硕士研究生高数最新试题

合集下载

2023年全国硕士研究生招生考试试题及答案解析(数学三)

2023年全国硕士研究生招生考试试题及答案解析(数学三)

2023年全国硕士研究生招生考试数学试题(数学三)一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选选项前的字母填在答题卡指定位置.(1)已知函数(,)ln(sin )f x y y x y =+,则()(A)(0,1)(0,1)f fx y ∂∂∂∂不存在,存在(B)(0,1)(0,1)f fx y ∂∂∂∂存在,不存在(C)(0,1)(0,1)f fx y ∂∂∂∂,均存在(D)(0,1)(0,1)f fx y ∂∂∂∂,均不存在(2)函数0()(1)cos ,0x f x x x x⎧≤⎪=⎨⎪+>⎩的原函数为()(A)),0()(1)cos sin ,0x x F x x x xx ⎧⎪-≤=⎨+->⎪⎩(B))+1,0()(1)cos sin ,0x x F x x x x x⎧⎪-≤=⎨+->⎪⎩(C)),0()(1)sin cos ,0x x F x x xx x ⎧⎪≤=⎨++>⎪⎩(D))+1,0()(1)sin +cos ,0x x F x x x x x ⎧⎪≤=⎨+>⎪⎩(3)已知微分方程式0y ay by '''++=的解在(,)-∞∞上有界,则()(A)0,0a b <>(B)0,0a b >>(C)0,0a b =>(D)0,0a b =<(4)已知(1,2,)n n a b n <=L ,若级数1nn a∞=∑与1nn b∞=∑均收敛,则“级数1nn a∞=∑绝对收敛”是“级数1nn b∞=∑绝对收敛”的()(A)充分必要条件(B)充分不必要条件(C)必要不充分条件(D)既不充分也不必要条件(5)设,A B 为n 阶可逆矩阵,E 为阶单位矩阵,*M 为矩阵M 的伴随矩阵,则*0A E B ⎛⎫= ⎪⎝⎭()(A)***0*A B B A B A ⎛-⎫⎪⎝⎭(B)***0*B A A B A B ⎛-⎫⎪⎝⎭(C)***0*B A B A A B ⎛-⎫⎪⎝⎭(D)***0*A B A B B A ⎛-⎫⎪⎝⎭(6)二次型()()()222123121323(,,)4f x x x x x x x x x =+++--的规范形为()(A)2212y y +(B)2212y y -(C)2221234y y y +-(D)222123y y y +-(7)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫⎪= ⎪ ⎪⎝⎭,若γ既可由12,αα线性表示,也可由与12,ββ线性表示,则γ=()(A)33,4k k R ⎛⎫ ⎪∈ ⎪⎪⎝⎭(B)35,10k k R ⎛⎫ ⎪∈ ⎪⎪⎝⎭(C)11,2k k R -⎛⎫ ⎪∈ ⎪⎪⎝⎭(D)15,8k k R ⎛⎫ ⎪∈ ⎪⎪⎝⎭(8)设随机变量X 服从参数为1的泊松分布,则()E X EX -=()(A)1e(B)12(C)2e(D)1(9)设12,,,n X X X L 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y L 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11n i i X X n ==∑,11m i i Y Y m ==∑,22111(1n i i S X X n ==--∑,22211(1mi i S Y Y m ==--∑,则()(A)2122(,)S F n m S :(B)2122(1,1)S F n m S --:(C)21222(,)S F n m S :(D)21222(1,1)S F n m S --:(10)设12,X X 为来自总体()2,Nμσ的简单随机样本,其中()0σσ>是未知参数,记12ˆa x x σ=-,若()ˆE σσ=,则a =()(A)2(B)2(C)(D)二、填空题:11~16小题,每小题5分,共30分.(11)2_11l _im o ____(2si s __nc x x x x x→∞--=.(12)已知函数os p 满足22(,)xdy ydx df x y x y -=+,()1,14f π=,则)f =.(13)()2n=02!nx n ∞=∑.(14)设某公司在t 时刻的资产为()f t ,从0时刻到t 时刻的平均资产等于()f t t t-.假设()f t 连续且()00f =,则()f t =.(15)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a=,则11120a a ab =.(16)设随机变量X 与Y 相互独立,且()1,X B p :,()2,Y B p :,(0,1)p ∈,则X Y +与X Y -的相关系数为.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)已知可导函数()y y x =满足2ln(1)cos 0,xae y y x y b ++-++=且(0)0,(0)0y y '==.(Ⅰ)求,a b 的值.(Ⅱ)判断0x =是否为()y x 的极值点.(18)(12分)已知平面区域(),01D x y y x ⎧⎫⎪⎪=≤≤≥⎨⎬⎪⎪⎩⎭(Ⅰ)求D 的面积.(Ⅱ)求D 绕x 轴旋转所成旋转体的体积.(19)(12分)已知平面区域22{(,)(1)1}D x y x y =-+≤,计算二重积分1Ddxdy .(20)(12分)设函数()f x 在[],a a -上具有2阶连续倒数,证明:(Ⅰ)若(0)0f =,则存在(,)a a ξ∈-,使得[]21()()()ξ''=+-f f a f a a.(Ⅱ)若()f x 在(,)a a -内取得极值,则存在(,)a a η∈-使得21()()()2f f a f a aη''≥--.(21)(12分)设矩阵A 满足对任意123,,x x x 均有112321233232--x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.(I)求A .(II)求可逆矩阵P 与对角矩阵Λ,使得1-=ΛP AP .(22)(12分)设随机变量X 的概率密度为2(),,(1)xx e f x x e =-<<+∞+∞令.x Y e =(Ⅰ)求X 的分布函数(Ⅱ)求Y 的概率密度(Ⅲ)Y 的期望是否存在?2023年答案及解析(数学三)一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选选项前的字母填在答题卡指定位置.(1)【答案】(A)【解析】(0,1)0=f ,由偏导数的定义000(0,1)ln(1sin1)(,1)(0,1)lim lim sin1lim →→→+∂-===∂x x x x x f f x f x x xx ,因为0lim 1+→=x x x,0lim 1-→=-x x x ,所以(0,1)∂∂fx 不存在,111(0,1)(0,)(0,1)ln 1lim lim lim 1111→→→∂--====∂---y y y f f y f y y y y y y ,所以(0,1)∂∂fy 存在.(2)【答案】(D)【解析】当0≤x时,1()ln(==+⎰f x dx x C 当0>x 时,()(1)cos (1)sin (1)sin sin =+=+=+-⎰⎰⎰⎰f x dx x xdx x d x x x xdx2(1)sin cos =+++x x x C 原函数在(,)-∞+∞内连续,则在0=x处110lim ln(-→++=x x C C ,22lim(1)sin cos 1+→+++=+x x x x C C 所以121=+C C ,令2=C C ,则11=+C C,故ln(1,0()(1)sin cos ,0⎧⎪++≤=⎨+++>⎪⎩⎰x C x f x dx x x x C x ,结合选项,令0=C ,则()f x的一个原函数为)1,0().