分式 中考考点梳理(全)
2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
2025年中考数学考点分类专题归纳之分式

2025年中考数学考点分类专题归纳分 式要点一、分式的有关概念及性质1.分式一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式,其中A 叫做分子,B 叫做分母. 2.分式的基本性质(M 为不等于0的整式).3.最简分式 分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分. 3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c±±= ;同分母的分式相加减,分母不变,把分子相加减. a c ad bc b d bd±±=;异分母的分式相加减,先通分,变为同分母的分式,再加减. (2)乘法运算:a c ac b d bd ⋅=,其中a 、b 、c 、d 是整式,bd ≠0.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算:a c a d ad b d b c bc÷=⋅=,其中a 、b 、c 、d 是整式,bcd ≠0. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算: nn n a a b b ⎛⎫= ⎪⎝⎭分式的乘方,把分子、分母分别乘方。
4.零指数5.负整数指数1p p a a -=(a ≠0,p 为正整数)6.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.1.(2024•武汉)若分式在实数范围内有意义,则实数x 的取值范围是( )A .x >﹣2B .x <﹣2C .x =﹣2D .x ≠﹣22.(2024•温州)若分式的值为0,则x 的值是( )A .2B .0C .﹣2D .﹣53.(2024•葫芦岛)若分式的值为0,则x 的值为( )A .0B .1C .﹣1D .±14.(2024•莱芜)若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是()A .B .C .D .5.(2024•株洲)下列运算正确的是( )A .2a+3b =5abB .(﹣ab )2=a 2bC .a 2•a 4=a 8D .6.(2024•曲靖)下列计算正确的是( )A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.()37.(2024•河北)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.(2024•淄博)化简的结果为()A.B.a﹣1 C.a D.19.(2024•南充)已知3,则代数式的值是()A.B.C.D.10.(2024•内江)已知:,则的值是()A.B.C.3 D.﹣311.(2024•北京)如果a﹣b=2,那么代数式(b)•的值为()A.B.2C.3D.412.(2024•孝感)已知x+y=4,x﹣y,则式子(x﹣y)(x+y)的值是()A.48 B.12C.16 D.12 13.(2024•沙坪坝区)计算:(π﹣3)0﹣()﹣2=___ _.14.(2024•盐城)要使分式有意义,则x的取值范围是_____.15.(2024•湖州)当x=1时,分式的值是_ .16.(2024•沈阳)化简:.17.(2024•大庆)已知,则实数A=__ _.18.(2024•包头)化简:(1)=_ .19.(2024•昆明)若m3,则m2___.20.(2024•永州)化简:(1)_ _.21.(2024•福建)计算:()0﹣1=___.22.(2024•南通)计算:(1)(﹣2)2(﹣3)0﹣()﹣2;(2).23.(2024•湖北)化简:•.24.(2024•百色)已知a2=19,求的值.25.(2024•山西)计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•.26.(2024•徐州)计算:(1)﹣12+20240﹣()﹣1;(2).27.(2024•益阳)化简:(x﹣y)•.28.(2024•陕西)化简:().29.(2024•十堰)化简:30.(2024•南京)计算(m+2).31.(2024•泸州)化简:(1).32.(2024•黑龙江)先化简,再求值:(a),其中a,b=1.33.(2024•重庆)计算:(1)(x+2y)2﹣(x+y)(x﹣y);(2)(a﹣1)34.(2024•万州区)计算(1)(x+2y)(x﹣2y)+4y(x+y)(2)(y﹣1).35.(2024•铁岭)先化简,再求值:(a+2),其中a.36.(2024•辽阳)先化简,再求值:(),其中a=2cos30°+()﹣1﹣(π﹣3)037.(2024•葫芦岛)先化简,再求值:(),其中a=3﹣1+2sin30°.38.(2024秋•沙坪坝区校级月考)先化简,再求值:(a+1),其中a=2(tan45°﹣cos30°)39.(2024•广元)先化简,再求值:(),其中a2.40.(2024•锦州)先化简,再求值:(2),其中x=3.41.(2024•青海)先化简,再求值:(1),其中m=2.42.(2024•毕节市)先化简,再求值:,其中a是方程a2+a﹣6=0的解.。
初中数学分式知识点总结(通用19篇)

