整式运算练习题 (2)

合集下载

专题02整式及其运算(原卷版)

专题02整式及其运算(原卷版)

专题02 整式及其运算一、单选题 1.(2023·四川乐山·统考中考真题)计算:2a a -=( )A .aB .a -C .3aD .12.(2023·四川眉山·统考中考真题)下列运算中,正确的是( )A .3232a a a -=B .()222a b a b +=+C .322a b a a ÷=D .()2242a b a b = 3.(2023·江西·统考中考真题)计算()322m 的结果为( )A .68mB .66mC .62mD .52m4.(2023·江苏苏州·统考中考真题)下列运算正确的是( )A .32a a a -=B .325a a a ⋅=C .321a a ÷=D .()23a a = 5.(2023·山东滨州·统考中考真题)下列计算,结果正确的是( )A .235a a a ⋅=B .()325a a =C .33()ab ab =D .23a a a ÷= 6.(2023·湖南·统考中考真题)计算:()23a =( )A .5aB .23aC .26aD .29a7.(2023·湖南常德·统考中考真题)若2340a a +-=,则2263a a +-=( )A .5B .1C .1-D .08.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是( )A .23a a +B .23a a ⋅C .23()aD .102a a ÷ 9.(2023·浙江宁波·统考中考真题)下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 10.(2023·云南·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a -= 11.(2023·新疆·统考中考真题)计算2432a a b ab ⋅÷的结果是( )A .6aB .6abC .26aD .226a b23.(2023·山东枣庄·统考中考真题)下列运算结果正确的是( )A .4482x x x +=B .()32626x x -=-C .633x x x ÷=D .236x x x ⋅=24.(2020春·云南玉溪·八年级统考期末)下列计算正确的是( )A .3a +4b =7abB .x 12÷x 6=x 6C .(a +2)2=a 2+4D .(ab 3)3=ab 625.(2023·山西·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()2236a b a b -=-C .632a a a ÷=D .()326a a = 26.(2023·湖北宜昌·统考中考真题)下列运算正确的是( ).A .4322x x x ÷=B .()437x x =C .437x x x +=D .3412x x x ⋅=27.(2023·湖南郴州·统考中考真题)下列运算正确的是( )A .437a a a ⋅=B .()325a a =C .2232a a -=D .()222a b a b -=- 28.(2023·广西·统考中考真题)下列计算正确的是( )A .347a a a +=B .347a a a ⋅=C .437a a a ÷=D .()437a a = 29.(2023·四川·统考中考真题)下列计算正确的是( )A .22ab a b -=B .236a a a ⋅=C .233a b a a ÷=D .222()()4a a a +-=-30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是( )A .23232332a b a b a b -=B .236a a a ⋅=C .623a a a ÷=D .()325a a = 31.(2023·山东·统考中考真题)下列各式运算正确的是( )A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x y x y =32.(2023·山东·统考中考真题)下列运算正确的是( )A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+ 33.(2023·湖南张家界·统考中考真题)下列运算正确的是( )A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=34.(2023·黑龙江·统考中考真题)下列运算正确的是( )A .22(2)4a a -=-B .222()a b a b -=-C .()()2224m m m -+--=-D .()257a a = 35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是( )A .22434b b b +=B .()246a a =C .()224x x -=D .326a a a ⋅=36.(2023·湖南·统考中考真题)下列计算正确的是( )A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅=37.(2023·内蒙古·统考中考真题)下列各式计算结果为5a 的是( )A .()23aB .102a a ÷C .4a a ⋅D .15(1)a --38.(2023·内蒙古赤峰·统考中考真题)已知2230a a --=,则2(23)(23)(21)a a a +-+-的值是( ) A .6 B .5- C .3- D .439.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是( )A .()22346a b a b =B .321ab ab -=C .34()a a a -⋅=D .222()a b a b +=+40.(2023·福建·统考中考真题)下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a -=41.(2023·广东深圳·统考中考真题)下列运算正确的是( )A .326a a a ⋅=B .44ab ab -=C .()2211a a +=+D .()236a a -=二、填空题42.(2023·湖南永州·统考中考真题)22a 与4ab 的公因式为________.43.(2023·天津·统考中考真题)计算()22xy 的结果为________. 44.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.45.(2023·全国·统考中考真题)计算:(3)a b +=_________.46.(2022秋·上海·七年级专题练习)计算:2232a a -=________.47.(2023·湖北十堰·统考中考真题)若3x y +=,2y =,则22x y xy +的值是___________________.48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为______. 49.(2023春·广东梅州·八年级校考阶段练习)计算:(a 2b )3=___.三、解答题。

初中数学北京版七年级下册第六章 整式的运算二 整式的乘法6.4 乘法公式-章节测试习题(2)

初中数学北京版七年级下册第六章 整式的运算二 整式的乘法6.4 乘法公式-章节测试习题(2)