(1)sin cos ,0⎧⎪++≤=⎨++>⎪⎩x x F x x x x x (3)【答案】(C)【解析】微分方程0'''++=y ay by 的特征方程为20++=a b λλ,当240∆=->a b 时,特征方程有两个不同的实根12,λλ,则12,λλ至少有一个不等于零,若12,C C 都不为零,则微分方程的解1212--=+xx y C eC e λλ在(,)-∞+∞无界;当240∆=-=a b 时,特征方程有两个相同的实根,1,22=-aλ,若20≠C ,则微分方程的解2212--=+a x a x y C eC xe 在(,)-∞+∞无界;当240∆=-<a b时,特征方程的根为1,222=-±a i λ,则通解为212(cos sin )22-=+a x y eC x C x ,此时,要使微分方程的解在(,)-∞+∞有界,则0=a ,再由240∆=-<a b ,知0.>b (4)【答案】(A)【解析】由条件知1()nn n ba ∞=-∑为收敛的正项级数,进而绝对收敛;设1nn a∞=∑绝对收敛,则由n n n n n n n b b a a b a a =-+≤-+与比较判别法,得1nn b∞=∑绝对收敛;设1nn b∞=∑绝对收敛,则由n n n n n n n a a b b b a b =-+≤-+与比较判别法,得1nn a∞=∑绝对收敛.(5)【答案】(B)【解析】结合伴随矩阵的核心公式,代入(B)计算知*********A EB A A B B AA AA B A B O B OA B O A BB ⎛⎫⎛⎫--+⎛⎫= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭**B A EOB A E A B A B A B E OA B E OA B E ⎛⎫⎛⎫-+=== ⎪⎪⎝⎭⎝⎭,故(B)正确.(6)【答案】(B)【解析】由已知()222123123121323,,233228f x x x x x x x x x x x x =--+++,则其对应的矩阵211134143A ⎛⎫ ⎪=- ⎪⎪-⎝⎭由()()211134730143E A λλλλλλλ----=-+-=+-=--+,得A 的特征值为3,7,0-故选(B).(7)【答案】(D)【解析】设11221122r x x y y ααββ=+=+则112211220x x y y ααββ+--=又()121212211003,,,2150010131910011ααββ--⎛⎫⎛⎫ ⎪ ⎪--=-→- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭故()()1212,,,3,1,1,1,TTx x y y c c R=--∈所以()()()121,5,81,5,81,5,8,TTTr c c c c k k R ββ=-+=---=-=∈(8)【答案】(C)【解析】法一:由题可知1EX =,所以1,0||1,1,2,X X EX X X =⎧-=⎨-=⎩L,故,1||1{0}(1){}k E X EX P X k P X k ∞=-=⋅=+-=∑01(1){}(01){0}k k P X k P X e ∞==+-=--=∑112(1)(01)E X e e e=+---=,选(C )法二:随机变量X 服从参数为1泊松分布,即()()110,1,2,...!P X k e k k -===期望()1E X =()()()()111111111101...1..0!1!2!!E X E X E X e e k e k -----=-=⋅+⋅+⋅++-⋅+()()111111112222211111!!!1!!k k k k k k e k e e e e e e e k k k k k ∞∞∞∞∞--------======+-⋅=+-=+--∑∑∑∑∑()()11111112e e e e e e ----=+----=选(C).(9)【答案】(D)【解析】12,,...,n X X X 的样本方差()221111n i i S X Xn ==--∑12,,...,n Y Y Y 的样本方差()222111mi i S Y Y m ==--∑则()()221211n S n χσ--:()()2222112m S m χσ--:,两个样本相互独立所以()()()()()21222211222212221121,11212n S n S S F n m m S S S m σσσσ--==----:选择(D).(10)【答案】(A)【解析】由题可知212~(0,2)X X N σ-.令12Y X X =-,则Y 的概率密度为2222()y f y σ-⋅=.22222240(||)||y y E Y y dy yedy σσ--+∞+∞⋅-∞===⎰⎰,12(||)(||)E a X X aE Y -==.由ˆ()E σσ=,得2a =.选(A).二、填空题:11~16小题,每小题5分,共30分.(11)【答案】23.【解析】2233221111111lim (2sincos 2(())(1())62x x x x x x x x x x x x οο→∞⎡⎤--=--+--+⎢⎥⎣⎦22221112(623x x xx ο⎡⎤=++=⎢⎥⎣⎦.(12)【答案】3π.【解析】由题意可得22(,),x y f x y x y -'=+则1(,)arctan ()arctan ()x xf x y y c y c y y y y=-⋅⋅+=-+,又因为22(,)y x f x y x y '=+可得()c y c '=,由(1,1)4f π=可得2c π=,即(,)arctan 2xf x y y π=-+,即3f π=.(13)【答案】1122x xe e -+【解析】令20()(2)!n n x s x n ∞==∑,则211()(21)!n n x s x n -∞='=-∑,22210()()(22)!(2)!n nn n x x s x s x n n -∞∞==''===-∑∑.即有()()0s x s x ''-=,解得12()x x s x C e C e -=+.又由(0)1,(0)0s s '==有121C C +=,120C C -=,解得1212C C ==.故11()22x x s x e e -=+.(14)【答案】222te t --【解析】由题意可得方程()()tf x dx f t t tt=-⎰,即20()()t f x dx f t t =-⎰.两边同时t 对求导得()()2f t f t t '=-,即()()2f t f t t '-=.由一阶线性微分方程通解公式有:11()2dt dtf t e te dt C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰()2tte tedt C-=+⎰()22t te t e C -⎡⎤=-++⎣⎦22t Ce t =--.又由于(0)0f =,则20C -=,即2C =.故()222tf t e t =--.(15)【答案】8【解析】由已知()(),34r A r A b =≤<,故,0A b =即()()1444011110111110,1112211112240120012002a a a a a Ab a a a a a baa ba b++==⋅-+⋅-=-+⋅=故111280a a a b=.(16)【答案】13-【解析】因为()1,X B p ~,所以(1)DX p p =-.