初中数学分式知识点总结(通用19篇)初中数学分式知识点总结篇11.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。
其中A叫做分式的分子,B叫做分式的分母。
2.分式有意义的条件:分母不等于0。
3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。
4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且C≠0)5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6.分式的四则运算:1)同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c2)异分母分式加减法则:异分母的.分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd3)分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd 4)分式的除法法则:(1)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc(2)除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c7.分式方程的意义:分母中含有未知数的方程叫做分式方程.8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。
分式知识点归纳

分式知识点归纳一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子$\frac{A}{B}$就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分式的分母不能为 0,因为除数不能为 0。
如果分母 B 的值为 0,那么分式$\frac{A}{B}$就没有意义。
例如,$\frac{x}{y}$是一个分式,其中 x 是分子,y 是分母;而$\frac{5}{3}$就不是分式,因为它的分母 3 是一个常数,不含字母。
二、分式有意义的条件分式有意义的条件是分母不为 0。
即对于分式$\frac{A}{B}$,当$B \neq 0$ 时,分式有意义。
例如,对于分式$\frac{x + 1}{x 2}$,要使其有意义,则$x2 \neq 0$,即$x \neq 2$。
三、分式值为 0 的条件分式值为 0 的条件是分子为 0 且分母不为 0。
即对于分式$\frac{A}{B}$,当$A = 0$ 且$B \neq 0$ 时,分式的值为 0。
例如,若分式$\frac{x^2 1}{x + 1}$的值为 0,则$x^2 1 =0$ 且$x + 1 \neq 0$。
由$x^2 1 = 0$ 可得$x =\pm 1$,又因为$x + 1 \neq 0$,所以$x \neq 1$,因此$x = 1$ 时,该分式的值为 0。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
用式子表示为:$\frac{A}{B} =\frac{A \times C}{B \times C}$,$\frac{A}{B} =\frac{A \div C}{B \div C}$($C \neq 0$)例如,$\frac{x}{y} =\frac{x \times 2}{y \times 2} =\frac{2x}{2y}$,$\frac{3a}{5b} =\frac{3a \div 3}{5b \div 3} =\frac{a}{\frac{5}{3}b}$五、约分把一个分式的分子和分母的公因式约去,叫做约分。
中考数学复习《分式》考点归纳PPT课件

②异分母的分式相加减法则:先通分,变为同分母的分 式,然后再加减.
用式子表示为: a c ad bc ad bc . b d bd bd bd
(2)分式的乘法
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:
a c ac . b d bd
• (2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式, 约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大 公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.
• 【注】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因 式.
4、最简分式
• 分子、分母没有公因式的分式叫做最简分式. • 【注】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能 成为整式。
5、通分及通分法则
• (1)通分:根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的 分式,这一过程称为分式的通分.
• (2)通分法则
• 把两个或者几个分式通分:
• ①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因 式的积);
• ②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母, 使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;
中考数学复习《分式》考点归纳PPT课件
• 1、分式的定义
(1)一般地,整式 A 除以整式 B,可以表示成 A 的形式,如果除式 B 中含有字母,那么称 B
A 为分式. B
(2)分式 A 中,A 叫做分子,B 叫做分母. B
【注】①若 B≠0,则 A 有意义;②若 B=0,则 A 无意义;③若 A=0 且 B≠0,则 A =0.
分式知识点归纳总结