章节测试题1.【题文】已知:x+y=6,xy=4.(1)求x2+y2的值;(2)求(x-y)2的值;(3)求x4+y4的值【答案】(1)28;(2)20;(3)368【分析】(1)利用x2+y2=(x+y)2-2xy计算即可;(2)利用(x-y)2=x2+y2-2xy计算即可;(3)利用x4+y4=(x2+y2)2-2x2y2=(x2+y2)2-2(xy)2计算即可.【解答】∵x+y=6,xy=4,∴(1)x2+y2=(x+y)2-2xy=62-2×4=28;(2)(x-y)2=x2+y2-2xy=28-2×4=20;(3)x4+y4=(x2+y2)2-2x2y2=(x2+y2)2-2(xy)2=202-2×42=368.2.【题文】已知:x2+xy+y=14,y2+xy+x=28,求x+y的值.【答案】-7或6【分析】由x2+xy+y=14,y2+xy+x=28,即可求得x2+2xy+y2+x+y=42,则变形得(x+y)2+(x+y)-42=0,将x+y看作整体,利用因式分解法即可求得x+y的值.【解答】∵x2+xy+y=14①,y2+xy+x=28②,∴①+②,得:x2+2xy+y2+x+y=42,∴(x+y)2+(x+y)-42=0,∴(x+y+7)(x+y-6)=0,∴x+y+7=0或x+y-6=0,解得:x+y=-7或x+y=6.3.【题文】若x2+y2=86,xy=-16,求(x-y)2.【答案】118【分析】根据完全平方公式得到(x-y)2=x2+y2-2xy,然后把x2+y2=86,xy=-16代入计算即可.【解答】∵(x-y)2=x2+y2-2xy,且x2+y2=86,xy=-16,∴(x-y)2=86-2×(-16)=118.4.【题文】计算:(1)29.8×30.2;(2)46×512;(3)2052.【答案】①899.96;②1012;③42025.【分析】(1)利用平方差公式进行简便计算,(2)先将46变形为212,再利用积的乘方进行简便计算,(3)利用完全平方公式进行简便计算.【解答】(1)29.8×30.2=(30+0.2)(30-0.2)=302-0.22=900-0.04=899.96,(2)46×512=212×512=(2×5)12=1012,(3)2052=(200+5)2=40000+2000+25=42025.5.【题文】已知(a+b)2=24,(a-b)2=20,求:(1)ab的值是多少?(2)a2+b2的值是多少?【答案】(1)ab=1;(2)a2+b2=22.【分析】(1)根据(a-b)2=, (a+b)2=,可推导出(a+b)2-(a -b)2=4ab,代入即可求解,(2)根据(a+b)2=,可推导出,代入即可求解.【解答】∵(a+b)2=24,(a-b)2=20,∴a2+b2+2ab=24①,a2+b2-2ab=20②,(1)①-②得:4ab=4,则ab=1,(2)①+②得:2(a2+b2)=44,则a2+b2=22.6.【题文】阅读理解:若x满足(x-2015)(2002-x)=-302,试求(x-2015)2+(2002-x)2的值.解:设x-2015=a,2002-x=b,则ab=-302且a+b=(x-2015)+(2002-x)=-13.∵(a+b)2=a2+2ab+b2,∴a2+b2=(a+b)2-2ab=(-13)2-2×(-302)=773,即(x-2015)2+(2002-x)2的值为773.解决问题:请你根据上述材料的解题思路,完成下面一题的解答过程,若y满足(y-2015)2+(y-2016)2=4035,试求(y-2015)(y-2016)的值.【答案】2017.【分析】设y-2015=a,y-2016=b,则a2+b2=4035,a-b=1,根据(a-b)2=a2-2ab+b2,可以求出ab,即可解决问题.【解答】设y-2015=a,y-2016=b,则a2+b2=4035,a-b=1,∵(a-b)2=a2-2ab+b2,∴ab=[a2+b2-(a-b)2]=2017.∴(y-2015)(y-2016)=2017.7.【题文】化简:(a-b)2+(b-c)2+(c-a)2/【答案】2a2+2b2+2c2-2ab-2bc-2a c【分析】利用完全平方公式展开,然后合并即可.【解答】(a-b)2+(b-c)2+(c-a)2=a2-2ab+b2+b2-2bc+c2+c2-2ac+a2=2a2+2b2+c2-2ab-2ac-2bc;8.【题文】先化简,再求值:,其中,.【答案】【分析】去括号,合并同类项,再把字母的值代入运算即可.【解答】解:原式,,当,时,原式.9.【题文】考古学家从幼发拉底河附近的一座寺庙里,发掘出数千块泥板书,他们从泥板书中发现美索不达米亚的祭祀已经知道平方表的用法,并能够利用平方表算出任意两个自然数的乘积.例如:计算乘以,祭祀们会按下面的流程操作:第一步:加上,将和除以得;第二步:减去,将差除以得;第三步:查平方表,得的平方是;第四步:查平方表,得的平方是;第五步:减去,得到答案.于是他们便得出.请你利用所学的代数知识,设两个自然数分别为、,对泥板书计算两个自然数乘积的合理性做出解释.【答案】见解析【分析】按照题中所给的步骤进行推导即可.【解答】解:.10.【题文】已知,求代数式的值.【答案】15【分析】原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并后,将已知方程变形后代入计算即可求出值.【解答】解:,,,,∵,∴,∴原式.11.【题文】计算:.【答案】【分析】先利用平方差公式进行计算,然后再利用完全平方公式进行计算即可.【解答】解:原式.12.【题文】先化简,再求值:(a﹣b)2+(2a﹣b)(a﹣2b)-a(3a-b),其中│a-1│+(2+b)2 =0【答案】3b2-6ab,24.【分析】先将原式去括号化简,再由│a-1│+(2+b)2 =0可以求出a、b的值,将a、b的值代入化简后的式子即可.【解答】解:原式=a2-2ab+b2+2a2-4ab-ab+2b2-3a2+ab=3b2-6ab;∵│a-1│+(2+b)2 =0,∴a-1=0,2+b=0,∴a=1,b=-2;将a=1,b=-2代入化简后的式子可得:原式=3×(-2)2-6×1×(-2)=24.13.【题文】已知:a+b=3,ab=2,求的值.【答案】5.【分析】把a+b=3两边平方,再利用完全平方公式展开,再把ab=2代入进行计算即可得解.【解答】解:∵a+b=3,∴(a+b)2=9,即a2+2ab+b2=9,∵ab=2,∴a2+b2=9-2ab=9-2×2=5.14.【题文】先化简,再求值: ,其中. 【答案】原式==-4【分析】原式利用平方差公式及完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣9x2﹣6x﹣1+9x2﹣1=﹣6x﹣2当x=时,原式=﹣1﹣2=﹣3.15.【题文】计算:(m-n)(m+n)+(m+n)2-2m2.【答案】2mn【分析】原式第一项利用平方差根式化简,第二项利用完全平方公式展开,计算即可得到结果.【解答】解:(m-n)(m+n)+(m+n)2-2m2=m2-n2+m2+2mn+n2-2m2=2mn.16.【题文】用乘法公式计算:99.82.【答案】9960.04.【分析】把99.8写成(100-0.2),然后利用完全平方公式计算即可得解;【解答】解:99.82=(100﹣0.2)2=1002﹣2×100×0.20+22=9960.04.17.【题文】已知(x+y)2=25,xy=,求x﹣y的值.【答案】±4【分析】首先,根据完全平方公式将(x+y)2打开,并根据xy的值求出x2+y2;然后,根据完全平方公式求出(x-y)2的值,开平方即可求解.【解答】解:∵(x+y)2=25,∴x2+2xy+y2=25,又∵xy=94,∴x2+y2=412,∴(x-y)2=x2-2xy+y2=412-2×94=16,∴x-y=±4.18.【题文】现有边长分别为a,b的正方形Ⅰ号和Ⅱ号,以及长为a,宽为b的长方形Ⅲ号卡片足够多,我们可以选取适量的卡片拼接成几何图形.(卡片间不重叠、无缝隙)尝试解决:(1)图1是由1张Ⅰ号卡片、1张Ⅱ号卡片、2张Ⅲ号卡片拼接成的正方形,那么这个几何图形表示的等式是______;(2)小聪想用几何图形表示等式(a+b)(2a+b)=2a2+3ab+b2,图2给出了他所拼接的几何图形的一部分,请你补全图形;(3)小聪选取1张Ⅰ号卡片、3张Ⅱ号卡片、4张Ⅲ号卡片拼接成一个长方形,那么拼接的几何图形表示的等式是______;拓展研究:(4)如图3,大正方形的边长为m,小正方形的边长为n,若用m、n表示四个直角三角形的两直角边边长(b>a),观察图案,以下关系式中正确的有______.(填写序号)①ab=;②a+b=m;③a2+b2=m2;④a2+b2=.【答案】(1)(a+b)2=a2+2ab+b2;(2)答案见解析;(3)(a+b)(a+3b)=a2+4ab+3b2;(4)①③.【分析】(1)根据图形,有直接求和间接求两种方法,列出等式即可;(2)根据已知等式画出相应的图形,如图所示;(3)根据题意列出关系式,分解因式后即可得到结果.根据完全平方公式判断即可.【解答】解:(1)这个几何图形表示的等式是(2)如图:(3)拼接的几何图形表示的等式是根据图③得:∴∵∴∴①③正确,故答案为:①③19.【题文】已知,,求下列代数式的值:(1);(2).【答案】(1)10;(2)±8.【分析】(1)把两边平方,利用完全平方公式化简,再将代入计算即可求出值;(2)利用完全平方公式及平方根定义求出的值,原式利用平方差公式分解后,将各自的值代入计算即可求出值.【解答】解:(1)把x+y=4两边平方得:将xy=3代入得:(2)∵∴∴x−y=2或x−y=−2,则原式=(x+y)(x−y)=8或−8.20.【题文】先化简,再求值.,其中=-2,=.【答案】7b2+ab,.【分析】先化简题目中的式子,然后将的值代入即可解答本题;【解答】解:当时,原式。

