超级电容器综述
超级电容器综述

超级电容器综述超级电容器又称电化学电容器或双电层电容器,是一种新型储能器件,它利用电极/电解质交界面上的双电层或在电极界面上发生快速、可逆的氧化还原反应来储存能量。
超级电容器采用活性碳材料制作成多孔碳电极,同时在相对的多孔电极之间充填电解质溶液,当在两端施加电压时,相对的多孔电极上分别*正负电子,而电解质溶液中的正负离子将由于电场作用分别*到与正负极板相对的界面上,从而形成两个集电层。
由于活性碳材料具有≥1200m2/g的超高比表面积(即获得了极大的电极面积),而且电解质与多孔电极间的界面距离不到1nm(即获得了极小的介质厚度),所以这种双电层结构的超级电容器比传统的物理电容的容值要大很多,比容量可以提高100倍以上,从而使利用电容器进行大电量的储能成为可能。
目前国际上研究与发展的超级电容器可归为以下几类:●双层电容器(Double layer capacitor)由高表面碳电极在水溶液电解质(如硫酸等)或有机电解质溶液中形成的双电层电容,如图6-12.1所示。
该图还表示出一个典型双电层的形成原理,显然双电层是在电极材料(包括其空隙中)与电解质交界面两侧形成的,双电层电容量的大小取决于双电层上分离电荷的数量,因此电极材料和电解质对电容量的影响最大。
一般都采用多孔高表面积碳作为双层电容器电极材料,其比表面积可达1000-3000m2/g,比电容可达280F/g。
●赝电容器(Pseudo-capacitor)由电极表面上或者体相中的二维或准二维空间上发生活性材料的欠电位沉积,形成高度可逆的化学吸附/脱附或氧化/还原反应产生和电极充电电位有关的电容,又称法拉第准电容;典型的赝电容器是由金属氧化物,如氧化钌构成的,其比电容高达760F/g。
但由于氧化钌太贵,现已开始采用氧化钴、氧化镍和二氧化锰来取代;●混合电容器(Hybrid capacitor)由半个形成双层电容的碳电极与半个导电聚合物或其他无机化合物的表面反应或电极嵌入反应电极等构成。
超级电容器及应用概括

超级电容器及应用概括超级电容器(Supercapacitor)是20世纪60年代发展起来的一种新型储能单元,80年代国外已进入商业规模。
由于它具有功率密度很高、充电时间极短、使用寿命特别长等优异特性,近年来得到了飞快的发展,不仅其技术水平在日新月异,而且应用范围也在不断扩大。
超级电容器是将电化学双层电容与法拉弟准电容结合起来做成的电容器,超级电容器的结构形式大致分为两种,一种是柱状电容器,即把基片卷绕起来装进园形金属外壳内,这种电容器适用于低电压大电流充放电的情况;另一种是叠层式电容器,即将电极基片叠起来,组装在塑料或金属壳内,这种电容器用在高电压小电流充放电的情况下比较合适。
超电容器的电容和能量密度跟所有的电极材料紧密相关。
超级电容器具有以下特点:(1)功率密度高。
超级电容器的内阻很小,而且在电极/溶液界面和电极材料本体内均能够实现电荷的快速储存和释放,因而它的输出功率密度高达数kw/kg,是任何一个化学电源都无法比拟的,是一般蓄电池的数十倍。
(2)充放电循环寿命长。
超级电容器在充放电过程中没有发生电化学反应,其循环寿命可达万次以上。
当今蓄电池的充放电循环寿命只有树百次,只有超级电容器的几十分之一。
(3)充电时间短。
从目前的充电试验结果来看,在电流密度在7mA/cm时,完全充电时间只要10—12分钟,而蓄电池在这么短的时间内是无法实现完全充电的。
(4)实现高比功率和高比能量输出。
一般说来,比能量高的储能体系其比功率不会太高;同样,一个储能体系的比功率比较高,其比能量就不一定会很高,许多电池体系就是如此。
超级电容器在可以提供1—5kw/kg,高比功率输出的同时,其比能量可以达到5—20wh/kg。
