠=∠=∠, ∴//OD AC , ∵DH AC ⊥, ∴DH OD ⊥,∴DH 是O 的切线;(2)在O 中, ∵E B ∠=∠, ∵由O 中可知,E B C ∠=∠=∠,EDC ∆是等腰三角形,又∵DH AC ⊥且点A 是EH 中点,∴设,4AE x EC x ==,则3AC x =, 连接AD ,则在O 中,090ADB ∠=,即AD BD ⊥,又∵ABC ∆是等腰三角形,∴D 是BC 中点, 则在ABC ∆中,OD 是中位线, ∴13//,22OD AC OD x =, ∵//OD AC , ∴E ODF ∠=∠,在AEF ∆和ODF ∆中,E ODFOFD AFE ∠=∠⎧⎨∠=∠⎩, ∴AEFODF ∆∆,∴2,332EF AE AE x FD OD OD x ===, ∴23EF FD =. (3)设O 半径为r ,即OD OB r ==, ∵EF EA =, ∴EFA EAF ∠=∠, 又∵//OD EC , ∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠, ∴OF OD r ==, ∴1DE DF EF r =+=+, ∴1BD CD DE r ===+,在O 中, ∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠, ∵BF BD =,BDF ∆是等腰三角形, ∴1BF BD r ==+,∴()2211AF AB BF OB BF r r r =-=-=-+=-, 在BFD ∆与EFA ∆中BFD EFAB E ∠=∠⎧⎨∠=∠⎩,∵BFD EFA ∆∆,∴11,1EF BF r FA DF r r+==-,解得12r r ==(舍) ∴综上,O.B 卷一、填空题21.; 22.752; 23.2π; 24.43-;二、解答题26. 解:(1)设y 1=kx+b ,将(8,18),(9,20),代入得:818920k b k b +=⎧⎨+=⎩,解得:22k b =⎧⎨=⎩, 故y 1关于x 的函数表达式为:y 1=2x+2;(2)设李华从文化宫回到家所需的时间为y ,则y=y 1+y 2=2x+2+12x 2﹣11x+78=12x 2﹣9x+80, ∴当x=9时,y 有最小值,y min =2148092142⨯⨯-⨯=39.5, 答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟. 27. 迁移应用:①证明:如图2,∵∠BAC=∠ADE=120°, ∴∠DAB=∠CAE , 在△DAE 和△EAC 中,DA EA DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△EAC ,②解:结论:理由:如图2﹣1中,作AH ⊥CD 于H.∵△DAB ≌△EAC , ∴BD=CE ,在Rt △ADH 中,, ∵AD=AE ,AH ⊥DE , ∴DH=HE ,∵AD+BD.拓展延伸:①证明:如图3中,作BH ⊥AE 于H ,连接BE.∵四边形ABCD 是菱形,∠ABC=120°, ∴△ABD ,△BDC 是等边三角形, ∴BA=BD=BC ,∵E 、C 关于BM 对称,∴BC=BE=BD=BA ,FE=FC , ∴A 、D 、E 、C 四点共圆, ∴∠ADC=∠AEC=120°, ∴∠FEC=60°,∴△EFC 是等边三角形, ②解:∵AE=5,EC=EF=2, ∴AH=HE=2.5,FH=4.5,在Rt △BHF 中,∵∠BHF=30°, ∴HFBF=cos30°,∴BF ==28.解:(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为y=ax 2+4,把A(0)代入可得a=12-, ∴抛物线C 的函数表达式为y=12-x 2+4.(2)由题意抛物线C′的顶点坐标为(2m ,﹣4),设抛物线C′的解析式为y=12(x ﹣m )2﹣4, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到x 2﹣2mx+2m 2﹣8=0, 由题意,抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()()2222428020280m m m m ⎧--⎪⎪⎨⎪-⎪⎩>>>,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP′N 是正方形, ∴PF=FM ,∠PFM=90°,易证△PFE ≌△FMH ,可得PE=FH=2,EF=HM=2﹣m , ∴M (m+2,m ﹣2), ∵点M 在y=﹣12x 2+4上, ∴m ﹣2=﹣12(m+2)2+4,解得﹣3﹣3(舍弃), ∴﹣3时,四边形PMP′N 是正方形. 情形2,如图,四边形PMP′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M(m﹣2,2﹣m)代入y=﹣12x2+4中,2﹣m=﹣12(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.2017年四川省攀枝花市中考数学试题及参考答案一、选择题(本大题共l0小题,每小题3分,共30分)1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×1072.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a63.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.55.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()A.花B.是C.攀D.家6.关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m的取值范围是()A.m≥0B.m>0 C.m≥0且m≠1D.m>0且m≠17.下列说法正确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形8.如图,△ABC内接于⊙O,∠A=60°,BC=6√3,则BĈ的长为()A .2πB .4πC .8πD .12π9.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y=ax+c 的图象不经第四象限C .m (am+b )+b <a ( m 是任意实数)D .3b+2c >010.如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ,若S △EGH =3,则S △ADF =( )A .6B .4C .3D .2二、填空题(本大题共6小题,每小题4分,共24分)11.在函数y =中,自变量x 的取值范围是 .12.一个不透明的袋中装有除颜色外均相同的5个红球和n 个黄球,从中随机摸出一个,摸到红球的概率是58,则n .13.计算:()113|12π-⎛⎫-+= ⎪⎝⎭.14.若关于x 的分式方程7311mxx x +=--无解,则实数m= . 15.如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CFCE= .16.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C 停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.三、解答题(本大题共8小题,共66分)17.(本题满分6分)先化简,再求值:222111xx x x-⎛⎫-÷⎪++⎝⎭,其中x=2.18.(本题满分6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为,表示“D等级”的扇形的圆心角为度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19.(本题满分6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.20.