七(下)第一章《整式的运算》检测题(2)

七(下)第一章《整式的运算》检测题(2)

第一章《整式的运算》综合检测题(2)班级_______学号_______姓名_____________一、选择题(每小题3分,共30分) 1、下列计算错误的是 ( )A 、4x 2·5x 2=20x 4B 、5y 3·3y 4=15y 12C 、(ab 2)3=a 3b 6D 、(-2a 2)2=4a 42、若a+b=-1,则a 2+b 2+2ab 的值为 ( )A 、1B 、-1C 、3D 、-33、若0.5a 2b y 与34a x b 的和仍是单项式,则正确的是 ( ) A 、x=2,y=0B 、x=-2,y=0C 、x=-2,y=1D 、x=2,y=14、如果一个多项式的次数是6,则这个多项式的任何一项的次数都 ( ) A 、小于6 B 、等于6 C 、不大于6D 、不小于65、下列选项正确的是 ( )A 、5ab -(-2ab)=7abB 、-x -x=0C 、x -(m+n -x)=-m -nD 、多项式a 2-21a+41是由a 2,21a ,41三项组成的6、下列计算正确的是 ( )A 、(-1)0=-1B 、(-1)-1=1 C 、2a -3=3a 21D 、(-a 3)÷(-a)7=4a 17、(5×3-30÷2)0= ( )A 、0B 、1C 、无意义D 、158、下列多项式属于完全平方式的是 ( )A 、x 2-2x+4B 、x 2+x+41C 、x 2-xy+y 2D 、4x 2-4x -19、长方形一边长为2a+b ,另一边比它大a -b ,则长方形周长为( ) A 、10a+2bB 、5a+bC 、7a+bD 、10a -b10、下列计算正确的是 ( )A 、10a 10÷5a 5=2a 2B 、x 2n+3÷x n -2=x n+1C 、(a -b)2÷(b -a)=a -bD 、-5a 4b 3c÷10a 3b 3=-21ac 二、填空题:(每小题2分,共20分) 11、a 2+ +b 2=(a+b)2。

专题02整式的运算与因式分解(测试)(原卷版)

专题02整式的运算与因式分解(测试)(原卷版)