因为()2,Y B p ~,所以2(1)DY p p =-.ov(,)ov(,)ov(,)C X Y X Y C X Y X C X Y Y +-=+-+ov(,)ov(,)ov(,)ov(,)C X X C Y X C X Y C Y Y =+--(1)2(1)(1)DX DY p p p p p p =-=---=--因为X 与Y 相互独立,所以()3(1)D X Y DX DY p p +=+=-,()3(1)D X Y DX DY p p -=+=-故13ρ==-三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)【解析】(1)在题设方程两边同时对x 求导得,cos 2ln(1)sin 01x yae y y y x y y x'''+⋅+-++⋅⋅=+①将0x =,0y =代入题设方程得,0a b +=;将0x =,0y =,(0)0y '=代入①式得,10a -=综上:1a =,1b =-.(2)在等式①两边再对x 求导得,()22sin (1)cos 2()2ln(1)sin 0(1)x y y x yae y y y y x y y x '-⋅⋅+-'''''''++⋅+-++⋅⋅=+②将0x =,0y =,(0)0y '=代入②式得,(0)12y a ''=--=-.由于(0)0y '=,(0)2y ''=-,故0x =是()y x 的极大值点.(18)【解析】(1)面积2tan 2221444sec csc ln csc cot ln(1tan sec x ttS dt tdt t tt t ππππππ=+∞====-=+⋅⎰⎰⎰.(2)旋转体体积为2222211111111arctan (1)(1)14x V y dx dx dx x x x x x x ππππππ+∞+∞+∞+∞⎛⎫⎛⎫===-=--=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰⎰.(19)【解析】本题目先利用奇偶对称性化简,再切割积分区域,把积分区域分为三块,分别采用极坐标进行计算:σσσσσd y x d y x d y x d y x d y x D D D D D D D 1212121213213212222222222-+++-++-=-+=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++分别采用极坐标进行计算:18613)1(13010221ππθσπ=⋅=-=+-⎰⎰⎰⎰dr r r d d y x D 3439166cos 38cos 2)1(1233223cos 20222+-=-=-=+-⎰⎰⎰⎰⎰ππππθπθθθθσd dr r r d d y x D 18334361cos 2cos 38)1(1302330cos 21223ππθθθθσππθ+-=+-=-=-+⎰⎰⎰⎰⎰d dr r r d d y x D 所以:33932121212132122222222++-=-+++-++-=-+⎰⎰⎰⎰⎰⎰⎰⎰πσσσσd y x d y x d y x d y x D D D D (20)【解析】(1)证明:22()()()(0)(0)(0),02!2!f f f x f f x x f x x x ηηη''''''=++=+介于与之间,则211()()(0),02!f f a f a a a ηη'''=+<<①()222()()(0),02!f f a f a a a ηη'''-=-+-<<②①+②得:[]212()()()()2a f a f a f f ηη''''+-=+③又()f x ''在[]21,ηη上连续,则必有最大值M 与最小值m ,即()()12;;m f M m f M ηη''''≤≤≤≤从而()()12;2f f m M ηη''''+≤≤由介值定理得:存在[]()21,,a a ξηη∈⊂-,有()()()122f f f ηηξ''''+''=,代入③得:()2()(),f a f a a f ξ''+-=即()2()()f a f a f aξ+-''=.(2)证明:设()0(),f x x x a a =∈-在取极值,且0()f x x x =在可导,则0()0f x '=.又()()()22000000()()()()()(),02!2!f f f x f x f x x x x x f x x x x γγγ'''''=+-+-=+-介于与之间,则()21001()()(),02!f f a f x a x a γγ''-=+---<<()22002()()(),02!f f a f x a x aγγ''=+-<<从而()()()()22020111()()22f a f a a x f a x f γγ''''--=--+()()()()2202011122a x f a x f γγ''''≤-++又()f x ''连续,设(){}()12max ,M f f γγ''''=,则()()()222200011()()22f a f a M a x M a x M a x --≤++-=+又()0,x a a ∈-,则()2220()()2f a f a M a x Ma --≤+≤,则21()()2M f a f a a ≥--,即存在()12,a a ηγηγ==∈-或,有()21()()2f f a f a a η''≥--(21)【解析】(I)因为112312123232331112211011x x x x x A x x x x x x x x x ++⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪=-+=- ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭对任意的1x ,2x ,3x 均成立,所以111211011A ⎛⎫⎪=- ⎪ ⎪-⎝⎭(II)1111111211(1)21111011E A λλλλλλλλ---+----=-+-=-⋅+⋅-+-+-+2(1)(2)2(2)(2)(2)(1)0λλλλλλλ=-+-+=+-+=.所以A 的特征值为1232,2,1λλλ=-==-.12λ=-时,1311100211011011000E A λ---⎛⎫⎛⎫ ⎪ ⎪-=---→ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭,可得特征向量1(0,1,1)Tα=-;22λ=时,2111104231013013000E A λ---⎛⎫⎛⎫ ⎪ ⎪-=--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,可得特征向量2(4,3,1)T α=;31λ=-时,3211201201010010000E A λ---⎛⎫⎛⎫ ⎪ ⎪-=--→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,可得特征向量3(1,0,2)T α=-;令123041(,,)130112P ααα⎛⎫ ⎪==- ⎪ ⎪-⎝⎭,则1200020001P AP --⎛⎫ ⎪= ⎪ ⎪-⎝⎭.(22)【解析】(I )21(),(1)11xx x x x x x e e F x dx x R e e e -∞-∞==-=∈+++⎰(II )【法一】分布函数法(){}{}X Y F y P Y y P e y =≤=≤当0y <时,()0Y F y =;当0y ≥时,(){ln }(ln )1Y y F y P X y F y y=≤==+;所以Y 的概率密度为21,0(1)()0,Y y y f y ⎧>⎪+=⎨⎪⎩其他.【法二】公式法因为xy e =在(,)-∞+∞上单调且处处可导,当(,)x ∈-∞+∞,0y >,此时ln x y =,所以Y 的概率密度为ln 2ln 211,0,0(ln )(ln ),0(1)()(1)0,0,0,y y Y e y y f y y y y f y e y ⎧⎧>'⋅>>⎧⎪⎪+===+⎨⎨⎨⎩⎪⎪⎩⎩其他其他其他.(III )2001ln(1)(1)1y EY dy y y y +∞+∞⎛⎫==++=∞ ⎪++⎝⎭⎰,所以不存在.。