(本题满分8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21.(本题满分8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数kyx(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22.(本题满分8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC 于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=43DC,求DFCF的值.23.(本题满分12分)如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M(6,0),N(0,2√3),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为;(2)在运动过程中,当t=时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;②当点P在线段AC上运动时,设S△PEF=S,求S与t的函数关系式,并求出S的最大值及此时点P 的坐标.24.(本题满分12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y 轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.参考答案与解析一、选择题1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a6【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】直接利用完全平方公式以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.【点评】此题主要考查了完全平方公式以及幂的乘方运算和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°【考点】平行线的性质.【分析】由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.【解答】解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣33°=57°,∵a∥b,∴∠2=∠3=57°.故选:B.【点评】此题考查了平行线的性质.注意运用:两直线平行,同位角相等.4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.5【考点】众数;中位数.【分析】由表格中的数据可以直接看出众数,然后将这十个数据按照从小到大的顺序排列即可得到中位数,本题得以解决.【解答】解:由表格可知,一共有2+4+3+1=10个数据,其中19出现的次数最多,故这组数据的众数是19,按从小到大的数据排列是:18、19、19、19、19、19、20、20、20、21,故中位数是19.故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义.5.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()。
四川省资阳市2017年中考数学试题(word版,含答案)

资阳市2017年高中阶段教育学校招生统一考试数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
全卷满分120分。
考试时间共120分钟。
注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号。
考试结束,将试卷和答题卡一并交回。
2.选择题每小题选出的答案须用2B铅笔在答题卡上把对应题目....的答案标号涂黑。
如需改动,用橡皮擦擦净后,再选涂其它答案。
非选择题须用黑色墨水的钢笔或签字笔在答题卡上对应题号位置作答,在试卷上作答,答案无效。
第Ⅰ卷(选择题共30分)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。
1.6-的绝对值是A.6 B.6-C.16D.16-2.如图1是一个圆台,它的主视图是3.下列运算结果为a6的是A.a2+a3B.a2·a3C.(-a2)3D.a8÷a24.一组数据3、5、8、3、4的众数与中位数分别是A.3,8 B.3,3 C.3,4 D.4,35.如图2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为A.30°B.35°C.40°D.45°6.如图3,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-5的点P应落在线段A.AO上B.OB上C.BC上D.CD上7.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形8.如图4,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O →C →D →O 的路线匀速运动,设∠APB =y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是9.如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是A .13cmB .261cmC .61cmD .234cm10.如图6,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB =2;②当点E 与点B 重合时,MH =12;③AF+BE=EF ;④MG •MH =12,其中正确结论为A .①②③B .①③④C .①②④D .①②③④第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)11.太阳的半径约为696000千米,用科学记数法表示为_______千米.12.一个多边形的内角和是外角和的3倍,则这个多边形的边数是_______. 13.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.14.已知:()226230a b b ++--=,则224b b a --的值为_________. 15.如图7,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =(x >0)和ky x=(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为__________.每周课外阅读时间(小时) 0~1 1~2 (不含1) 2~3 (不含2) 超过3 人 数7101419图516.已知抛物线p :y =ax 2+bx +c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为_____________________. 三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。
2017年四川省各市中考数学试题汇总(12套)

A. B. C.2D.﹣2
2.随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120000000人次,将120000000用科学记数法表示为( )
A.1.2×109B.12×107C.0.12×109D.1.2×108
3.下列图形中,既是轴对称图形又是中心对称图形的是( )
2017年四川省南充市中考数学试题(含答案)
2017年四川省宜宾市中考数学试题(含答案)
2017年四川省成都市中考数学试题(含答案)
2017届四川省自贡市毕业生学业考试(中考)数学试卷(含答案)
2017年四川省达州市中考数学试题(含答案)
2017年四川省乐山市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.