将它与蓄电池组合起来,就会成为一个兼有高比能和高比功率输出的储能系统。
(5)储存寿命极长。
超级电容器充电之后储存过程中,虽然也有微小的漏电电流存在,但这种发生在电容器内部的离子或质子迁移运动乃是在电场的作用下产生的,并没有出现化学或点化学反应,没有产生新的物质。
超级电容器简介课件

用。
政策支持与产业发展建议
政策引导与资金支持 建立产业联盟 加强国际合作与交流
超级电容器与其他储能技术 的比较
与电池的比较
充放电速度
。
循环寿命
能量密度 成本
与超级电感的比较
储能原理
超级电容器通过双电层储能, 而超级电感通过磁场储能。
响应速度
超级电容器简介课件
目录
• 超级电容器的性能特点 • 超级电容器的制造工艺与材料 • 超级电容器市场现状与趋势 • 超级电容器的发展前景与挑战 • 超级电容器与其他储能技术的比较
超级电容器概述
定义与工作原理
定义 工作原理
超级电容器的主要类型
根据电解质类型
根据储能原理
可分为水系超级电容器和有机系超级 电容器。
超级电容器的发展前景与挑 战
技术创新与突破方向
材料创新
结构设计 集成化技术
市场拓展与合作机会
电动汽车领域
与电动汽车制造商合作,开发高 性能的超级电容器,提升电动汽
车的续航里程和加速性能。
智能电网领域
与电网公司合作,研发用于智能 电网的储能超级电容器,提高电 网的稳定性和可再生能源的接入
能力。
工业应用领域
主要应用领域市场现状与趋势
总结词
详细描述
市场竞争格局与挑战
总结词
超级电容器市场竞争激烈,企业需要不 断创新以保持竞争优势。
VS
详细描述
目前,全球超级电容器市场已经形成了较 为稳定的竞争格局,但随着新技术的不断 涌现和市场的不断扩大,竞争也日趋激烈。 企业需要不断加大研发投入,提高产品性 能和降低成本,以应对市场竞争的挑战。 同时,企业还需要加强与上下游企业的合 作,共同推动超级电容器市场的快速发展。
超级电容器研究综述

一、超级电容器的发展与进步(一)概述在古代,人们发现了与琥珀及橡皮相摩擦,引起表面贮存电荷的可能性。
然而这一效应的缘由直到18世纪中叶方被人们理解。
140年后,人们开始对电有了分子原子级的了解。
早期的有关莱顿瓶的发现和研究,开启了电容器的序幕。
之后,电容器不断的发展起来,现如今,其发展起来的电化学超级电容器,已经应用于国防设备、电力设备、通讯设备、铁路设施、电子产品、汽车工业等方方面面,成为当代社会不可缺少的一部分。
电能能够以两种截然不同的方式存贮:一种间接方式是作为潜在可用的化学能,存贮在电池里。
另一种直接的方式,则是以静电学形式将正负电荷置于一个电容器的不同极板之间来存贮电能。
超级电容器在存贮电荷时有着两种原理,一种是通过双电层原理,以非法第模式来存贮电能;而另一种则是法拉第模式,通过发生氧化还原反应来产生赝电容。
目前双电层型超级电容器一般采用碳材料做电极,通过碳材料的大的比表面积来增加双电层的面积,而赝电容型超级电容器一般采用氧化物或聚合物的材料来做为电极。
同时,二者在制作超级电容器的时候也可以并用,从而使得超级电容器也可以划分为对称超级电容器和非对称超级电容器,对称即指电容器的两极的材料相同,非对称则不同。
在电解质方面,超级电容器绝大多数均采用液体电解质,如水及其它有机溶剂。
超级电容器的电化学性能分析有很多方法,但通常都包括以下四种图:循环伏安曲线,恒流充放电曲线,交流阻抗谱,循环稳定性曲线。
通过这四种图可以比较明确地判断出一个超级电容器的电化学性能的好坏,具体判断方法之后会详细说明。
超级电容器有着非常高的功率密度,但是其能量密度却比较低,它有着极好的循环充放电稳定性但是电压窗口却比较窄。
但是人们也在对其进行着不断的研究来改善超级电容器的这些弊端。
