工程热力学第十章lm
清华大学热工基础课件工程热力学加传热学11第十章-对流换热、单相流体

综上所述,边界层具有以下特征: (a) 、t l
(b) 流场划分为边界层区和主流区。流动边界层内存 在较大的速度梯度,是发生动量扩散(即粘性力作用) 的主要区域。主流区的流体可近似为理想流体;热边 界层内存在较大的温度梯度,是发生热量扩散的主要 区域,热边界层之外温度梯度可以忽略;
(c) 根据流动状态,边界层分为层流边界层和湍流边 界层。湍流边界层分为层流底层、缓冲层与湍流核心 三层结构。层流底层内的速度梯度和温度梯度远大于 湍流核心;
20
局部表面传热系数的变化趋势:
流动边界层厚度 与热边界层厚度t的比较 :
两种边界层厚度的相对大小取决于流体运动粘度 与
热扩散率a的相对大小。令
对于层流边界层:Pr≥1 t ;Pr≤1 t
Pr a
对于湍流边界层: t
普朗特数
一般液体:Pr=0.6~4000;气体:Pr=0.6~0.8。 21
4
(2) 流动的状态
层流 湍流
:流速缓慢,流体分层地平行于壁面方 向流动,垂直于流动方向上的热量传递 主要靠分子扩散(即导热)。
:流体内存在强烈的脉动和旋涡,使各 部分流体之间迅速混合,因此湍流对流 换热要比层流对流换热强烈,表面传热 系数大。
(3) 流体有无相变 沸腾换热 凝结换热
5
(4) 流体的物理性质
7
(5) 换热表面的几何因素
换热表面的几何形状、尺 寸、相对位置以及表面粗糙 度等几何因素将影响流体的 流动状态,因此影响流体的 速度分布和温度分布,对对 流换热产生影响。
影响对流换热的因素很
多,表面传热系数是很多变
量的函数,
特征长度(定型尺寸)
h fu ,t w ,t f, , ,c , , ,l,
工程热力学 第十章 制冷循环

制冷剂其他性质
❖对环境友善 ❖安全无毒 ❖ 溶油性好,化学稳定性好
36
制冷剂种类
(1)无机化合物:氨R717、水R718、二氧 化碳R744、二氧化硫R764等。
(2)氟里昂:氟里昂是饱和碳氢化合物(饱 和烃类)的卤族衍生物的总称,最常用的 有R12、R22、R14和R134a等。
(3)混合溶液:由两种或两种以上不同的制 冷剂按一定比例相互溶解而成的混合物。 主要有R502(R22和R115)、R407C (R32/R125/R134a)。
2-3 为过 热 蒸 气 在 冷 凝 器 中定压放热被冷凝的过程;
3-4 为饱 和 液 体 在 节 流 阀 中节流、降压、降温的过 程;
4-1 为湿 饱 和 蒸 气 在 蒸 发
器中定压吸热、汽化的过
程。
22
制冷系数
c
qo wnet
qo h1-h3 qk-qo h2-h1
T1 T4 T2 T1
20
压缩蒸气制冷循环
用低沸点物质(大气压 下的沸点低于0℃)作为工 质(制冷剂),利用其在 定压下汽化和凝结时温度 不变的特性实现定温放热 和定温吸热,可以大大提 高制冷系数;制冷剂的汽 化潜热较大,因此制冷量 大。
21
压缩蒸气制冷循环
1-2 为从 蒸 发 器 中 出 来 的 蒸气在压缩机中被可逆绝 热压缩的过程;
(4)碳氢化合物:碳氢化合物制冷剂有甲烷、
乙烷、丙烷、乙烯、丙烯和异丁烷R600a
等。
37
课后思考题
❖压缩蒸气制冷循环采用节流阀来代替膨胀 机,压缩空气制冷循环是否也可以采用这 种方法?为什么?
❖对逆向卡诺循环而言,冷、热源温差越大, 制冷系数是越大还是越小?为什么?