第一单元 数与式专题02整式的运算与因式分解(测试)班级:________ 姓名:__________ 得分:_________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 本试卷所选题目为浙江地区中考真题、模拟试题、阶段性测试题.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•金东区期中)下列说法中,正确的是( )A .−2ab 3的系数是﹣2B .32ab 3的次数是6次C .a 2+a ﹣1的常数项是1D .a+b 3是多项式2.(2022春•杭州期中)下列计算正确的是( )A .26÷23=22B .a 3•a 4=a 12C .(﹣3)2×(﹣3)3=35D .x 3•x 5=x 83.(2022春•鹿城区校级期中)下列计算结果正确的是( )A .a 3+a 3=a 6B .(﹣2x )3=﹣6x 3C .2﹣2=﹣4D .(﹣23)4=2124.(2022•下城区校级二模)化简(2a ﹣b )﹣(2a +b )的结果为( )A .2bB .﹣2bC .4aD .﹣4a5.(2022•金华模拟)下列各式能用公式法因式分解的是( )A .14x 2﹣xy +y 2B .x 2+2xy ﹣y 2C .x 2+xy +y 2D .﹣x 2﹣y 26.(2022春•鹿城区校级期中)已知a ,b 为常数,若(x ﹣1)2+bx +c =x 2﹣ax +16,则a +b +c 的值为( )A .18B .17C .16D .157.(2022春•海曙区校级期中)若m ,n 均是正整数,且2m +1×4n =128,则m +n 的所有可能值为( )A .2或3B .3或4C .5或4D .6或58.(2022•萧山区校级一模)已知代数式(x ﹣x 1)(x ﹣x 2)+mx +n 化简后为一个完全平方式,且当x =x 1时此代数式的值为0,则下列式子中正确的是( )A .x 1﹣x 2=mB .x 2﹣x 1=mC .m (x 1﹣x 2)=nD .mx 1+n =x 29.(2022•下城区校级二模)已知两个非负实数a,b满足2a+b=3,3a+b﹣c=0,则下列式子正确的是()A.a﹣c=3B.b﹣2c=9C.0≤a≤2D.3≤c≤4.510.(2022春•江干区校级期中)如图①,现有边长为b和a+b的正方形纸片各一张,长和宽分别为b,a的长方形纸片一张,其中a<b.把纸片Ⅰ,Ⅲ按图②所示的方式放入纸片Ⅱ内,已知a,b满足b=32a,则图②中阴影部分的面积满足的关系式为()A.S1=4S2B.S1=6S2C.S1=8S2D.S1=10S2二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022•海曙区校级模拟)因式分解:(a+b)2﹣9b2=.12.(2022•余姚市一模)已知x2﹣2x=3,则3x2﹣6x﹣4的值为.13.(2022•镇海区一模)当x=5,y=35时,代数式(x+y)2﹣(x﹣y)2的值是.14.(2021•宁波模拟)已知(2x+y)2=58,(2x﹣y)2=18,则xy=.15.(2021•江干区模拟)设M=x+y,N=x﹣y,P=xy.若M=99,N=98,则P=.16.(2021•宁波模拟)如图都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有7个小圆圈,第②个图形中一共有13个小圆圈,第③个图形中一共有21个小圆,…,按此规律排列,则第⑩个图形中小圆圈的个数为.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022•温州二模)(1)计算:20120+√12−4×sin60°;(2)化简:(3+a)(3﹣a)+a(a﹣4).18.(2021•嘉兴一模)(1)计算:√83−√4+20210.(2)因式分解:x3﹣2x2+x.19.(2022•上城区校级二模)已知a+b=8,ab=1,请求出a2+b2与a﹣b的值.20.(2022春•江干区校级期中)先化简,再求值:(1)(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=1;(2)已知y2﹣5y+3=0,求2(y﹣1)(2y﹣1)﹣2(y+1)2+7的值.21.(2019•宁波模拟)如图,大小不一的两个等腰直角三角形用两种方法摆放,其中AB=a,CD=b.设两个三角形的直角边长分别为x和y(x>y>0),图中阴影部分面积为S.(1)用x,y表示S;(2)将(1)中的等式等号右边的代数式因式分解;(3)求S(用a,b表示).22.(2022春•杭州期中)如图所示,有一块边长为(3a+b)米和(a+2b)米的长方形土地,现准备在这块土地上修建一个长为(2a+b)米,宽为(a+b)米的游泳池,剩余部分修建成休息区域.(1)请用含a和b的代数式表示休息区域的面积;(结果要化简)(2)若a=5,b=10,求休息区域的面积:(3)若游泳池面积和休息区域的面积相等,且a≠0,求此时游泳池的长与宽的比值.23.(2020•宁波模拟)【建立模型】问题1 找规律:1,4,7,10,13,16,则第n个数是_____.分析建模:相邻的两个数中,后一个数减去前一个数的差都相等,具有这样规律的问题称为一次等差问题,可用一次函数来解决.我们设第一个数为a1,第n个数为a n,则有a n=a1+(n﹣1)d,其中d为后一个数减去前一个数的差.如问题1的答案为3n﹣2.问题2 找规律:1,4,10,19,31,46,64,…则第n个数是_____.分析建模:相邻的两个数中,后一个数减去前一个数的差并不相等,但再用后一个差减去前一个差所得到的第二次的差都相等.具有这样规律问题称为二次等差问题,可用二次函数来解决,我们设第一个数为a 1,第n 个数为a n ,则有a n =an 2+bn +c ,然后将前三个数代入,通过解方程组可求得a ,b ,c 的值.如问题2的答案为32n 2−32n +1. 【解答问题】(1)找规律:﹣47,﹣34,﹣21,﹣8,5,18,…,则第n 个数是 .(2)找规律:﹣12,﹣10,﹣6,0,8,18,…,则第n 个数是 .(3)第(1)题中的第n 个数和第(2)题中的第n 个数会相同吗?如果有可能相同,请求出n 的值;如果不可能相同,请说明理由.(4)若第(1)题中的第n 个数大于第(2)题中的第n 个数,则n = ;若第(1)题中的第n 个数小于第(2)题中的第n 个数,则n 的取值范围为 .。

中考数学题型集训(2)-整式的运算练习卷及答案.docx

中考数学题型集训(2)-整式的运算练习卷及答案.docx

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】题型集训(2)——整式的运算1.化简:(a+3)(a-2)-a(a-1).解:原式=a2-2a+3a-6-a2+a=2a-6.2.(2019·常州)计算:(x-1)(x+1)-x(x-1).解:原式=x2-1-x2+x=x-1.3.计算:5x2y÷(-13xy)(2xy2)2.解:原式=5x2y÷(-13xy)·(4x2y4)=-15x·(4x2y4)=-60x3y4.4.计算:(6x4-8x3)÷(-2x2)-(3x+2)(1-x).解:原式=-3x2+4x-3x+3x2-2+2x=3x-2.5.计算:(2x+y)2+(x-y)(x+y)-5x(x-y).解:原式=4x2+4xy+y2+x2-y2-5x2+5xy=9xy.6.已知:x2-y2=12,x+y=3,求2x2-2xy的值.解:∵x2-y2=12,∵(x+y)(x-y)=12,∵x+y=3∵,∵x-y=4∵,∵+∵得,2x=7,∵2x2-2xy=2x(x-y)=7×4=28.7.先化简,再求值:(x+1)(x-1)+(2x-1)2-2x(2x -1),其中x=2+1.解:原式=x2-1+4x2-4x+1-4x2+2x=x2-2x,把x=2+1代入,得:原式=(2+1)2-2(2+1)=3+22-22-2=1.8.(2019·贵阳)如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.解:(1)S=ab-a-b+1;(2)当a=3,b=2时,S=6-3-2+1=2.9.(2019·河北)已知:整式A=(n2-1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-12n B 勾股数组Ⅰ/8勾股数组Ⅰ35/解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∵B=n2+1,当2n=8时,n=4,∵n2+1=42+1=15;当n2-1=35时,n2+1=37.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