(二)超级电容器的原理超级电容器又称为电化学电容器,是介于传统电容器和电池之间的新型电化学储能器件,它的出现填补了Ragone 图中传统电容器的高比功率和电池的高比能量之间的空白。
超级电容器综述

超级电容器综述超级电容器(supercapacitor,ultracapacitor),又叫双电层电容器(Electrical Double-Layer Capacitor)、电化学电容器(Electrochemcial Capacitor, EC), 黄金电容、法拉电容,通过极化电解质来储能。
它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。
超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。
超级电容器是建立在德国物理学家亥姆霍兹提出的界面双电层理论基础上的一种全新的电容器。
众所周知,插入电解质溶液中的金属电极表面与液面两侧会出现符号相反的过剩电荷,从而使相间产生电位差。
那么,如果在电解液中同时插入两个电极,并在其间施加一个小于电解质溶液分解电压的电压,这时电解液中的正、负离子在电场的作用下会迅速向两极运动,并分别在两上电极的表面形成紧密的电荷层,即双电层,它所形成的双电层和传统电容器中的电介质在电场作用下产生的极化电荷相似,从而产生电容效应,紧密的双电层近似于平板电容器,但是,由于紧密的电荷层间距比普通电容器电荷层间的距离更小得多,因而具有比普通电容器更大的容量。
双电层电容器与铝电解电容器相比内阻较大,因此,可在无负载电阻情况下直接充电,如果出现过电压充电的情况,双电层电容器将会开路而不致损坏器件,这一特点与铝电解电容器的过电压击穿不同。
同时,双电层电容器与可充电电池相比,可进行不限流充电,且充电次数可达10^6次以上,因此双电层电容不但具有电容的特性,同时也具有电池特性,是一种介于电池和电容之间的新型特殊元器件。
由于石油资源日趋短缺,并且燃烧石油的内燃机尾气排放对环境的污染越来越严重(尤其是在大、中城市),人们都在研究替代内燃机的新型能源装置。
超级电容器综述_杨盛毅

出了平板电容器的解释模型, 但直到 1957年 Becker获得了 双电层电容器的专利, 才使得超级电容器的产品化有了新的 突破。到目前超级电容器已有 50多年的发展历史, 其间对于 超级电容器的研究主要集中在寻找电极活性物质作为电极 的研究上。今后人们将会继续研究与开发新颖的电极材料、 选择合适的电解液、优化电容器的组装技术 [2]。目前电极材 料可以分为三类: 第一类是碳材料; 第二类是过渡金属氧化 物; 第三类是导电聚合物材料。
电压 V 3- 5. 5
3 2. 3- 5. 5 2. 7- 12
450 3. 6- 9 2. 5- 25
2. 7 40 3- 5
电容量 F 比能量 W h# kg- 1 比功率 W # kg- 1 状况
800- 2 000
3- 4
200- 400
商品化
. 09 - 1. 8
总的来说目前美国日本俄罗斯的产品几乎占据了整个超级电容器市场实现产业化的基本上都是双电层电容器现代机械2009年第国外超级电容器研究状况类型电极材料公司实验室电解液电压比能量whkg比功率wkg状况双电层电容器碳粒复合物panasonic有机电解液200400商品化saftlcatel有机电解液500封装原型capxx有机电解液300商品化nectok0110010商品化elit水溶液450000商品化korchip水溶液商品化elna有机电解液22100商品化碳纤维复合物maxwellsuperfarad有机电解液有机电解液00025040017500200300商品化封装原型碳凝胶powerstor有机电解液250商品化氧化还原电容器导电聚合物膜losionallab有机电解液000实验室原型混合金属氧化物pinnacleesearchinstitute水溶液15100125200封装原型没有封装的实验室原型usrmyfort水溶液000混合电容器ruota电介质evans水溶液2830000封装原型氧化镍esma水溶液500001080100商品化超级电容器作为一种新的储能元件具有如下优点