研究生数学试题2024

研究生数学试题2024

研究生数学试题2024
研究生数学试题2024指的是在2024年研究生招生考试中,用于测试考生数学学科知识和应用能力的试卷。

通常,研究生数学试题比本科阶段难度更高,涉及更深层次和更广泛的数学知识,同时强调对数学理论的理解和应用能力的考察。

以下是一些示例题目:
1.证明题:证明当n趋向于无穷大时,调和级数(1+1/2+1/3+...+1/n)的
极限为无穷大。

2.计算题:求下列函数的导数:
(a) y = x^3 + 2x^2 - 3x
(b) y = ln(x + sqrt(1+x^2))
3.解答题:给定一个无向图G,其节点数为n,求最小生成树的Kruskal算法
的时间复杂度。

总结:研究生数学试题2024指的是在2024年研究生招生考试中使用的数学试卷。

这些试题旨在测试考生对数学理论的理解和应用能力,通常涉及更深层次和更广泛的数学知识。

通过这些题目,可以评估考生是否具备研究生阶段所需的数学素养和综合能力。

2024年研究生考试试卷数学

2024年研究生考试试卷数学

2024年研究生考试试卷数学一、选择题(每题1分,共5分)1.设矩阵A为3阶可逆矩阵,矩阵B为A的伴随矩阵,则矩阵B 的行列式值为()。

A.|A|^3B.|A|^2C.|A|D.1A.存在ξ∈(0,1),使得f(ξ)=0B.存在ξ∈(0,1),使得f'(ξ)=0C.存在ξ∈(0,1),使得f''(ξ)=0D.存在ξ∈(0,1),使得f'''(ξ)=03.设函数f(x)=e^xsin(x),则f(x)在x=0处的泰勒展开式为()。

A.x+x^3/6+o(x^3)B.x+x^3/3!+o(x^3)C.x+x^3/2+o(x^3)D.x+x^3+o(x^3)4.设矩阵A为对称矩阵,则矩阵A的特征值()。

A.必为实数B.必为正数C.必为负数D.可以为复数5.设函数f(x)=x^33x,则f(x)在x=0处的拉格朗日中值定理的结论为()。

A.存在ξ∈(0,1),使得f'(ξ)=0B.存在ξ∈(0,1),使得f''(ξ)=0C.存在ξ∈(0,1),使得f'''(ξ)=0D.存在ξ∈(0,1),使得f(ξ)=0二、判断题(每题1分,共5分)1.若矩阵A为对称矩阵,则矩阵A的逆矩阵也为对称矩阵。

()2.若函数f(x)在区间[0,1]上单调递增,则f'(x)在区间[0,1]上恒大于0。

()3.若矩阵A的行列式值为0,则矩阵A不可逆。

()4.若函数f(x)在区间[0,1]上连续,则f(x)在区间[0,1]上可积。

()5.若矩阵A的特征值为λ,则矩阵A+kI的特征值为λ+k。

()三、填空题(每题1分,共5分)1.设矩阵A为3阶矩阵,矩阵B为A的伴随矩阵,则矩阵B的行列式值为______。

2.设函数f(x)=x^33x,则f(x)在x=0处的泰勒展开式为______。

3.若矩阵A为对称矩阵,则矩阵A的特征值______。

2024年研究生入学考试数学一试卷

2024年研究生入学考试数学一试卷

1、设矩阵A为三阶方阵,且满足A2 - 2A - 3I = 0,其中I为单位矩阵,则A的逆矩阵A(-1)等于:A. (1/3)(A - 2I)B. (1/3)(A + I)C. (1/3)(A - I)D. (1/3)(2I - A)(答案:D)2、设函数f(x)在区间[a, b]上连续,在(a, b)内可导,且f(a) = 0,f(b) = 1。

若存在c ∈(a, b)使得f'(c) = (1/(b - a)),则以下结论正确的是:A. f(x)在(a, b)内至少有一个极大值B. f(x)在(a, b)内至少有一个极小值C. f(x)在(a, b)内单调递增D. f(x)在(a, b)内可能既不单调递增也不单调递减(答案:D)3、设随机变量X服从正态分布N(μ, σ2),且P(X < μ- σ) = 0.1587,则P(μ- σ< X < μ+ 2σ)等于:A. 0.6826B. 0.8185C. 0.8413D. 0.9545(答案:C)4、设向量α= (1, 2, 3),β= (4, 5, 6),则与α和β都垂直的单位向量γ可以是:A. (1/√14)(-1, -2, 1)B. (1/√3)(1, -1, 1)C. (1/√6)(1, 1, -2)D. (1/√15)(2, -1, -2)(答案:C)5、设f(x) = x3 - 3x2 + 2,则f(x)的极值点个数为:A. 0B. 1C. 2D. 3(答案:C)6、设数列{an}满足a1 = 1,an+1 = 2an + 3,则数列{an}的通项公式an为:A. 2n - 1B. 2(n-1) + 1C. 2n + 1D. 2(n+1) - 3(答案:D)7、设函数f(x, y) = x2 + y2 - 2x - 2y + 1,则f(x, y)的最小值为:A. -1B. 0C. 1D. 2(答案:A)8、设随机变量X和Y相互独立,且都服从均匀分布U(0, 1),则P(X + Y ≤1)等于:A. 1/2B. 1/3C. 1/4D. 1(答案:A)。