整式运算习题大全

整式运算习题大全

整式运算习题大全整式是指由常数、变量和它们的乘积及其和、差所组成的代数表达式。

整式运算就是对整式进行加、减、乘和除的运算。

下面是一些整式运算的习题:1. 习题一:对下列整式进行加法运算。

(1) 3x^2 + 2x - 5 + 2x^2 - 3x + 7(2) 4y^3 - 2y^2 + 3y - 1 + 5y^3 + 2y^2 - 4y + 22. 习题二:对下列整式进行减法运算。

(1) 5a^2 - 3a + 2 - (2a^2 - 4a + 1)(2) 6b^3 + 2b - 3 - (4b^3 + 3b - 2)3. 习题三:对下列整式进行乘法运算。

(1) (x + 3)(x - 2)(2) (2y - 1)(3y + 2)4. 习题四:对下列整式进行除法运算。

(1) (4x^2 - 3x + 2) ÷ (2x - 1)(2) (6y^3 + 2y - 3) ÷ (3y + 1)5. 习题五:对下列整式进行混合运算。

(1) 2x^2 + 3x - 1 - (x^2 - 4x + 5) + 3(x - 2)(2) 5y^3 - 2y^2 + y - 1 + (2y^3 + 3y - 2) - 2(y - 3)6. 习题六:将下列整式进行合并同类项。

(1) 4x^2 + 2x - 3 + 2x^2 + 3x - 1(2) 3y^3 - 5y^2 + 2y - 1 + 2y^3 - y^2 + 3y + 27. 习题七:将下列整式进行分解。

(1) 3x^2 + 5x(2) 2y^3 + 4y^2 - 6y8. 习题八:将下列整式进行提取公因式。

(1) 6x^2 - 9x^3 + 12x(2) 8y^2 - 4y^3 + 10y^4这些习题涵盖了整式运算的基本内容,通过解题可以巩固整式运算的方法和技巧,并加深对整式的理解。

希望这些习题对你有所帮助!。

整式的基本概念及加减运算练习(6套)

整式的基本概念及加减运算练习(1)1.下列代数式中,书写规范的是( )A .3⨯a ;B .a 30⋅;C .2312a ; D .()a 47÷2.下列说法中正确的是( )。

A .2t 不是整式 B . y x 33-的次数是4 C .ab 4与xy 4是同类项 D .y1是单项式3.下列各式中是多项式的是 ( ) A .21-B .y x +C .3ab D .22b a -4、若A 是五次多项式,B 也是五次多项式,则A+B 一定是( ) A.五次式项式 B.十次多项式 C.不高于五次的多项式 D.单次项5、下列判断:(1)π2xy-不是单项式;(2)3y x -是多项式;(3)0不是单项式;(4)xx +1是整式,其中正确的有( )A :1个B :2个C :3个D :4个 6、下列说法正确的是( ) A.32xyz 与32xy 是同类项 B.x1和21x 是同类项C.0.523y x 和732y x 是同类项D.5n m 2与-42nm 是同类项 7、将多项式a a a -++-132按字母a 升幂排列正确的是( )A 、123+--a a a B 、132++--a a a C 、a a a --+231 D 、321a a a +-- 8、已知622x y 和-313mn xy 是同类项,则29517m m n --的值是 ( )A :-1B :-2C :-3D :-4 9、单项式-652y x 的系数是 ,次数是 ;10、多项式2-152xy -4y x 3是 次 项式,它的项数为 ,次数为 ;11、单项式z y x n 123-是关于x 、y 、z 的五次单项式,则n ;12、关于x 的多项式b x x x a b-+--3)4(是二次三项式,则a= ,b= ; 13、请任意写出3231yz x 的两个同类项: , ;14、如果5324331+-kabb a 是五次多项式,那么k= ;15、2x -3是由_______和________两项组成; 16、如果52)2(4232+---+-x x q x xp 是关于x 的五次四项式,那么p+q=17、化简下列各式:(1)a a a a 742322-+- ⑵、67482323---++-a a a a a a(3)()()233233543x x x x +---+ (4)2237(43)2x x x x ⎡⎤----⎣⎦;(5))522(2)624(22-----a a a a (6) ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---222321253x x x x(7)2a -[-4ab +(ab -2a )]-2ab (8)212a -[21(ab -2a )+4ab ]-21ab18、化简求值: ⑴),23(31423223x x x x x x -+--+其中x =-3⑵()()222234x y xy x y xy x y +---,其中1,1x y ==-(3)已知a=1,b=—1,求多项式()()3222332bab b a abba --⎪⎭⎫⎝⎛-+-2122的值.整式的基本概念及加减运算练习(2)1、下列式子中,c, 12,3ab,m+2n,2x-3=1,s t整式的个数为( )A 、3B 、4C 、5D 、6 2、下面说法中,正确的是( ) A .xy +1是单项式 B .xy1是单项式 C .31+xy 是单项式 D .3xy 是单项式3、下面说法中正确的是( )A .一个代数式不是单项式,就是多项式B .单项式是整式C .整式是单项式D .以上说法都不对 4、下列合并同类项中,错误的个数有( )(1)321x y -=,(2)224x x x +=,(3)330mn mn -=,(4)2245ab ab ab -= (5)235347m m m +=A 、4个B 、3个C 、2个D 、1个 5、多项式223x x --中的项分别是( )A 、2x 2,x,3 B 、2x 2,-x,-3 C 、2x 2,x,-3 D 、2x 2,-x,3 6、下列各式的变形正确的是 ( )A 、22(22)22x x y x x y --+=-++ B 、()m n m n m n m n -+-=-+-C 、(53)(2)22x x y x y x y --+-=-+D 、(3)3ab ab --+=7、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元. A 、4m+7n. B 、28mn. C 、7m+4n. D 、11mn. 8、下列计算正确的是( )A 、2x +3y =5xyB 、-2ba 2+a 2b =-a 2bC 、2a 2+2a 3=2a 5D 、4a 2-3a 2=19、单项式:-的系数是____,次数是____。

代数式及整式运算精练试题(2)