10工程热力学第十章 水蒸气及蒸汽动力循环

10-3 水蒸气的热力过程 目的—确定过程的能量转换关系 分析水蒸气热力过程的目的 确定过程的能量转换关系, 分析水蒸气热力过程的目的 确定过程的能量转换关系, 包括w 以及 以及u和 等 因此,需确定状态参数的变化. 包括 ,q以及 和Δh等.因此,需确定状态参数的变化. 确定过程的能量转换关系的依据为热力学第一,二定律: 确定过程的能量转换关系的依据为热力学第一,二定律:
图和T-s图 三,水蒸气的p-v图和 图 水蒸气的 图和
分析水蒸气的相变图线可见,上,下界线表明了水汽化的始末界线, 分析水蒸气的相变图线可见, 下界线表明了水汽化的始末界线, 二者统称饱和曲线, 图分为三个区域,即液态区( 二者统称饱和曲线,它把p-v和T-s图分为三个区域,即液态区(下 界线左侧) 湿蒸汽区(饱和曲线内) 汽态区(上界线右侧) 此外, 界线左侧),湿蒸汽区(饱和曲线内),汽态区(上界线右侧).此外, 习惯上常把压力高于临界点的临界温度线作为"永久" 习惯上常把压力高于临界点的临界温度线作为"永久"气体与液体 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点) 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点), 二线(上界线,下界线) 三区(液态区,湿蒸汽区,气态区) 二线(上界线,下界线),三区(液态区,湿蒸汽区,气态区)和五态 未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, (未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, 过热蒸汽状态) 过热蒸汽状态)
q = h h ′′
显然, 的水加热变为过热水蒸气所需的热量, 显然,将0.01℃的水加热变为过热水蒸气所需的热量,等于液 的水加热变为过热水蒸气所需的热量 体热,汽化潜热与过热热量三者之和. 体热,汽化潜热与过热热量三者之和.而且整个水蒸气定压发生过 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算 用水和水蒸气的焓值变化来计算. 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算.
工程热力学第十章 动力循环

h3)
(h1 h6 ) (h1 h2 ) (h1 h3) (h1 h6 )
第三节 热电循环
一、背压式热电循环 排汽压力高于大气压力的汽轮机称为背压式汽轮机
二、调节抽气式热电循环
第四章 内燃机循环
气体动力循环按热机的工作原理分类,可分为内燃 机循环和燃气轮机循环两类。内燃机的燃烧过程在热机 的汽缸中进行,燃气轮机的燃烧过程在热机外的燃烧室 中进行燃气轮机主要有三部分组成:燃气轮机、压气机和燃烧 室
工质的吸热量 放热量
循环的热效率
q1 c p (T3 T2 )
q 2 c p (T4 T1 )
t
1
q2 q1
1 T4 T1 T3 T2
1
T1 (T4 T2 (T3
T 1 1) T 2 1)
二、定压加热循环
工质吸热、放热和循环热效率:
q1 cp(T3 T2), q2 cv(T4 T1)
t
1q2 q1
1cp(T4 T1) cv(T3 T2)
11 T1(T4T11)
T2(T3T2 1)
T1 T2
v2 v1
1
1 1
,
T4 T1
v3 v2
t,p
1
1 ( 1) 1
1cv(T4T1) 1T1(T4T11)
cv(T3T2)
T2(T3T21)
v3=v2,v4=v1,故
T2 T1
vv121
T3 T4
vv431
T2 T3 , T1 T4
T4 T3 T1 T2
t
1 T1 T2
1 1
T2 T1
1
1
v1 v2
1
1
1 k1
v1 v2
工程热力学第10章答案

第10章 制冷循环第10章 制冷循环10-1 在商业上还用“冷吨”表示制冷量的大小,1“冷吨”表示1吨0℃的水在24小时冷冻到0℃冰所需要的制冷量。
证明1冷吨=3.86kJ/s 。