《分式》知识点回顾及考点透视一、知识总览本章主要学习分式的概念,分式的基本性质,分式的约分、通分,分式的运算(包括乘除、乘方、加减运算),分式方程等内容,分式是两个整式相除的结果,且除式中含有字母,它类似于小学学过的分数,分式的内容在初中数学中占有重要地位,特别是利用分式方程解决实际问题,是重要的应用数学模型,在中考中,有关分式的内容所占比例较大,应重视本章知识的学习.二、考点解读考点1:分式的意义例1.(1)(2006年南平市)当x 时,分式11+x 有意义. 分析:要使分式有意义,只要分母不为0即可当x ≠-1时,分式11+x 有意义. (2)(2006年浙江省义乌市)已知分式11+-x x 的值是零,那么x 的值是( ) A .-1 B .0 C .1 D . 1±分析:讨论分式的值为零需要同时考虑两点:(1)分子为零;(2)分母不为零,当x=1时,分子等于零,分母不为0,所以,当x=1时,原分式的值等于零,故应选C . 评注:在分式的定义中,各地中考主要考查分式A B在什么情况下有意义、无意义和值为0的问题。
当B ≠0时,分式A B 有意义;当B=0时,分式A B无意义;当A=0且B ≠0时,分式A B 的值为0 考点2:分式的变形例2.(2006年山西省)下列各式与x y x y-+相等的是( ) (A )()5()5x y x y -+++(B )22x y x y -+(C )222()()x y x y x y -≠-(D )2222x y x y-+ 解析:正确理解分式的基本性质是分式变形的前提,本例选项(C )为原分式的分子、分母都乘以同一个不等于0的整式(x-y )所得,故分式的值不变.考点3:分式的化简分式的约分与通分是进行分式化简的基础,特别是在化简过程中的运算顺序、符号、运算律的应用等也必须注意的一个重要方面例2.(2006年临安市)化简:x -1x ÷(x -1x). 分析:本题要先解决括号里面的,然后再进行计算解:原式x x x x 112-÷-=)1)(1(1-+⨯-=x x x x x 11+=x 评注:分式的乘除法运算,就是将除法转化为乘法再进行约分即可.考点4:分式的求值例4.(2006年常德市)先化简代数式:22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭,然后选取一个使原式有意义的x 的值代入求值.分析:本题先要将复杂的分式进行化简,然后再取一个你喜欢的值代入(但你取的值必须使分式有意义).解:化简得:21x +,取x=0时,原式=1;评注:本题化简的结果是一个整式,如果不注意的话,学生很容易选1或-1代入,这是不行的,因为它们不能使分式有意义.考点5:解分式方程例5.(2006年陕西省)解分式方程:22322=--+x x x 分析:解分式方程的关键是去分母转化为整式方程解:)4(2)2(3)2(22-=+--x x x x ,82634222-=---x x x x , 27-=-x 72=x ,经检验:72=x 是原方程的解,∴原方程的解为72=x 点评:解分式方程能考查学生的运算能力、合情推理等综合能力,解分式方程要注意检验,否则容易产生增根而致误!考点6:分式方程的应用例6.(2006年长春市)A 城市每立方米水的水费是B 城市的1.25倍,同样交水费20元,在B 城市比在A 城市可多用2立方米水,那么A 、B 两城市每立方米水的水费各是多少元?分析:本题只要抓住两城市的水相差2立方米的等量关系列方程即可解:设B 城市每立方米水的水费为x 元,则A 城市为1.25x 元,25.120220xx =- 解得x = 2经检验x = 2是原方程的解。
中考专题复习之分式

-1 +1
解:
,其中 a=4.
=
=
2-
2 -1
1
÷ +
-1 +1
2-
(+1)(-1)
1
+1
-1
·(a-1)+
-1
+1
.
1
当 a=4 时,原式= .
5
18.[2019·顺义一模]已知 x +3x-3=0,求代数式 12
3
-3 +6
÷
-
+3 +3
的值.
解:∵ x +3x-3=0,∴ x2+3x=3.
=⑦
(b≠0,n 为正整数)
同实数的运算顺序及运算律,注意结果应化为最简形式
基
础
知
识
巩
固
【温馨提示】分式化简中常见的几个易错点
(1)通分时错误:分式通分时,分母与分子同时乘以最简公分母;
(2)去括号时符号错误:括号前是“-”号时,去括号后,括号内各项要变号;
(3)不要把分式的化简与解分式方程相混淆,不要随意将分母去掉.
·(m+n)(m-n)=3(m+n),
∵ m+n=1,∴ 原式=3,故选 D.
基础知识来自巩固9.[2018·北京 6 题]如果 a-b=2 3,那么代数式
高
频
考
向
探
究
10.[2017·北京 7 题]如果 a2+2a-1=0,那么代数式
2 + 2
2
-b · 的值为
-
A. 3
)
B.2 3
中考数学专题训练第6讲分式(知识点梳理)