2024年全国硕士研究生入学考试数学一试题

2024年全国硕士研究生入学考试数学一试题

2024年全国硕士研究生入学考试数学一试题一、选择题(每题3分,共30分)下列函数中,最小正周期为π的是()A. y = sin 2xB. y = cos 2xC. y = tan xD. y = |sin x|若直线x - y + 1 = 0 与直线2x + ay - 3 = 0 平行,则 a = ()A. -2B. 2C. -1/2D. 1/2已知等差数列{an} 的前n 项和为Sn,若a1 = 1,S3 = 9,则a3 = ()A. 4B. 5C. 6D. 7二、填空题(每题4分,共20分)若直线l 经过点P(2, -1) 且倾斜角为45°,则直线l 的方程为_______.已知等比数列{an} 的前n 项和为Sn,若a1 = 1,q = 2,则S4 = _______.已知函数f(x) = x^2 - 2x + 3 在区间[0, m] 上的最大值为3,则m 的取值范围是_______.三、解答题(共70分)1.(12分)求函数y = sin x + √3cos x 的单调递增区间。

2.(12分)在△ABC 中,已知角A,B,C 的对边分别为a,b,c,且满足a^2 + c^2 - b^2 = ac。

(1)求角 B 的大小;(2)若b = 3,求△ABC 面积的最大值。

3.(12分)已知等比数列{an} 的前n 项和为Sn,且a1 + a3 = 10,a2 + a4 = 5,求数列{an} 的通项公式和前n 项和Sn。

4.(14分)已知函数f(x) = x^3 - 3x^2 + ax + 1。

(1)求函数f(x) 的单调区间;(2)若函数f(x) 在区间[-2, 2] 上有且仅有一个零点,求实数 a 的取值范围。

5.(20分)已知椭圆C:x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 的离心率为√2/2,且过点(√2, 1)。

(1)求椭圆 C 的方程;(2)设直线l:y = kx + m 与椭圆C 相交于A,B 两点,若线段AB 的中点为M(1, 1/2),求直线l 的方程。

2023年全国硕士研究生招生考试试题及答案解析(数学二)

2023年全国硕士研究生招生考试试题及答案解析(数学二)