已知在1标准大气压下冰的融化热为333.4kJ/kg 。
解:1冷吨=333.4 kJ/kg ×1吨/24小时=333.4×1000/(24×3600) kJ/s=3.86kJ/s压气机入口T 1= 263.15K 压气机出口 K T T kk 773.416515.2634.114.1112=×==−−π冷却器出口T 3=293.15K 膨胀机出口 K T T kk 069.185515.2934.114.1134===−−π制冷量 ()()kg kJ T T c q p c /393.78069.18515.263004.141=−×=−= 制冷系数第10章 制冷循环()()()()71.1069.18515.26315.293773.416069.18515.263413241=−−−−=−−−−==T T T T T T w q net c ε10-4 压缩空气制冷循环中,压气机和膨胀机的绝热效率均为0.85。
若放热过程的终温为20℃,吸热过程的终温为0℃,增压比π=3,空气可视为定比热容的理想气体,c p =1.004kJ/(kg·K ),k =1.4。
求:(1)画出此制冷循环的T-s 图;(2)循环的平均吸热温度、平均放热温度和制冷系数。
433'4循环的平均吸热温度 ()K T T T T s q T cc 887.248986.22515.273ln 986.22515.273ln 414114=−=−=∆=′′′ 循环的平均放热温度 ()K T T T T s q T 965.33915.293638.391ln 15.293638.391ln32322300=−=−=∆=′′′第10章 制冷循环循环的制冷系数921.0)896.22515.293()15.273638.391(986.22515.273)()(/431/2/41=−−−−=−−−−=T T T T T T ε10-5 某压缩蒸气制冷循环用氨作制冷剂。
《工程热力学》教学课件第10-11章

温度比较:
T2,s T2,n T2,T
工程热力学 Thermodynamics 第二节 余隙容积的影响
余隙比: Vc 0.03 ~ 0.08
Vh
p3
2
g
p 2
p2
f
6
4
1
0 Vc
V V1 V4
V
V4 V6
Vh V1 V3
Vh
3
2
p2
3
2
p2
6
4 4
0
Vc
t 1 qL qH 1 431 879 51% 或t 11 1 11 61.41 51.2%
工程热力学 Thermodynamics
柴油机循环
一、柴油机的实际循环与循环的p-V 图
工程热力学 Thermodynamics 二、定压加热理想循环——狄塞尔(Diesel)循环
(一)过程组成
第一节 单级活塞式压气机
一、结构图
二、工作过程
工程热力学 Thermodynamics 三、耗功计算
等熵过程: 多变过程: 等温过程:
能量方程:Wc Wt
1
wc,s
1
RgT1
p2 p1
1
n1
wc,n
n n1
RgT1
p2 p1
n
1
wc,T
RgT1 ln
p2 p1
功量比较:
解:(1) 空气物性参数:
Rg 0.287 kJ (kg K)
cp 1.004 kJ (kg K)
工程热力学 Thermodynamics
可逆压缩的气体出口温度
T2
1
T1
T1
工程热力学-第十章动力循环之朗肯循环
02
初参数对朗肯循环热效率的影响
1. 初温t1
T 1 T 2不变 t
或 循环1t2t3561t =循环123561+循环11t2t21
t11t2t21
t123561
t
02
2. 初压力 p1
T 1 ,T 2不变 t 但 x2下降且 p太高造成强度问题
3. 背压 p2
实际并不实行 卡诺循环
01
02. 朗肯循环的热效率
02
朗肯循环的热效率
t
wn wt,T wt,P
wt,T h1 h2 ? cp T1 T2
wt,P h4 h3
wnet h1 h2 h4 h3
02 T 1不变 ,T 2 t 但受制于环境温度,不能任意
降低 p2 6kPa,ts 36.17 C; p2 4kPa,ts 28.95 C
同时,x2下降 。
思考: 我国幅员辽阔,四季温差大,对蒸汽发电机组有什么影响?