代数式及整式运算1.下列运算正确的是( D )A .a 2+a 2=a 4B .a 5-a 3=a 2C .a 2·a 2=2a 2D .(a 5)2=a 102.单项式2a 的系数是( A )A .2B .2aC .1D .a3.若单项式2x 3ya +b与-13x a -1y 5是同类项,则a ,b 的值分别为( C )A .a =3,b =1B .a =-3,b =1C .a =4,b =1D .a =-3,b =-14.定义一种运算☆,其规则为a☆b=1a +1b,根据这个规则,计算2☆3的值是( A )A .56B .15C .5D .65.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则最后的单价是( B )A .a 元B .0.99a 元C .1.21a 元D .0.81a 元6.已知x 2-2=y ,则x(x -3y)+y(3x -1)-2的值是( B )A .-2B .0C .2D .47.当x =2时,代数式13ax 3-5bx +4的值是9,则当x =-2时,这个代数式的值是( C )A .9B .1C .-1D .-98.若抛物线y =x 2-x -1与x 轴的交点坐标为(m ,0),则代数式m 2-m +2 016的值为( D )A .2 014B .2 015C .2 016D .2 0179.若3x=4,9y=7,则3x -2y的值为( A )A .47 B .74 C .-3 D .2710.体育委员小金带了500元钱去买体育用品,已知一个足球x 元,一个篮球y 元,则代数式500-3x -2y 表示的实际意义是__体育委员小金购买了3个足球,2个篮球后剩余的钱__.11.已知:(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为__12__. 12.先化简,再求值.(1) (m -n)2-m(m -2n),其中m =3,n =2;解:原式=m 2-2mn +n 2-m 2+2mn =n 2.当m =3,n =2时,原式=(2)2=2; (2)4x·x+(2x -1)(1-2x),其中x =140;解:原式=4x 2-(4x 2-4x +1)=4x 2-4x 2+4x -1=4x -1.当x =140时,原式=4×140-1=-910;(3) (a +b)(a -b)-b(a -b),其中,a =-2,b =1;解:原式=a 2-b 2-ab +b 2=a 2-ab.当a =-2,b =1时,原式=4+2=6;(4) (x +y)(x -y)-x(x +y)+2xy ,其中x =(3-π)0,y =2.解:原式=x 2-y 2-xy -x 2+2xy =xy -y 2.当x =(3-π)0=1,y =2时,原式=1×2-22=-2.13.如图,边长为(m +3)的正方形纸片,剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( C )A .m +3B .m +6C .2m +3D .2m +614.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是( C )A .14B .16C .8+5 2D .14+ 215.如图(1),将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”图案,如图(2)所示,再将剪下的两个小矩形拼成一个新的矩形,如图(3)所示,则新矩形的周长可表示为( B )A .2a -3bB .4a -8bC .2a -4bD .4a -10b16.当s =t +12时,代数式s 2-2st +t 2的值为__14__.17.先化简,再求值:(x +y)(x -y)-(4x 3y -8xy 3)÷2xy,其中x =-1,y =33. 解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =-1,y =33时,原式=-(-1)2+3×⎝ ⎛⎭⎪⎫332=0.18.已知x -y =3,求代数式(x +1)2-2x +y(y -2x)的值. 解:原式=4.19.如图1,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S 1,图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1、S 2; (2)请写出上述过程所揭示的乘法公式.解:(1)S 1=a 2-b 2,S 2=12(2b +2a)(a -b)=(a +b)(a -b);(2)(a +b)(a -b)=a 2-b 2.20.已知多项式A =(x +2)2+(1-x)(2+x)-3. (1)化简多项式A ;(2)若(x +1)2=6,求A 的值.解:(1)A =(x 2+4x +4)+(2+x -2x -x 2)-3=x 2+4x +4+2+x -2x -x 2-3=3x +3; (2)∵(x+1)2=6,∴x +1=±6,∴A =3(x +1)=±3 6.。