2021年中国超级电容器行业现状及前景分析

2021年中国超级电容器行业现状及前景分析一、超级电容器综述超级电容器是一种具有快速、大容量储能(电能)能力的电容器。
其性能与结构介于普通电容器与电池之间,根据工作原理超级电容可以分为双电层电容器与法拉第准电容器(赝电容)以及新型的锂离子超容,双电层电容器工作原理更接近传统电容器,通过电荷在电极上的吸附来储放能,锂离子超容则在双电层电容的负极掺杂锂离子提高了工作电压,而法拉第准电容则通过发生可逆氧化还原反应来储放能,更类似电池。
目前双电层电容器(EDLC)是主流,锂离子超容是重要发展方向。
超级电容具有冲放电快、功率密度高、能量密度低、寿命长、工作温度广等特性,适用于短时大功率储能场景。
放电效率方面,普通电容>超容>电池;功率密度方面,超容=普通电容>电池;能量密度方面,电池>超容>普通电容;寿命方面,超容=普通电容>电池;温度特性方面,超容>普通电容>电池。
以上特性决定了超容适合于短时大功率储能场景,对峰值功率释放的能量快速捕捉并在相对较短时间内快速释放。
二、超级电容器行业政策梳理我国超级电容的研究工作起步于80年代,并将“超级电容器关键材料的研究和制备技术”列入《国家中长期科学和技术发展纲要(2006-2020年)》,作为能源领域中的前沿技术之一;2016年工信部印发《工业强基2016专项行动实施方案》,将超级电容器列入扶持重点。
三、超级电容器产业链从产业链来看,超级电容器上游有电极、电解液、隔膜、引线等辅助材料,其中电极成本占比40-50%,是制备超级电容的核心能力,决定超级电容的功率与能量密度;下游是应用市场,目前超级电容器应用较多的为消费电子、交通运输、新能源、工业等领域。
四、超级电容器行业现状分析2018年以前,由于超级电容被提升至国家战略层面,曾迎来一段高速发展期,但在2018年增长有所放缓。
近年来,由于超级电容下游在新能源、轨道交通以及工业等领域应用场景被不断挖掘,行业空间被进一步拉大,行业重回高速增长期。
超级电容器的原理与应用

超级电容器的原理与应用超级电容器,又称为超级电容、超级电容放电器,是一种新型电化学器件,它具有比传统电容器更高的电容量和能量密度,以及更高的功率密度。
这种电化学器件在现代电子设备、交通工具、能源储存系统等领域有着重要的应用。
本文将从超级电容器的原理、结构、特点以及应用领域等方面进行介绍。
一、超级电容器的原理超级电容器的工作原理基于电荷的吸附和离子在电解质中的迁移。
其正极和负极均采用多孔的活性碳材料,两者之间的电解质是导电液体。
当加上电压时,正负极之间形成两层电荷分布,即电荷层,进而形成电场。
电荷的吸附和电子的迁移使得电容器储存电能。
二、超级电容器的结构超级电容器的主要结构包括两块活性碳电极、电解质和两块集流体。
活性碳电极是超级电容器的核心部件,通过高度多孔的结构使得电极表面积大大增加,从而增加电容器的电容量。
电解质则起着导电和电荷传递的作用,而集流体则是用于导电的金属片或碳素片。
三、超级电容器的特点1.高功率密度:超级电容器具有较高的功率密度,能够在短时间内释放大量电能。
2.长循环寿命:相比于锂离子电池等储能装置,超级电容器具有更长的循环寿命。
3.快速充放电:超级电容器具有快速的充放电速度,适用于需要频繁充放电的场景。
4.环保节能:超级电容器不含有有害物质,具有较高的能源利用效率。