分式知识点梳理考点01 分式一、分式的概念1.概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子B A 叫作分式,A 叫作分子,B 叫作分母。
2.分式的三个要素:(1)形如BA 的式子. (2)A ,B 是整式.(3)分母B 中含有字母。
3.分式有意义的条件:分母不等于0。
4.分式无意义的条件:分母等于0.5.分式的值为0的条件:分子等于0,分母不等于0,二者缺一不可。
二、分式的基本性质1.分式的意义:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
2.用式子表示:)0(,≠÷÷=••=C CB C A B A C B C A B A ,其中A ,B ,C 均为整式。
三、分式的约分、最简分式1.分式的约分:根据分式的基本性质,把一个分式的分子、分母的公因式约去,叫作分式的约分。
2.分式约分的依据:分式的基本性质。
3.约分的方法:(1)先确定分式的分子、分母的公因式,当分子、分母都是单项式时,分子、分母的公因式是分子、分母系数的最大公约数和相同字母的最低次幂的积.当分子、分母是多项式时,应先将多项式因式分解,再根据确定公因式的方法确定公因式.(2)根据分式基本性质,分子分母都除以它们的公因式.(3)最简分式:分子与分母没有公因式的分式,叫作最简分式。
4.分式的约分,一般要约去分子和分母所有的公因式,使所得结果成为最简分式或整式。
四、分式的通分、最简公分母1.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫作分式的通分。
2.通分的依据:分式的基本性质。
3.最简公分母:异分母的分式通分时,一般取各分母所有因式的最高次幂的积作为公分母,这样的公分母叫作最简公分母。
4.确定最简公分母的方法:(1)取各分母的系数的最小公倍数.(2)各分式的分母中所有字母(或因式)都要取到.(3)相同字母(或因式)的幂取指数最大的.(4)所得系数的最小公倍数与各字母(或因式)的最高次幂的积即为最简公分母。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、知识清单梳理
知识点一:分式的相关概念
关键点拨及对应举例
1.分式的概念
(1)分式:形如 (A,B是整式,且B中含有字母,B≠0)的式子.
(2)最简分式:分子和分母没有公因式的分式.
在判断某个式子是否为分式时,应注意:(1)判断化简之间的式子;(2)π是常数,不是字母.例:下列分式:①;②;③;④ ,其中是分式是②③④;最简分式③.
第7讲分式方程
二、知识清单梳理
知识点一:分式方程及其解法
关键点拨及对应举例
1.定义
分母中含有未知数的方程叫做分式方程.
例:在下列方程中,① ;② ;③ ,其中是分式方程的是③.
2.解分式方程
基本思路:分式方程整式方程
例:将方程 转化为整式方程可得:1-2=2(x-1).
解法步骤:
(1)去分母,将分式方程化为整式方程;
例: = ; =2y;
= .
7.分式的混合运算
(1)仅含有乘除运算:首先观察分子、分母能否分解因式,若能,就要先分解后约分.
(2)含有括号的运算:注意运算顺序和运算律的合理应用.一般先算乘方,再算乘除,最后算加减,若有括号,先算括号里面的.
失分点警示:分式化简求值问题,要先将分式化简到最简分式或整式的形式,再代入求值.代入数值时注意要使原分式有意义.有时也需运用到整体代入.
(2)由基本性质可推理出变号法则为:
; .
由分式的基本性质可将分式进行化简:
例:化简: = .
知பைடு நூலகம்点三:分式的运算
4.分式的约分和通分
(1)约分(可化简分式):把分式的分子和分母中的公因式约去,
即 ;
(2)通分(可化为同分母):根据分式的基本性质,把异分母的分式化为同分母的分式,即
分式通分的关键步骤是找出分式的最
在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又要检验所求未知数的值是不是符合题目的实际意义.
(2)解所得的整式方程;
(3)检验:把所求得的x的值代入最简公分母中,若最简公分母为0,则应舍去.
3.增根
使分式方程中的分母为0的根即为增根.
例:若分式方程 有增根,则增根为1.
知识点二:分式方程的应用
4.列分式方程解应用题的一般步骤
(1)审题;(2)设未知数;(3)列分式方程;(4)解分式方程;(5)检验:(6)作答.
简公分母,然后根据分式的性质通分.
例:分式 和 的最简公分母为 .
5.分式的加减法
(1)同分母:分母不变,分子相加减.即 ± = ;
(2)异分母:先通分,变为同分母的分式,再加减.即 ± = .
例: =-1.
6.分式的乘除法
(1)乘法: · = ;(2)除法: = ;
(3)乘方: = (n为正整数).
2.分式的意义
(1)无意义的条件:当B=0时,分式 无意义;
(2)有意义的条件:当B≠0时,分式 有意义;
(3)值为零的条件:当A=0,B≠0时,分式 =0.
失分点警示:在解决分式的值为0,求值的问题时,一定要注意所求得的值满足分母不为0.
例:当 的值为0时,则x=-1.
3.基本性质
( 1 )基本性质: (C≠0).