THANK YOU
第十章 动力循环 之
朗肯循环
CONTENTS
01. 朗肯循环的流程 02. 朗肯循环的热效率
01. 朗肯循环的流程
01
朗肯循环 (Rankine cycle)
1)流程图
2)p-v,T-s图
01
3)水蒸气的卡诺循环
水蒸气卡诺循环有可能实现,但:
(1)温限小 (2)膨胀末端x太小 (3)压缩两相物质的困难
t
h1 h2 h1 h3
h1 h2 h1 h2'
5)耗汽率(steam rate)及耗汽量
理想耗汽率(ideal steam rate) d0 —装置每输出单位功量所消耗的蒸汽量
工程热力学与传热学 第十章 气体动力循环
在斯特林循环中,在定容吸热过程2-3中工质从回热器中吸收的
热量正好等于定容放热过程4-1放给回热器的热量。经过一个循环
回热器恢复到初始状态。 可以证明:在相同的温度范围内,理想的定容回热循环(斯特 林循环)和卡诺循环,具有相同的热效率。
斯特林循环的突出优点是热效率高、污染少,对加热方式的适
应性强。随着科技的发展以及环境保护日益为人们所重视,斯特林
同样可以证明:在相同的温度范围内,理想的定压回热循环( 艾利克松循环)和卡诺循环,具有相同的热效率。 理想回热循环(斯特林循环和艾利克松循环)通常称为概括性 卡诺循环。实践证明,采用回热措施可以提高循环热效率,也是余 热回收的一种重要节能途径。
本章小结
1。气体动力循环的基本概念 1)内燃机的特性参数:
P 3 2 4
0-1:吸气过程。由于阀门的阻力,吸入气缸内
空气的压力略低于大气压力。
1-2:压缩过程 2-3-4-5:燃烧和膨胀过程
5 6
燃烧可分为定容过程和定压过 程
1
Pb
0
5-6-0:排气过程
V
P 3 2 4
简化原则为:(1)不计吸气和
排气过程,将内燃机的工作过程 看作是气缸内工质进行状态变化 的封闭循环。
3 - 4为定压加热过程:
T4 v4 T3 v3 T4 T3 T1 k 1;p4 p3 p1 k
v1 v2
p3 p2
v4 v3
4-5为定熵过程,5-1及2-3为定容过程,因此有:
T5 v 4 k 1 v 4 k 1 v 4 v 2 k 1 k 1 ( ) ( ) ( ) ( ) T4 v5 v1 v3 v1
2-3:定容吸热; 4-5:绝热膨胀;
工程热力学(第三版)习题答案全解第十章可打印
= T2
+ q1 cV
= T2
q1 cp /κ
= 774.05K +
650kJ/kg
1.005kJ/(kg ⋅ K)/1.4
= 1679.52K
p3
=
RgT3 v3
=
287J/(kg ⋅ K)×1679.52K 0.08844m3/kg
=
5.450MPa
v4 = v1
p4
=
p3
v3 v4
κ
=
的温度和压力;(2)循环热效率,并与同温度限的卡诺循环热效率作 比较;(3)平均有效压力。
解:(1)各点的温度和压力
v1
=
RgT1 p1
=
287J/(kg ⋅ K)× (35 + 273.15)K 100×103 Pa
=
0.8844m3/kg
v2
=
v1 ε
=
0.8844m3/kg 10
=
0.08844m3/kg
=
v1 v2
= 15 ,
定容升压比 λ = p3 = 1.4 ,定压预胀比 ρ = v4 = 1.45 ,试分析计算循环
p2
v3
各点温度、压力、比体积及循环热效率。设工质比热容取定值,
cp = 1.005kJ/(kg ⋅ K) , cV = 0.718kJ/(kg ⋅ K) 。
解: Rg = cp − cV = 1.005kJ/(kg ⋅ K) − 0.718kJ/(kg ⋅ K) = 0.287kJ/(kg ⋅ K)
=
4.431×106 Pa × 0.0637m3 / kg 287J/(kg ⋅ K)
= 983.52K
v3 = v2
工程热力学第十章_湿空气
一 概述
2 饱和湿空气和未饱和湿空气
p T
3
t
pv
1
2
3
1
pv
2
v
s
状态1为未饱和湿空气
状态2、3为饱和湿空气
二 湿空气的湿度
1 绝对湿度
1m3湿空气中所含水蒸气的质量。
在数值上绝对湿度等于水蒸气的密度,所以绝对
1 湿空气的焓
湿空气的焓等于干空气的焓与水蒸气的焓之和
H=Ha+Hv=maha+mvh
湿空气的比焓是指含有1kg干空气的湿空气的焓
值,
h
H ma
maha mvhv ma
ha