专题02整式的运算(基础巩固练习) 解析版02

2021年中考数学专题02 整式的运算(基础巩固练习,共40个小题)一、选择题(共15小题):1.单项式﹣3ab的系数是()A.3 B.﹣3 C.3a D.﹣3a 【答案】B【解析】根据单项式系数的定义即可求解.解:单项式﹣3ab的系数是﹣3.故选:B.2.在式子ab3,﹣4x,−75abc,π,m−n2,0.81,1y,0中,单项式共有()A.5个B.6个C.7个D.8个【答案】B【解析】根据数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式进行分析即可.解:式子ab3,﹣4x,−75abc,π,0.81,0是单项式,共6个,故选:B.3.计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y2【答案】A【解析】利用完全平方公式计算得到结果,即可做出判断.解:(2x﹣y)2=4x2﹣4xy+y2,故选:A.4.若x+y=2,z﹣y=﹣3,则x+z的值等于()A.5 B.1 C.﹣1 D.﹣5【答案】C【解析】已知两等式左右两边相加即可求出所求.解:∵x+y=2,z﹣y=﹣3,∴(x+y)+(z﹣y)=2+(﹣3),整理得:x+y+z﹣y=2﹣3,即x+z=﹣1,则x+z的值为﹣1.故选:C.5.下列计算正确的是()A.a2•a3=a6B.(x+y)2=x2+y2C.(a5÷a2)2=a6D.(﹣3xy)2=9xy2【答案】C【解析】根据同底数幂的乘法,完全平方公式,同底数幂的除法,幂的乘方与积的乘方法则逐项判断即可.解:A、a2•a3=a5,故选项错误;B、(x+y)2=x2+y2+2xy,故选项错误;C、(a5÷a2)2=a6,故选项正确;D、(﹣3xy)2=9x2y2,故选项错误;故选:C.6.下列运算正确的是()A.a2•a3=a6B.(a+b)2=a2+b2C.(﹣2a)3=﹣8a3D.a2+a2=a4【答案】C【解析】利用同底数幂的乘法、积的乘方的运算法则、合并同类项法则和完全平方公式分别化简求出答案即可判断.解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意;C、(﹣2a)3=﹣8a3,原计算正确,故此选项符合题意;D、a2+a2=2a2,原计算错误,故此选项不符合题意.故选:C.7.下列计算正确的是()A.a2•a3=a6B.a(a+1)=a2+aC.(a﹣b)2=a2﹣b2D.2a+3b=5ab【答案】B【解析】利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、a(a+1)=a2+a,原计算正确,故此选项符合题意;C、(a﹣b)2=a2﹣2ab+b2,原计算错误,故此选项不符合题意;D、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.8.下列计算正确的是()A.3a+2b=5ab B.(﹣2a)2=﹣4a2C.(a+1)2=a2+2a+1 D.a3•a4=a12【答案】C【解析】根据完全平方公式,合并同类项、积的乘方、同底数幂的乘法的运算法则逐一计算可得.解:A 、3a 与2b 不是同类项,不能合并,原计算错误,故此选项不符合题意;B 、(﹣2a )2=4a 2,原计算错误,故此选项不符合题意;C 、(a+1)2=a 2+2a+1,原计算正确,故此选项符合题意;D 、a 3•a 4=a 7,原计算错误,故此选项不符合题意;故选:C .9.下列计算正确的是( )A .x 2•x 3=x 6B .xy 2−14xy 2=34xy 2C .(x+y )2=x 2+y 2D .(2xy 2)2=4xy 4 【答案】B【解析】根据完全平方公式,同底数幂的乘法、合并同类项、积的乘方的运算法则分别进行计算后,可得到正确答案.解:A 、x 2•x 3=x 5,原计算错误,故此选项不符合题意;B 、xy 2−14xy 2=34xy 2,原计算正确,故此选项符合题意;C 、(x+y )2=x 2+2xy+y 2,原计算错误,故此选项不符合题意;D 、(2xy 2)2=4x 2y 4,原计算错误,故此选项不符合题意.故选:B .10.下列运算一定正确的是( )A .a 2+a 2=a 4B .a 2•a 4=a 8C .(a 2)4=a 8D .(a+b )2=a 2+b 2【答案】C【解析】根据合并同类项的法则,同底数幂的乘法法则,幂的乘方法则以及完全平方公式逐一计算判断即可.解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2•a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.(9x﹣3)﹣2(x+1)的结果是()11.化简13A.2x﹣2 B.x+1 C.5x+3 D.x﹣3【答案】D【解析】原式去括号合并即可得到结果.解:原式=3x﹣1﹣2x﹣2=x﹣3,故选:D.12.(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y2【答案】C【解析】直接利用平方差公式计算得出答案.解:(1+y)(1﹣y)=1﹣y2.故选:C.13.下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1 D.(﹣2ab)2=4a2b2【答案】D【解析】根据合并同类项法则、单项式乘以单项式、完全平方公式、幂的乘方和积的乘方分别求出每个式子的值,再进行判断即可.解:A、结果是2a2,故本选项不符合题意;B、结果是2a5,故本选项不符合题意;C、结果是a2+2a+1,故本选项不符合题意;D、结果是4a2b2,故本选项符合题意;故选:D.14.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10 B.15 C.18 D.21【答案】B【解析】根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+3+4+…+n,据此可得第⑤个图案中黑色三角形的个数.解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,…∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.15.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18 B.19 C.20 D.21【答案】C【解析】根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为2n+n+2,据此求解可得.解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.二、填空题(共15小题):16.计算:(a+1)2﹣a2=.【答案】2a+1【解析】原式利用完全平方公式化简,合并即可得到结果.解:原式=a2+2a+1﹣a2=2a+1,故答案为:2a+117.已知ab=a+b+1,则(a﹣1)(b﹣1)=.【答案】2【解析】将ab=a+b+1代入原式=ab﹣a﹣b+1合并即可得.解:当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为:2.18.已知a m=3,a n=2,则a2m﹣n的值为.【答案】4.5【解析】首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m﹣n的值为多少即可.解:∵a m=3,∴a2m=32=9,∴a2m﹣n=a2ma n =92=4.5.故答案为:4.5.19.化简:(7a﹣5b)﹣(4a﹣3b)=.【答案】3a﹣2b【解析】先去括号,再合并同类项即可得.解:原式=7a﹣5b﹣4a+3b=3a﹣2b,故答案为:3a﹣2b.20.若a+b=1,则a2﹣b2+2b﹣2=.【答案】-1【解析】由于a+b=1,将a2﹣b2+2b﹣2变形为含有a+b的形式,整体代入计算即可求解.解:∵a+b=1,∴a2﹣b2+2b﹣2=(a+b)(a﹣b)+2b﹣2=a﹣b+2b﹣2=a+b﹣2=1﹣2=﹣1.故答案为:﹣1.21.已知a=7﹣3b,则代数式a2+6ab+9b2的值为.【答案】49【解析】先根据完全平方公式变形,再代入,即可求出答案.解:∵a=7﹣3b,∴a+3b=7,∴a2+6ab+9b2=(a+3b)2=72=49,故答案为:49.22.设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=.【答案】−34【解析】根据完全平方公式得到(x+y)2=x2+2xy+y2=1,(x﹣y)2=x2﹣2xy+y2=4,两式相减即可求解.解:法一:(x+y )2=x 2+2xy+y 2=1,(x ﹣y )2=x 2﹣2xy+y 2=4,两式相减得4xy =﹣3,解得xy =−34,则P =−34.法二:由题可得{x +y =1x −y =2, 解之得:{x =32y =−12, ∴P =xy =−34,故答案为:−34.23.若m −1m =3,则m 2+1m 2= .【答案】11【解析】根据完全平方公式,把已知式子变形,然后整体代入求值计算即可得出答案. 解:∵(m −1m )2=m 2﹣2+1m 2=9,∴m 2+1m 2=11,故答案为11.24.若2x =3,2y =5,则2x+y = .【答案】15【解析】由2x=3,2y=5,根据同底数幂的乘法可得2x+y=2x•2y,继而可求得答案.解:∵2x=3,2y=5,∴2x+y=2x•2y=3×5=15.故答案为:15.25.已知m+n=12,m﹣n=2,则m2﹣n2=.【答案】24【解析】根据平方差公式解答即可.解:∵m+n=12,m﹣n=2,∴m2﹣n2=(m+n)(m﹣n)=2×12=24,故答案为:2426.若a−1a =√6,则a2+1a2值为.【答案】8【解析】根据分式的运算法则即可求出答案.解:∵a−1a=√6∴(a−1a)2=6∴a2﹣2+1a2=6∴a2+1a2=8故答案为:827.计算:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2=.【答案】﹣6b2﹣11c2+16bc+16【解析】把前两项整理成4与2b﹣3c的和与差的相乘的形式,利用平方差公式计算,(b﹣c)2利用完全平方公式计算,然后再利用合并同类项的法则计算即可.解:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2,=[(2b﹣3c)+4][﹣(2b﹣3c)+4]﹣2(b﹣c)2,=16﹣(2b﹣3c)2﹣2(b﹣c)2,=16﹣4b2+12bc﹣9c2﹣2b2+4bc﹣2c2,=﹣6b2﹣11c2+16bc+16.28.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为.【答案】10【解析】直接利用完全平方公式将原式变形,进而求出答案.解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.29.若A=(2+1)(22+1)(24+1)(216+1)(232+1),则A的个位数字是.【答案】5【解析】将A进行化简,确定出个位数字即可.解:A=(2﹣1)(2+1)(22+1)(24+1)(216+1)(232+1)=(22﹣1)(22+1)(24+1)(216+1)(232+1)=(24﹣1)(24+1)(216+1)(232+1)=(216﹣1)(216+1)(232+1)=(232﹣1)(232+1)=264﹣1,∵21=2,22=4,23=8,24=16,∴个位上数字以2,4,8,6循环,∵64÷4=16,∴个位上数字为6,则A 个位数字为5,故答案为:530.已知m =154344,n =54340,那么2016m ﹣n = . 【答案】1【解析】根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积,然后化简从而得到m =n ,再根据任何非零数的零次幂等于1解答.解:∵m =154344=34⋅54344=54340, ∴m =n ,∴2016m ﹣n =20160=1.故答案为:1.三、解答题(共9小题):31.先化简,再求值:(x+1)2﹣x (x+1),其中x =2.【答案】3【解析】先根据完全平方公式和单项式乘以多项式法则算乘法,再合并同类项,最后代入求出即可.解:(x+1)2﹣x(x+1)=x2+2x+1﹣x2﹣x=x+1,当x=2时,原式=2+1=3.32.化简:(a+b)2﹣b(2a+b).【答案】a2【解析】根据单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.进行求解即可.解:原式=a2+2ab+b2﹣2ab﹣b2=a2.33.化简:3(x2+2)﹣(x﹣1)2.【答案】2x2+2x+5【解析】原式利用完全平方公式化简,去括号合并即可得到结果.解:原式=3x2+6﹣(x2﹣2x+1)=3x2+6﹣x2+2x﹣1=2x2+2x+5.34.先化简,再求值:a(a+2b)﹣2b(a+b),其中a=√5,b=√3.【答案】-1【解析】根据整式的混合运算顺序进行化简,再代入值求解即可.解:原式=a2+2ab﹣2ab﹣2b2=a2﹣2b2当a=√5,b=√3时,原式=(√5)2﹣2×(√3)2=5﹣6=﹣1.35.已知x=3,将下面代数式先化简,再求值.(x﹣1)2+(x+2)(x﹣2)+(x﹣3)(x﹣1).【答案】9【解析】原式利用完全平方公式,平方差公式,以及多项式乘多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.解:(x﹣1)2+(x+2)(x﹣2)+(x﹣3)(x﹣1)=x2+1﹣2x+x2﹣4+x2﹣x﹣3x+3=3x2﹣6x将x=3代入,原式=27﹣18=9.36.先化简,再求值:5x2+4﹣(3x2+5x)﹣(2x2﹣6x+5).其中x=﹣3.【答案】-4【解析】原式去括号、合并同类项化简后,再把x的值代入计算可得.解:原式=5x2+4﹣3x2﹣5x﹣2x2+6x﹣5=(5﹣3﹣2)x2+(﹣5+6)x+4﹣5=x﹣1当x=﹣3时,原式=﹣3﹣1=﹣4.37.已知:|m﹣1|+√n+2=0,(1)求m,n的值;(2)先化简,再求值:m(m﹣3n)+(m+2n)2﹣4n2.【答案】(1)m=1,n=﹣2;(2)0.【解析】(1)根据非负数的和为0的性质进行解答便可;(2)根据整式乘法法则,完全平方公式计算,再合并同类项后,最后再代值计算.解:(1)根据非负数得:m﹣1=0且n+2=0,解得:m=1,n=﹣2,(2)原式=m2﹣3mn+m2+4mn+4n2﹣4n2=2m2+mn,当m=1,n=﹣2,原式=2×1+1×(﹣2)=0.38.计算:(1)π0+(1)﹣1﹣(√3)2;2(2)(x﹣1)(x+1)﹣x(x﹣1).【答案】(1)0;(2)-1.【解析】根据零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则准确计算即可;)﹣1﹣(√3)2=1+2﹣3=0;解:(1)π0+(12(2)(x﹣1)(x+1)﹣x(x﹣1)=x2﹣1﹣x2+x=x﹣1;39.已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.【答案】(1)﹣a2+5ab+14;(2)3.【解析】(1)由题意确定出A即可;(2)利用非负数的性质求出a与b的值,代入计算即可求出值.解:(1)由题意得:A=2(﹣4a2+6ab+7)+(7a2﹣7ab)=﹣8a2+12ab+14+7a2﹣7ab=﹣a2+5ab+14;(2)∵|a+1|+(b﹣2)2=0,∴a=﹣1,b=2,则原式=﹣1﹣10+14=3.。