四、本大题共3小题,每小题10分,共30分.
20.化简: .
21.为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:
(1)在表中:m=,n=;
(2)补全频数分布直方图;
(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在组;
16.对于函数 ,我们定义 ( 为常数).
例如 ,则 .
已知: .
(1)若方程 有两个相等实数根,则m的值为;
(2)若方程 有两个正数根,则m的取值范围为.
三、本大题共3小题,每小题9分,共27分.
17.计算: .
18.求不等式组 的所有整数解.
19.如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资阳市2017年中考数学试卷全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
全卷满分120分。
考试时间共120分钟。
注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号。
考试结束,将试卷和答题卡一并交回。
2.选择题每小题选出的答案须用2B铅笔在答题卡上把对应题目....的答案标号涂黑。
如需改动,用橡皮擦擦净后,再选涂其它答案。
非选择题须用黑色墨水的钢笔或签字笔在答题卡上对应题号位置作答,在试卷上作答,答案无效。
第Ⅰ卷(选择题共30分)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。
1.6-的绝对值是A.6 B.6-C.16D.16-考点:绝对值..分析:根据负数的绝对值是它的相反数,可得负数的绝对值.解答:解:|﹣6|=6,故选:A.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.如图1是一个圆台,它的主视图是考点:简单几何体的三视图..分析:主视图是从物体正面看,所得到的图形.解答:解:从几何体的正面看可得等腰梯形,故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.下列运算结果为a6的是A.a2+a3B.a2·a3C.(-a2)3D.a8÷a2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..分析:根据合并同类项、同底数幂的乘除法以及积的乘方和幂的乘方进行计算即可.解答:解:A、a3÷a2不能合并,故A错误;B、a2•a3=a5,故B错误;C、(﹣a2•)3=﹣a6,故C错误;D、a8÷a2=a6,故D正确;故选D.点评:本题考查了同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方,是基础知识要熟练掌握.4.一组数据3、5、8、3、4的众数与中位数分别是A.3,8 B.3,3 C.3,4 D.4,3考点:众数;中位数..分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答:解:把这组数据从小到大排列:3、3、4、5、8,3出现了2次,出现的次数最多,则众数是3.处于中间位置的那个数是4,由中位数的定义可知,这组数据的中位数是4;点评:本题为统计题,考查中位数与众数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.如图2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为A.30°B.35°C.40°D.45°考点:平行线的性质..专题:计算题.分析:先根据平行线的性质得∠BEF=∠C=70°,然后根据三角形外角性质计算∠A的度数.解答:解:∵AB∥CD,∴∠BEF=∠C=70°,∵∠BEF=∠A+∠F,∴∠A=70°﹣30°=40°.故选C.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.如图3,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3点P应落在线段A.AO上B.OB上C.BC上D.CD上考点:估算无理数的大小;实数与数轴..分析:根据估计无理数的方法得出0<3﹣<1,进而得出答案.解答:解:∵2<<3,∴0<3﹣<1,故表示数3﹣的点P应落在线段OB上.点评:此题主要考查了估算无理数的大小,得出的取值范围是解题关键.7.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形考点:中点四边形..分析:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.解答:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD 的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.点评:本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.8.如图4,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O 的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是考点:动点问题的函数图象..分析:根据图示,分三种情况:(1)当点P沿O→C运动时;(2)当点P沿C→D运动时;(3)当点P沿D→O运动时;分别判断出y的取值情况,进而判断出y与点P运动的时间x(单位:秒)的关系图是哪个即可.解答:解:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.点评:(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.9.如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是A .13cmB. CD.考点:平面展开-最短路径问题..分析:将容器侧面展开,建立A 关于EF 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求. 解答:解:如图:∵高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒, 此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处, ∴A ′D =5cm ,BD =12﹣3+AE =12cm ,∴将容器侧面展开,作A 关于EF 的对称点A ′, 连接A ′B ,则A ′B 即为最短距离, A ′B ===13(Cm ).