四、超级电容器的应用1.汽车启动系统:超级电容器作为汽车启动系统的辅助储能装置,能够有效提高发动机启动速度,降低能源消耗。
2.再生制动系统:超级电容器在电动汽车的再生制动系统中起到储能和释放能量的作用,提高能源回收效率。
3.电网能量储存:超级电容器可用作电网能量的储存装置,用于平衡电力需求与供给之间的波动。
4.工业自动化设备:超级电容器在工业自动化领域中广泛应用,用于缓冲电源波动和提供紧急供电。
5.医疗设备:超级电容器可用于医疗设备的储能,确保设备持续稳定运行。
结语超级电容器以其高功率密度、长循环寿命、快速充放电等特点在各个领域发挥着重要作用,为现代社会的能源存储和利用提供了新的技术解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超级电容器综述摘要:电化学超级电容器是介于传统电容器和蓄电池之间的一种新型储能装置,以其独特的大容量、高功率密度、高的循环使用寿命、免维护、经济环保等特点,受到了世人的青睐,致使许多新型的电化学超级电容器电板材料相继被发现和应用。
本文综述了超级电容器的原理、电极材料的分类、隔膜、电解液等,介绍了超级电容器的主要应用领域与发展趋势。
关键词:超级电容器原理电极材料综述Reviews of supercapacitorsAbstract:As a new kind of energy storage device, supercapacitors has large capacity, large discharge power, longer cycle service life, free-maintenance, economic and environmental protection, which is between traditional capacitors and chemical batteries. For these advantages, supercapacitors has become extremely popular with researchers, therefore more and more supercapacitor materials have been found and applied. The paper reviews supercapacitors’ principle, the classification of electrode materials, diaphragm, electrolyte, and includes the main field of application, trend of development.Keywords: supercapacitors; principle; electrode materials; review1引言电容器是一种能储蓄电能的设备与器件.由于它的使用能避免电子仪器与设备因电源瞬间切断或电压偶尔降低而产生的错误动作,所以它作为备用电源被广泛应用于声频一视频设备:调协器,电话机、传真机及计算机等通讯设备和家用电器中.电容器的研究是从30年代开始的,随着电子工业的发展.先后经历了电解电容器、瓷介电容器、有机薄膜电容器、铝电解电容器、钽电解电容器和双电层电容器的发展.其中双电层电容器.又叫电化学电容器.是一种相对新型的电容器,它的出现使得电容器的上限容量骤然跃升了3—4个数量级,达到了法拉第级(F)的大容量,正缘于此,它享有“超级电容器”之称。
超级电容器是介于传统电容器和充电电池之间的一种新型储能装置,其容量可达几百至上千法拉。
与传统电容器相比,它具有较大的容量、较高的能量、较宽的工作温度范围和极长的循环使用寿命;而与蓄电池相比,它又具有较高的比功率,且对环境无污染。