0.001dhv
基准是单位质量干空气,即等于1kg干空 气的焓和0.001dkg水蒸气的焓之总和
1 湿空气的焓
取0℃时干空气的焓值为零,则干空气的焓可按下 式计算:
ha=cpt=1.004t kJ/kg(干空气)
由于压力不太高的情况下湿空气中的水蒸汽可看 作理想气体,故其焓值的近似计算式为:
hv=2501+1.86t kJ/kg (干空气)
因此
h=1.004t+0.001d(2501+1.86t) kJ/kg (干空气)
三 湿空气的焓、露点温度与湿球温度
2 露点温度
湿度也用符号v表示。
v
1 vv
pv RvT
注意
T一定条件下,绝对湿度仅取决于水蒸气的分压力pv。它反 映了湿空气中水蒸气的疏密程度,并不直接表示湿空气的吸
湿能力和干燥潮湿程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空,大型轮船,移动电站 联合循环的顶循环
工程热力学第十章lm
研究内容和研究方法
研究内容:两类动力循环的构成、特点以及提高动力 循环热力性能的途径。
实际动力循环非常复杂 不可逆,多变指数变化,燃烧等
工程热力学研究方法,先对实际动力循环进行抽 象和理想化,形成各种理想循环进行分析,最后 进行修正。
工程热力学第十章lm
研究目的:合理安排循环,提高热效率
按工质
燃气动力循环:内燃机,如汽油机、柴油机等
理想气体
空气为主的燃气
蒸汽动力循环:外燃机,如蒸汽机、汽轮机
实际气体
水蒸气、氨、氟利昂等
工程热力学第十章lm
动力循环的分类
按结构
活塞式 piston engine 汽车,摩托,小型轮船
叶轮式
Gas turbine cycle
s
工程热力学第十章lm
提高循环热效率的途径
改变循环参数 改变循环形式
联合循环
提高初温度 提高初压力 降低乏汽压力
再热循环 Reheat 回热循环 Regenerative
热电联产 Cogeneration 燃气-蒸汽联合循环
IGCC 新型动力循环 PFBC-CC
…...
工程热力学第十章lm
极限回热循环
放热量:
q2,RG 1 h2 h2'
3
2
净功:wRG h1 ha
s
1 ha h2
热效率:
t,RG
h1
ha
1 ha
h1 ha'
h2
工程热力学第十章lm
为什么抽汽回热热效率提高
T
1kg
6
kg
5
4
(1- )kg
3
1
t,RG 1
h1 h2'
h2 h2'
1
朗肯循环
水蒸气动力循环系统
汽轮机 锅 炉
发电机
凝汽器
四个主要装置: 锅炉 汽轮机 凝汽器 给水泵
给水泵
工程热力学第十章lm
水蒸气动力循环系统的简化
简化(理想化):
汽轮机
12 汽轮机 s 膨胀
锅
炉
23 凝汽器 p 放热
发电机
34 给水泵 s 压缩
凝汽器 41 锅炉 p 吸热
给水泵
工程热力学第十章lm
1 1kg
4
T
5
2
4
3
3
极限回热循环与同温度范围内的卡诺循环热效率相等 实际上无法实现: 1.蒸汽速度很高,零温差传热无法实现 2.膨胀做功后蒸汽干度过低,工影程响热力汽学轮第十机章正lm 常工作。
1 6
2 s
抽汽式回热循环
1 1kg
a2
α kg
6
3
5
4
(1-α )kg
抽汽 冷凝水
去凝汽器 表面式回热器
5
4'
4 3
优点:
1' 1 6'
• T1 t
v •
,汽轮机出口尺寸
小 2'
6
2' 2
缺点: • 对强度要求高
x •全。一2' 般不要利求于出汽口轮干机度安大
于0.86~ 0.88
s
工程热力学第十章lm
蒸汽初温对朗肯循环热效率的影响
p1 , p2不变,t1
优点:
T
1'
1
• T1 t
x • 2' ,有利于汽机安全。
4
t
h1 h1
h2 h3
3
工程热力学第十章lm
1 2
s
朗肯循环与卡诺循环的比较
T 4'
9
5
1 10
6
对比同温限1234’ • q2相同; • q1卡诺> q1朗肯
• 卡诺> 朗肯; •等温吸
热4’1难实现
对比5678 • wnet卡诺< wnet 朗肯
4 3 8 12
11 7 2
s
工程热力学第十章lm
对比9-10-11-12
• 11点x太小,不利于汽机 强度; • 12-9两相区难 压缩; • wnet卡诺小
如何提高朗肯循环的热效率
T
5 4
3
1 6
2 s
工程热力学第十章lm
t
h1 h1
h2 h3
影响热效率的参 数?