第一章 整式运算2

4a2-25b2 5 . (5b+2a) (2a-5b) = (2a) 2-(5b )2 = __________ 4b2-25 6 . (-2b-5) (-2b+5) = ( -2b ) 2-( 5 )2 = __________ 1-16x2 7 . (-1+4x) (-1-4x) = ( -1) 2-( 4X)2 = __________ 问题:利用平方差公式计算的关键是 准确确定a和b _
2 2
4 2 3. ( 2 x )( 2 x ) 4x y 9 a3 a3 b 2 )(____ b 2 ) a 6 b 4 4. (____
2
2 y 3
2 y 3
x+y)2 ( z )2 5. ( x y z )( x y z ) (
将x+y看作整体,则相同项为 ? ,相反项为 ? 。
2 1 2 ⑵ 50 3 ×49 3 = (50+ 3 )(50- 2)=2499 5 3 9
⑶ 59.8×60.2=(60-0.2)(60+0.2)=3599.96
⑷ 5678×5680-56792 =(5679-1)(5679+1)-56792
= 56792-1- 56792
=-1
下列各式的解法中,哪种简单?请选择: 辨析与反思
a
a b a b a b
2
2
观察与思考
1.计算下列各组算式,并观察它们的共同特点:
63 64
143 144
6399 6400
2.从以上的过程中,你发现了什么规律? 3.请用字母表示这一规律,你能说明它的正确 性吗?
a 1 a 1 a
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档