因此可以说,超级电容器是一种高效、实用、环保的能量存储装置。
随着电化学超级电容器(electrochemical supercapacitors ESC)在移动通讯、信息技术、交通运输、航空航天和国防科技等领域的不断应用,超级电容器越来越受到人们的关注,各国纷纷制定出ESC的发展计划,将其列为国家重点的战略研究对象,特别是环保汽车一电动汽车的出现,大功率的超级电容器更显示了其前所未有的应用前景:在汽车启动和爬坡时,快速提供大电流和大功率电流;在汽车正常行驶时,由蓄电池快速充电;在汽车刹车时快速储存汽车产生的大电流,这样可减少电动汽车对蓄电池大电流放电的限制,大大延长蓄电池的使用寿命,提高电动汽车的实用性.所以,近年来ESC呈现出空前的研究热潮。
2 基本原理根据存储电能的机理不同,超级电容器可分为双电层电容器(Electric doublelayercapacitor,EDLC)和假电容器(Pseudocapacitor)。
2.1双电层电容器原理双电层电容原理是指由于正负离子在固体电极与电解液之间的表面上分别吸附,使固液界面出现稳定的、符号相反的双层电荷,从而造成两个固体电极之间的电势差,实现能量的储存。
这种储能原理,允许大电流快速的充放电,其容量的大小随所选电极材料的有效比表面积的增大而增大。
由于其距离非常小,一般在0.5 nm 以下,加之采用特殊电极材料后使其表面积成万倍地增加,从而产生了极大的电容量。
双电层电容器的电容公式为:r 0=A C dεε 其中,r ε为电极的介电常数,0ε为真空介电常数,d 是双电层有效厚度,A是电极表面积。
2.2赝电容器原理法拉第赝电容器是与电极充电电位有关的电容器,其原理是电活性物质在电极材料表面活体相中的二维或准二维空间上进行欠电位沉积,从而发生可逆的化学吸附、脱附或氧化还原反应。
当电极在外加电场作用下时,电解液中离子发生迁移,扩散到电极与电解液界面处,发生电化学反应,从而进入到电极表面的活性氧化物体相中,实现电荷存储,放电时,离子又回到电解液,释放存储的电荷,如此反复实现充放电。
赝电容有一个最大的好处就是它能产生很大的容量,是双电层电容容量的10~100倍。
3 超级电容器材料的种类电极材料是超级电容器实现电荷存储并直接影响电容器的性能和生产成本的重要部分,其导电性和比表面积是重要参数,大的比表面积可以吸附更多的电解液离子,能够存储或者释放更多的电荷。
因此,对超级电容器的研究重点就放在了高比表面积、低成本和高导电率的电极材料上。
3.1碳材料系列超级电容器使用的碳材料主要是多孔碳材料,有活性炭(活性炭粉末、活性炭纤维)、碳气凝胶、碳纳米管、石墨烯等。
从碳材料的发展趋势来看,主要是基于双电层储能原理,向着提高有效比表面积和可控微孔孔径(>2nm)的方向发展。
之所以提出可控微孔孔径的概念,是因为一般要2nm 及以上的空间才能形成双电层,才能进行有效的能量储存。
而制备的碳材料往往存在微孔<2nm 的不足,致使比表面积的利用率不高。
所以,这个系列的发展方向就主要是可控微孔孔径,提高有效比表面积。
但不是孔隙率越高,电容器的容量越大。
保持电极材料孔径大小2-50nm 之间提高孔隙率才能提高材料的有效比表面积,从而提高双电层电容。
3.1.1活性炭活性炭材料由于具有稳定的使用寿命、低廉的价格及大规模的工业化生产基础,已在商品化超级电容器的生产中被广泛采用.1957年,Becker 申请了第一个关于活性炭材料电化学电容器的专利.他将具有高比表面积的活性炭涂覆在金属基底上,然后浸渍在硫酸溶液中,借助在活性炭孔道界面形成的双电层结构来存贮电荷。
制备活性炭的原料来源非常丰富,石油、煤、木材、坚果壳、树脂等都可用来制备活性炭粉.原料经调制后进行活化,活化方法分物理活化和化学活化两种。