2023年全国硕士研究生招生考试数学试题(数学二)一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选选项前的字母填在答题卡指定位置.(1)1ln 1y x e x ⎛⎫=+⎪-⎝⎭的斜渐近线方程是()(A)y x e =+(B)1y x e =+(C)yx=(D)1y x e=-(2)函数0()(1)cos ,0x f x x x x≤=+>⎩的原函数为()(A))ln ,0()(1)cos sin ,0x x F x x x x x⎧-≤⎪=⎨⎪+->⎩(B))ln 1,0()(1)cos sin ,0x x F x x x x x⎧+≤⎪=⎨⎪+->⎩(C))ln ,0()(1)sin cos ,0x x F x x x x x⎧≤⎪=⎨⎪++>⎩(D))ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩(3)设数列{}n x ,{}n y 满足211111,sin ,2n n n n x y x x y y ++====,当n →∞时()(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 是n y 的等价无穷小(D)n x 是n y 的同阶但非等价无穷小(4)已知微分方程0y ay by '''++=的解在(,)-∞+∞上有界,则,a b 的取值范围为()(A)0,0a b <>(B)0,0a b >>(C)0,0a b =>(D)0,0a b =<(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则()(A)()f x 连续,'(0)f 不存在(B)'(0)f 不存在,()f x 在0x =处不连续(C)'()f x 连续,(0)f "不存在(D)(0)f "存在,()f x "在0x =处不连续(6)若函数121()(ln )αα+∞+=⎰f dx x x 在0=αα处取得最小值,则0=α()(A)1ln(ln 2)-(B)ln(ln 2)-(C)1ln 2-(D)ln 2(7)设函数2()()xf x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是()(A)[)0,1(B)[)1,+∞(C)[)1,2(D)[)2,+∞(8)设,A B 为n 阶可逆矩阵,E 为n 阶单位矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭()(A)*****0A B B A A B ⎛⎫-⎪⎝⎭(B)****0A B A B B A ⎛⎫-⎪ ⎪⎝⎭(C)****0B A B A A B ⎛⎫-⎪ ⎪⎝⎭(D)****0B A A B A B ⎛⎫-⎪ ⎪⎝⎭(9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为()(A)2212y y +(B)2212y y -(C)2221234y y y +-(D)222123y y y +-(10)已知向量12121221=2=1=5=03191ααββ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,,若γ既可由12αα,线性表示,也可由12ββ,线性表示,则γ=()(A)33,4k k R ⎛⎫⎪∈ ⎪⎪⎝⎭(B)35,10k k R ⎛⎫ ⎪∈ ⎪⎪⎝⎭(C)11,2k k R -⎛⎫ ⎪∈ ⎪⎪⎝⎭(D)15,8k k R ⎛⎫ ⎪∈ ⎪⎪⎝⎭二、填空题:11~16小题,每小题5分,共30分.(11)当0x →时,函数2()ln(1)=+++f x ax bx x 与2()cos x g x ex =-是等价无穷小,则ab =_______.(12)曲线y =⎰的弧长为________.(13)设函数(,)=z z x y 由2ze xz x y +=-确定,则22(1,1)zx ∂=∂________.(14)曲线35332=+x y y 在1x =对应点处的法线斜率为________.(15)设连续函数()f x 满足:(2)()f x f x x +-=,2()0f x dx =⎰,则31()f x dx =⎰________.(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其,a b 为常数,若0111412a a a=则,11120a a ab =________.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线L :()()y x x e y =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距,(Ⅰ)求()y x .(Ⅱ)在L 上求一点,使该点的切线与两坐标轴所围三角形面积最小,并求此最小面积.(18)(本题满分12分)求函数2cos (,)2yx f x y xe=+的极值.(19)(本题满分12分)已知平面区域(,)01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭,(Ⅰ)求D 的面积.(Ⅱ)求D 绕x 轴旋转所成旋转体的体积.(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +-=,222x y xy +-=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰.(21)(本题满分12分)设函数()f x 在[],a a -上具有2阶连续导数,证明:(Ⅰ)若(0)0f =,则存在(,)a a ξ∈-,使得[]21()()()ξ''=+-f f a f a a .(Ⅱ)若()f x 在(,)a a -内取得极值,则存在(,)a a η∈-使得21()()()2f f a f a aη''≥--.(22)(本题满分12分)设矩阵A 满足:对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(Ⅰ)求A ;(Ⅱ)求可逆矩阵P 与对角矩阵Λ,使得1-=ΛP AP .2023年答案及解析(数学二)一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选选项前的字母填在答题卡指定位置.(1)【答案】(B)【解析】1ln()11limlim limln()11→∞→∞→∞+-===+=-x x x x e yx k e x x x 11lim()lim[ln()]lim [ln()1]11→∞→∞→∞=-=+-=+---x x x b y kx x e x x e x x 11lim ln[1lim .(1)(1)→∞→∞=+==--x x x x e x e x e所以斜渐近线方程为1.=+y x e(2)【答案】(D)【解析】当0≤x 时,1()ln(==++⎰f x dx x C当0>x时,()(1)cos(1)sin(1)sin sin=+=+=+-⎰⎰⎰⎰f x dx x xdx x d x x x xdx2(1)sin cos=+++x x x C原函数在(,)-∞+∞内连续,则在0=x处11lim ln(-→+=xx C C,22lim(1)sin cos1+→+++=+xx x x C C所以121=+C C,令2=C C,则11=+C C,故ln(1,0()(1)sin cos,0⎧⎪++≤=⎨+++>⎪⎩⎰x C xf x dxx x x C x,结合选项,令=C,则()f x的一个原函数为)1,0().(1)sin cos,0⎧⎪+≤=⎨++>⎪⎩x xF xx x x x(3)【答案】(B)【解析】在0,2π⎛⎫⎪⎝⎭中,2sinx xπ<故12sinn n nx x xπ+=>112n ny y+<1111122444n nn n nn n ny y y yx x x xππππ++⎛⎫⎛⎫⇒<⋅=⋅===⎪ ⎪⎝⎭⎝⎭Llim0nnnyx→∞⇒=.故n y是n x的高阶无穷小.(4)【答案】(C)【解析】微分方程0'''++=y ay by的特征方程为20++=a bλλ,当240∆=->a b时,特征方程有两个不同的实根12,λλ,则12,λλ至少有一个不等于零,若12,C C都不为零,则微分方程的解1212--=+x xy C e C eλλ在(,)-∞+∞无界;当240∆=-=a b时,特征方程有两个相同的实根,1,22=-aλ,若20≠C ,则微分方程的解2212--=+a x a x y C eC xe 在(,)-∞+∞无界;当240∆=-<a b 时,特征方程的根为1,222=-±a b a i λ,则通解为212(cos sin )22-=+ax y eC x C x ,此时,要使微分方程的解在(,)-∞+∞有界,则0=a ,再由240∆=-<a b ,知0.>b (5)【答案】(C)【解析】1)当0t >时,3sin cos ,sin 3x t dy t t ty t t dx =⎧+=⎨=⎩;当0t <时,sin cos ,sin 1x t dy t t ty t t dx =⎧--=⎨=-⎩;当0t =时,因为()()()000sin '0lim lim 03x t f x f t tf x t+++→→-===;()()()000sin '0lim lim 0x t f x f t tf x t---→→--===所以()'00f =.2)()()()()000sin cos sin cos lim 'lim 0'0;lim 'lim 0'0;33x t x t t t t t t t f x f f x f ++--→→→→+--======所以()()0lim ''00x f x f →==,即()'f x 在0x =连续.3)当0t =时,因为()()()00''0sin cos 2''0lim lim 339x t f x f t t t f x t +++→→-+===⋅;()()()00''0sin cos ''0lim lim 2x t f x f t t tf x t---→→---===-所以()''0f 不存在.(6)【答案】(A)【解析】当0α>时()()()12211111()ln ln ln 2f dx x x x αααααα+∞+∞+==-⋅=⋅⎰所以()()()211ln ln 21111'()ln ln 20ln 2ln 2ln 2f αααααααα⎛⎫=-⋅-⋅=-⋅+= ⎪⎝⎭,即01ln ln 2α=-.(7)【答案】(C)【解析】()()()222(),'()2'()42xxxf x x a e f x x a x e f x x x a e =+=++=+++,,由于()f x 无极值点,所以440a -≤,即1a ≥;由于()f x 有拐点,所以()16420a -+>,即2a <;综上所述[)1,2a ∈.