p1 t1 p2
蒸汽初压对朗肯循环热效率的影响
t1 , p2不变,p1
T
5'
5
6
缺点:
4
• 对耐热及强度要求高, 目前初温一般在550℃
3
2 2'
左右
v• 2' 汽机出口尺寸大
s 工程热力学第十章lm
乏汽压力对朗肯循环热效率的影响
p1 , t1不变,p2
T 1
5
6
4
2
4' 3
3'
2'
优点:
• T2 t
缺点: •受环境温度限制,现在大 型机组p2为3~4kPa,相应的 饱和温度约为24~ 29℃ ,已 接近事实上可能达到的最低 限度。——冬天热效率高
1kg
6
kg
a
5
4
(1- )kg
3
2
热一律
ha 1 h4 1 h5
h5 h4
ha h4
1kg 5
s a kg
(1- )kg
4 工程热力学第十章lm
忽略泵功
h5 h3
ha h3
抽汽回热循环热效率
T
1
1kg 6 kg
a
4 5 (1- )kg
吸热量:
q1,RG h1 h5 h1 ha'
工程热力学
Engineering Thermodynamics
工程热力学第十章lm
第十章 动力循环
蒸汽动力基本循环 回热循环和再热循环 热电循环 内燃机循环 燃气轮机循环
工程热力学第十章lm
动力循环研究目的和分类
热机(热力原动机):将热能转化为机械能的设备 动力循环:热机的工作循环 工质连续不断地将从高温热源取得的热量的一部分转换成 对外的净功
郎肯循环
朗肯循环图
p 4
3
12 汽轮机 s 膨胀
1Байду номын сангаас
23 凝汽器 p 放热
34 给水泵 s 压缩
2
41 锅炉 p 吸热
v
工程热力学第十章lm
朗肯循环图
12 汽轮机 s 膨胀 34 给水泵 s 压缩 T
1
23 凝汽器 p 放热 41 锅炉 p 吸热
h 1
4
4
2
3
2
3
s工程热力学第十章lm
s
朗肯循环能量分析
给水
抽汽 冷凝水
抽汽式回热
工程热力学第十章lm
混合式回热器
抽汽回热循环
T
1
1kg
6
kg
a
5
4
(1- )kg
3
2
1 1kg
a2
α kg
6
3
5
4
(1-α )kg
s
由于T-s图上各点质量不同,
面积不再直接代表热和功
1kg
5 工程热力学第十章lm
a kg (1- )kg
4
抽汽量的计算
T
1
以混合式回热器为例
h1 ha
a
简单朗肯循环:t
1
h2 h1
h2' h2'
2
1
h1
ha
0
s
t,RG t
工程热力学第十章lm
蒸汽抽汽回热循环的特点
•优点 >缺点 提高热效率 减小汽轮机低压缸尺寸,末级叶片变短 减小凝汽器尺寸,减小锅炉受热面 可兼作除氧器
•缺点 循环比功减小,汽耗率增加 增加设备复杂性 回热器投资
汽轮机作功:
ws,12 h1 h2 h
凝汽器中的定压放热量:
q2 h2 h3
水泵绝热压缩耗功:
4
ws,34 h4 h3
3
锅炉中的定压吸热量:
q1 h1 h4 工程热力学第十章lm
1 2
s
朗肯循环热效率
t
wnet q1
ws,12 ws,34 q1
h
一般很小,占
0.8~1%,忽
略泵功