物理活化通常是指在水蒸气、二氧化碳和空气等氧化性气氛中,在700-1200℃的高温下,对碳材料前体(即原料)进行处理。
化学活化是在400-700℃的温度下,采用磷酸、氢氧化钾、氢氧化钠和氯化锌等作为活化剂,采用活化工艺制备的活性炭孔结构通常具有一个孔径尺寸跨度较宽的孔分布,包括微孔(<2nm),介孔(2—50nm)和大孔(>50nm)。
值得注意的是,当比表面积高达3000m2/g时,也只能获得相对较小的比电容(<10μF/cm2),小于其理论双电层比电容的值(15—25μF/cm2),这表明并非所有的孔结构都具备有效的电荷积累。
虽然比表面积是双电层电容器性能的一个重要参数,但孔分布、孔的形状和结构、导电率和表面官能化修饰等也会影响活性炭材料的电化学性能。
过度活化会导致大的孔隙率,同时也会降低材料的堆积密度和导电性,从而减小活性炭材料的体积能量密度。
另外,活性炭表面残存的一些活性基团和悬挂键会使其同电解液之间的反应活性增加,也会造成电极材料性能的衰减。
因此,设计具有窄的孔分布和相互交联的孔道结构、短的离子传输距离以及可控的表面化学性质的活性炭材料,将有助于提高超级电容器的能量密度,同时又不影响功率密度和循环寿命。
目前商品化超级电容器电极材料的首选仍然是活性炭,不过随着其他新型碳材料如碳纳米管、石墨烯等的不断发展,将来有可能替代活性炭材料。
3.1.2碳纳米管碳纳米管是20世纪90年代初发现的一种纳米尺寸管状结构的炭材料,是由单层或多层石墨烯片卷曲而成的无缝一维中空管,具有良好的导电性、大比表面积、好的化学稳定性、适合电解质离子迁移的孔隙,以及交互缠绕可形成纳米尺度的网状结构,因而曾被认为是高功率超级电容器理想的电极材料.Niu等人最早报道了将碳纳米管用作超级电容器电极材料的研究工作.他们将烃类催化热解法获得的多壁碳纳米管制成薄膜电极,在质量分数为38%的硫酸电解液中以及在0.001—100HZ的不同频率下,比电容达到49—113F/g,其功率密度超过了8KW/kg。
但是,自由生长的碳纳米管取向杂乱,形态各异,甚至与非晶态碳夹杂伴生,难以纯化,这就极大地影响了其实际应用。
近年来,高度有序碳纳米管阵列的研究再次引起人们的关注,这种在集流体上直接生长的碳纳米管阵列,不仅减小了活性物质与集流体间的接触电阻,而且还简化了电极的制备工艺。
3.1.3石墨烯石墨烯(Grapheme)是由碳原子组成的单层石墨片,是英国科学家Geim等人于2004年发现的。
石墨烯的问世激起了全世界的研究热潮,Gemi等人还因此而获得了2010年诺贝尔物理学奖。
石墨烯不仅是已知材料中最薄的一种,而且还非常牢固坚硬;作为单质,它在室温下传输电子的速度比已知导体都快。
碳纳米管和石墨烯分别作为一维和二维纳米材料的代表,二者在结构和性能上具有互补性。
从目前来看,石墨烯具有更加优异的特性,例如具有高电导率和热导率(5000W/m·K)、高载流子迁移率(200000cm2/V·s)、自由的电子移动空间、高强度和刚度(杨氏模量为~1.0TPa)、高理论比表面积(2600m2/g)。
因此石墨烯在室温弹道场效应管、单电子器件、超灵敏传感器、电极材料(包括透明电极)、有机太阳能电池的受体材料和阳极材料、非线性光学材料、场发射材料、复合功能材料以及药物载体等领域具有广阔的应用前景,这也是Geim等人获得诺贝尔奖的主要原因。
利用石墨烯材料的高比表面积和高导电率等独特优点,可望获得一种价格低廉和性能优越的下一代高性能超级电容器电极材料。
袁美蓉等采用改良的Hummers法制备了氧化石墨,然后以水合肼还原得到石墨烯。
,制备的石墨烯电极超级电容器在有机Et4NBF4/PC电解液体系中表现出良好的双电层性能,其比电容为60F/g,比原料天然石墨制备的电容器(34F/g)几乎大1倍。