(8)【答案】(D)【解析】结合伴随矩阵的核心公式,代入(D)计算知*********A EB A A B B AA AA B A B O B OA B O A BB ⎛⎫⎛⎫--+⎛⎫= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭**2⎛⎫⎛⎫-+=== ⎪ ⎪ ⎪⎝⎭⎝⎭n B A EOB A E A B A B A B E OA B E O A B E ,故(D)正确.(9)【答案】(B)【解析】由已知()222123123121323,,233228f x x x x x x x x x x x x =--+++,则其对应的矩阵211134143A ⎛⎫⎪=- ⎪⎪-⎝⎭由()()211134730143E A λλλλλλλ----=-+-=+-=--+,得A 的特征值为3,7,0-故选(B).(10)【答案】(D)【解析】设11221122r x x y y ααββ=+=+则112211220x x y y ααββ+--=又()121212211003,,,2150010131910011ααββ--⎛⎫⎛⎫ ⎪ ⎪--=-→- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭故()()1212,,,3,1,1,1,TTx x y y c c R=--∈所以()()()121,5,81,5,81,5,8,TTTr c c c c k k R ββ=-+=---=-=∈.二、填空题:11~16小题,每小题5分,共30分.(11)【答案】2-【解析】由2200()ln(1)lim lim ()cos x x x f x ax bx x g x e x →→+++=-22222221()211()1()2ax bx x x x x x x x οοο++-+=⎡⎤++--+⎢⎥⎣⎦1=可得10a +=,1322b -=,即1,2a b =-=,2ab =-.(12)43π【解析】y '=由弧长公式可得l ==2sin x t =23024cos tdtπ⎰30441cos 23ππ=+=⎰tdt .(13)【答案】23-【解析】两边同时对x 求导得:02e z-=∂∂⋅++∂∂⋅xzx z x z ①两边再同时对x 求导得:2222e e 0zz z z z z z z x x x x x x x∂∂∂∂∂∂⋅⋅+⋅+++⋅=∂∂∂∂∂∂②将1,1x y ==代入原方程得10ze z z +=⇒=,代入①式得1200=∂∂⇒=∂∂++∂∂⋅xz x z x z e .代入②式得2301112222220-=∂∂⇒=∂∂+++∂∂⋅+⋅x z x z x z e e .(14)【答案】119-【解析】两边对x 求导:242956''=⋅+⋅x y y y y ①当1=x 时,代入原方程得12335=⇒+=y y y 将1,1==x y 代入①式得(1,1)995y 6y y |11'''=+⇒=,所以曲线在1=x 处的法线斜率为119-.(15)【答案】21【解析】⎰⎰⎰+=312132)()()(dxx f dx x f dx x f ⎰⎰++=211)2()(dxx f dx x f⎰⎰++=211])([)(dxx x f dx x f ⎰⎰⎰++=21101)()(xdxdx x f dx x f ⎰⎰+=201)(xdxdx x f 210+=21=(16)【答案】8【解析】由已知()(),34r A r A b =≤<,故,0A b =即()()1444011110111110,1112211112240120012002a a a a a Ab a a a a a baa ba b++==⋅-+⋅-=-+⋅=故111280a a a b=.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)【解析】(Ⅰ)曲线L 在点(,)P x y 处的切线方程为()Y y y X x '-=-,令0X =,则切线在y 轴上的截距为Y y xy '=-,则x y xy '=-,即11y y x'-=-,解得()(ln )y x x C x =-,其中C 为任意常数.又2()0y e =,则2C =,故()(2ln )y x x x =-.(Ⅱ)设曲线L 在点(,(2ln ))x x x -处的切线与两坐标轴所围三角形面积最小,此时切线方程为(2ln )(1ln )()Y x x x X x --=--.令0Y =,则ln 1xX x =-;令0X =,则Y x =.故切线与两坐标轴所围三角形面积为211()22ln 12(ln 1)x x S x XY x x x ==⋅⋅=--,则2(2ln 3)()2(ln 1)x x S x x -'=-.令()0S x '=,得驻点32x e =.当32e x e <<时,()0S x '<;当32x e >时,()0S x '>,故()S x 在32x e =处取得极小值,同时也取最小值,且最小值为332()S e e =.(18)【解析】cos cos 0(sin )0y x yy f e x f xe y '⎧=+=⎪⎨'=-=⎪⎩,得驻点为:1(,)e k π--,其中k 为奇数;(,)e k π-,其中k 为偶数.则cos cos 2cos 1(sin )sin (cos )xxy xyy y yy f f e y f xe y xe y ''⎧=⎪''=-⎨⎪''=+-⎩代入1(,)e k π--,其中k 为奇数,得210xxxyyyA fB fC f e -''⎧==⎪''==⎨⎪''==-⎩,20AC B -<,故1(,)e k π--不是极值点;代入(,)e k π-,其中k 为偶数,得210xxxyyy A f B f C f e ''⎧==⎪''==⎨⎪''==⎩,20AC B ->且0A >,故(,)e k π-是极小值点,2(,)2e f e k π-=-为极小值.(19)【解析】(Ⅰ)由题设条件可知:+++2111=1)(1)2tt S dt t t ∞∞∞===+-⎰⎰;(Ⅱ)旋转体体积22222111111(1(1)(1)4πππππ+∞+∞+∞⎡⎤====-⎢⎥++⎣⎦⎰⎰⎰V y dx dx dx x x x x .(20)【解析】本题目采用极坐标进行计算2ln 383tan arctan 312ln 21tan )ta 3(12ln cos )ta 3(12ln 212ln )sin cos 3(1ln )sin cos 3(11)sin cos 3(1)sin cos 3(131303023022302230cos sin 12cos sin 1122cos sin 12cos sin 112230cos sin 12cos sin 112223022πθθθθθθθθθθθθθθθθθθθθσπππππθθθθθθθθπθθθθπ=⋅=+⋅=⋅+⋅=⋅+=⋅+=+=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰------d n d n d d r d r d rd r d d y x D(21)【解析】(Ⅰ)证明:22()()()(0)(0)(0),02!2!f f f x f f x x f x x x ηηη''''''=++=+介于与之间,则211()()(0),02!f f a f a a a ηη'''=+<<①()222()()(0),02!f f a f a a a ηη'''-=-+-<<②①+②得:[]212()()()()2a f a f a f f ηη''''+-=+③又()f x ''在[]21,ηη上连续,则必有最大值M 与最小值m ,即()()12;;m f M m f M ηη''''≤≤≤≤从而()()12;2f f m M ηη''''+≤≤由介值定理得:存在[]()21,,ξηη∈⊂-a a ,有()()()122f f f ηηξ''''+''=,代入③得:()()22()()()(),f a f a f a f a a f f a ξξ+-''''+-==即(Ⅱ)证明:设()0(),f x x x a a =∈-在取极值,且0()f x x x =在可导,则0()0f x '=.又()()()22000000()()()()()(),02!2!f f f x f x f x x x x x f x x x x γγγ'''''=+-+-=+-介于与之间,则()21001()()(),02!f f a f x a x a γγ''-=+---<<()22002()()(),02!f f a f x a x a γγ''=+-<<从而()()()()22020111()()22f a f a a x f a x f γγ''''--=--+()()()()2202011122a x f a x f γγ''''≤-++又()f x ''连续,设(){}()12max,M f f γγ''''=,则()()()222200011()()22f a f a M a x M a x M a x --≤++-=+又()0,x a a ∈-,则()2220()()2f a f a M a x Ma --≤+≤,则21()()2M f a f a a ≥--,即存在()12,a a ηγηγ==∈-或,有()21()()2f f a f a aη''≥--(22)【解析】(I)因为112312123232331112211011x x x x x A x x x x x x x x x ++⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪=-+=- ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭对任意的1x ,2x ,3x 均成立,所以111211011A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭(II)1111111211(1)21111011E A λλλλλλλλ---+----=-+-=-⋅+⋅-+-+-+2(1)(2)2(2)(2)(2)(1)0λλλλλλλ=-+-+=+-+=.所以A 的特征值为1232,2,1λλλ=-==-.12λ=-时,1311100211011011000E A λ---⎛⎫⎛⎫ ⎪ ⎪-=---→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,可得特征向量1(0,1,1)T α=-;22λ=时,2111104231013013000E A λ---⎛⎫⎛⎫ ⎪ ⎪-=--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,可得特征向量2(4,3,1)T α=;31λ=-时,3211201201010010000E A λ---⎛⎫⎛⎫ ⎪ ⎪-=--→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,可得特征向量3(1,0,2)T α=-;令123041(,,)130112P ααα⎛⎫ ⎪==- ⎪ ⎪-⎝⎭,则1200020001P AP --⎛⎫ ⎪= ⎪ ⎪-⎝⎭.。