故选:A .点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.10.如图6,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB图5②当点E与点B重合时,MH=12;③AF+BE=EF;④MG•MH=12,其中正确结论为A.①②③B.①③④C.①②④D.①②③④考点:相似形综合题..分析:①由题意知,△ABC是等腰直角三角形,根据等腰直角三角形即可作出判断;②如图1,当点E与点B重合时,点H与点B重合,可得MG∥BC,四边形MGCB是矩形,进一步得到FG是△ACB的中位线,从而作出判断;③如图2所示,SAS可证△ECF≌△ECD,根据全等三角形的性质和勾股定理即可作出判断;④根据AA可证△ACE∽△BFC,根据相似三角形的性质可得AF•BF=AC•BC=1,由题意知四边形CHMG是矩形,再根据平行线的性质和等量代换得到MG•MH=AE×BF=AE•BF=AC•BC=,依此即可作出判断.解答:解:①由题意知,△ABC是等腰直角三角形,∴AB==,故①正确;②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CE=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠BDE=90°,∴DE2=BD2+BE2,即E2=AF2+BE2,故③错误;④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴=,∴AF•BF=AC•BC=1,由题意知四边形CHMG是矩形,∴MG∥BC,MH=CG,MG∥BC,MH∥AC,∴=;=,即=;=,∴MG=AE;MH=BF,∴MG•MH=AE×BF=AE•BF=AC•BC=,故④正确.故选:C.点评:考查了相似形综合题,涉及的知识点有:等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,综合性较强,有一定的难度.第Ⅱ卷(非选择题共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)11.太阳的半径约为696000千米,用科学记数法表示为_______千米.考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将696 000千米用科学记数法表示为6.96×105千米.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.一个多边形的内角和是外角和的3倍,则这个多边形的边数是_______.考点:多边形内角与外角..分析:任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.考查了相似形综合题,涉及的知识点有:等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,综合性较强,有一定的难度.13.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有人.考点:用样本估计总体..分析:先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案. 解答:解:根据题意得: 1200×=240(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有240人; 故答案为:240.点评:本题考查从统计表中获取信息的能力,及统计中用样本估计总体的思想.14.已知:()260a +,则224b b a --的值为_________. 考点:非负数的性质:算术平方根;非负数的性质:偶次方..分析:首先根据非负数的性质可求出a 的值,和2b 2﹣2b =6,进而可求出2b 2﹣4b ﹣a 的值. 解答:解:∵(a +6)2+=0,∴a +6=0,b 2﹣2b ﹣3=0, 解得,a =﹣6,b 2﹣2b =3, 可得2b 2﹣2b =6,则2b 2﹣4b ﹣a =6﹣(﹣6)=12, 故答案为12.点评:本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.15.如图7,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =(x >0)和ky x =(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为__________.考点:反比例函数与一次函数的交点问题;反比例函数系数k的几何意义..分析:由于S△POQ=S△OMQ+S△OMP,根据反比例函数比例系数k的几何意义得到|k|+×|8|=14,然后结合函数y=的图象所在的象限解方程得到满足条件的k的值.解答:解:∵S△POQ=S△OMQ+S△OMP,∴|k|+×|8|=14,∴|k|=20,而k<0,∴k=﹣20.故答案为﹣20.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数与一次函数的交点问题.16.已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为_____________________.考点:抛物线与x轴的交点;二次函数的性质..专题:新定义.分析:先求出y=x2+2x+1和y=2x+2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=x2+2x+1的顶点A坐标(﹣1,0),接着利用点C和点C′关于x轴对称得到C(1,﹣4),则可设顶点式y=a(x﹣1)2﹣4,然后把A点坐标代入求出a的值即可得到原抛物线解析式.解答:解:∵y =x 2+2x +1=(x +1)2, ∴A 点坐标为(﹣1,0), 解方程组得或,∴点C ′的坐标为(1,4), ∵点C 和点C ′关于x 轴对称, ∴C (1,﹣4),设原抛物线解析式为y =a (x ﹣1)2﹣4, 把A (﹣1,0)代入得4a ﹣4=0,解得a =1, ∴原抛物线解析式为y =(x ﹣1)2﹣4=x 2﹣2x ﹣3. 故答案为y =x 2﹣2x ﹣3.点评:本题考查了二次函数与x 轴的交点:求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标,令y =0,即ax 2+bx +c =0,解关于x 的一元二次方程即可求得交点横坐标.△=b 2﹣4ac 决定抛物线与x 轴的交点个数,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。