2024年硕士研究生考试高数(二)试题

2024年硕士研究生考试高数(二)试题

2024年硕士研究生考试高数(二)试题
一、选择题:
1. 设函数f(x)在点x=0处连续,且lim(x→0) f(kx)/x^2 = 2,则k的值为()。

A. 2 B. -2 C. 1/2 D.不存在
2. 设函数f(x)在点x=x0处可导,且f'(x0)存在,则下列结论正确的是()。

A. 函数f(x)在点x=x0处一定有极值B. 函数f(x)在点x=x0处一定有最小值 C. 函数f(x)在点x=x0处一定有最大值 D. 函数f(x)在点x=x0的某邻域内可能无极值
二、填空题:
3. 根据多元函数的极值求解原理,如果z=(x+y)^3+4xy+4,则z取得极大值时,变量x与y应满足_____。

三、解答题:
4. 设函数f(x)在区间[-1,3]上连续,在(-1,3)内可导,且f(-1)=f(3)=0,又f’(x)<f(x),求证:在区间(-1,3)内至少存在一点ξ,使得f’(ξ)=-f’(ξ)。

以上是2024年硕士研究生考试高数(二)试题的部分内容,完整试题请根据考试要求自行编制。

2024年全国硕士研究生数学试题

2024年全国硕士研究生数学试题

2024年全国硕士研究生数学试题一、设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1。

则以下哪个选项一定正确?A. 存在ξ∈(0,1),使得f'(ξ)>0B. 存在ξ∈(0,1),使得f'(ξ)<0C. 对于所有x∈(0,1),都有f'(x)>0D. 对于所有x∈(0,1),都有f'(x)<0(答案)A二、设矩阵A为三阶方阵,且|A|=2,则|2A(-1)|等于多少?A. 1/2B. 1C. 2D. 4(答案)B三、设随机变量X服从标准正态分布N(0,1),则P(|X|<1.96)约等于?A. 0.68B. 0.90C. 0.95D. 0.99(答案)C四、设函数f(x)=x3+ax2+bx+c在x=1和x=-2处有极值,且f(-1)=-2。

则以下哪个选项可能是a和b的值?A. a=1,b=2B. a=-1,b=2C. a=1,b=-5D. a=-1,b=-5(答案)D五、设向量组α1,α2,α3线性无关,向量β可由向量组α1,α2,α3线性表示,且表示方式唯一。

则以下哪个选项正确?A. 向量组α1,α2,β线性相关B. 向量组α1,α2,β线性无关C. 向量β可由向量组α1,α2线性表示D. 向量组α1,β,α3线性相关(答案)B六、设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0。

则以下哪个选项是罗尔定理的正确表述?A. 存在ξ∈(a,b),使得f'(ξ)=0B. 对于所有x∈(a,b),都有f'(x)=0C. 存在ξ∈[a,b],使得f'(ξ)=f(ξ)D. 存在ξ∈(a,b),使得f(ξ)=0(答案)A七、设数列{an}满足a1=1,an+1=2an+1,则数列{an}的通项公式为?A. an=2n-1B. an=2(n-1)C. an=2n+1D. an=2(n+1)-1(答案)A八、设函数f(x,y)=x2+y2-2x-2y+2,则函数f(x,y)在点(1,1)处的梯度gradf(1,1)为?A. (0,0)B. (2,2)C. (-2,-2)D. (2,-2)(答案)B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

补充练习1
1、若2)a 与|1|b −互为相反数,则2a b
=−( )
1 C.1 D.
2 E.1
2、某数的平方根为23a +与15a −,则这个数是( )
A.121
B.11
C.±11
D.4
E.169
3、有一个三角形的公园,各边的长分别是150米,180米,300米,今在周围种树,相邻两棵树之间的距离相等,且在三角形的顶点各种一棵,最少要种( )棵树.
A.21
B.22
C.20
D.19
E.23
4、若x 是一个正整数,且2158217x x −−为一个质数,则此质数为( )
A.19
B.23
C.29
D.31
E.37
5、n 为自然数,以下式子中有( )个一定是偶数.
①21n − ②21n + ③2n n − ④2n n + ⑤31n − ⑥31n + ⑦3n n − ⑧3n n +
A.2
B.3
C.4
D.5
E.6
6、200除以某个质数的余数为13,则该质数为( )
A.7
B.11
C.17
D.19
E.23
7、张阿姨将225个苹果、350个梨和150个橘子平均分给小朋友们,最后剩下9个苹果、26个梨和6个橘子没有发出去.那么共有( )个小朋友.
A.48
B.24
C.36
D.54
E.72
8、n 为正整数,方程21)60x x −++−=有整数根,则n =( )
A.3
B.5
C.11
D.13
E.2
9、实数x 的值可确定.
(1)x 除以2,3,5所得的余数都是1. (2)x 除以2,3,5所得的余数分别1,2,4.
10、21n −是8的倍数.
(1)n 是奇数. (2)n 是偶数.。

相关文档
最新文档