2001—2007年天津市大学数学竞赛(答案)
天津市大学生数学竞赛

2007年天津市大学数学竞赛试题(理工类)一、填空:(本题15分,每空3分。
请将最终结果填在相应的横线上面。
) 1. 设函数()()⎰⋅=xt at x f sin 02d sin ,()43x x x g +=,且当x →0时,()x f 与()x g 为等价无穷小,则a = 。
2. 设函数xx y 2=在0x x =点处取得极小值,则=0x 。
3.()=+⎰+∞121d x x x。
4. 曲线⎪⎩⎪⎨⎧=+++=+022401223:L 22222z y--z y x z--y x 在点(1,1,2)处的切线方程为 。
5.=+⎰⎰1132d 1d x y yxy x 。
二、选择题:(本题15分,每小题3分。
每个小题的四个选项中仅有一个是正确的,把你认为“正确选项”前的字母填在括号内。
选对得分;选错、不选或选出的答案多于一个,不得分。
)1. 设函数()x f 连续,则下列函数中必为偶函数的是( ) (A )()()[]⎰⋅-+xt t f t f t 0d ; (B )()()[]⎰⋅--xt t f t f t 0d ;(C )()⎰x t tf 02d ; (D )()[]⎰xt t f 02d 。
2. 设函数()x f 具有一阶导数,下述结论中正确的是( ) (A )若()x f 只有一个零点,则()x f '必至少有两个零点; (B )若()x f '至少有一个零点,则()x f 必至少有两个零点; (C )若()x f 没有零点,则()x f '至少有一个零点; (D )若()x f '没有零点,则()x f 至多有一个零点。
3. 设函数()x f 在区间()+∞,0内具有二阶导数,满足()00=f ,()0<''x f ,又b a <<0,则当b x a <<时恒有( )(A )()()a xf x af >; (B )()()b xf x bf >; (C )()()b bf x xf >; (D )()()a af x xf >。
大学生数学知识竞赛试题及答案【最新】

趣味数学知识竞赛复习题一、填空题1、(苏步青)是国际公认的几何学权威,我国微分几何派的创始人。
2、(华罗庚)是一个传奇式的人物,是一个自学成才的数学家。
3、编有《三角学》,被称为“李蕃三角”且自称为“三书子”的是(李锐夫)。
4、世界上攻克“哥德巴赫猜想”的第一个人是(陈景润)。
5、(姜立夫)是现代数学在中国最早而又最富成效的播种人”,这是《中国大百科全书》和《中国现代数学家传》对他的共同评价。
6. 设有n个实数,满足|xi|<1(I=1,2,3,…,n), |x1|+|x2|+…+|xn|=19+|x1+x2+…+xn| ,则n的最小值207. 三角形的一个顶点引出的角平分线,高线及中线恰将这个顶点的角四等分,则这个顶角的度数为___90° ___8. 某旅馆有2003个空房间,房间钥匙互不相同,来了2010们旅客,要分发钥匙,使得其中任何2003个人都能住进这2003个房间,而且每人一间(假定每间分出的钥匙数及每人分到的钥匙数都不限),最少得发出_16024______把钥匙.9. 在凸1900边形内取103个点,以这2003个点为顶点,可将原凸1900边形分割成小三角形的个数为______2104 _____.10. 若实数x满足x4+36<13x2,则f(x)=x3-3x的最大值为______18_____11 ."我买鸡蛋时,付给杂货店老板12美分,"一位厨师说道,"但是由于嫌它们太小,我又叫他无偿添加了2只鸡蛋给我。
这样一来,每打(12只)鸡蛋的价钱就比当初的要价降低了1美分。
" 厨师买了_18只鸡蛋?12.已知f(x)∈[0,1],则y=f(x)+1的取值范围为 ___[7/9,7/8]____13. 已知函数f(x)与g(x)的定义域均为非负实数集,对任意的x≥0,规定f(x)*g(x)=min{f(x),g(x)}.若f(x)=3-x,g(x)=,则f(x)*g(x)的最大值为____(2√3-1) _____ 14.已知a,b,cd∈N,且满足342(abcd+ab+ad+cd+1)=379(bcd+b+d),设M=a×103+b×102+c×10+d,则M的值为______ 1949 ___.15. 用E(n)表示可使5k是乘积112233…nn的约数为最大的整数k,则E(150)=__ 2975_________16. 从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有_2500________种不同的取法.17. 从正整数序列1,2,3,4,…中依次划去3的倍数和4的倍数,但是其中是5的倍数均保留,划完后剩下的数依次构成一个新的序列:A1=1,A2=2,A3=5,A4=7,…,则A2003的值为____3338 _____.18. .连接凸五边形的每两个顶点总共可得到十条线段(包括边在内),现将其中的几条线段着上着颜色,为了使得该五边形中任意三个顶点所构成的三角形都至少有一条边是有颜色的则n的最小值是_419. 已知x0=2003,xn=xn-1+ (n>1,n∈N),则x2003的整数部分为_______2003___21. 已知ak≥0,k=1,2,…,2003,且a1+a2+…+a2003=1,则S=max{a1+a2+a3,a2+a3+a4,…, a2001+a2002+a2003}的最小值为________3/2007 _.22. 对于每一对实数x,y,函数f满足f(x)+f(y)=f(x+y)-xy-1,若f(1)=1,那么使f(n)=n(n≠1)的整数n共有_1个.23.在棱长为a的正方体内容纳9个等球,八个角各放一个,则这些等球最大半径是____. (√3-3/2)a ___24.已知a,b,c都不为0,并且有sinx=asin(y-z),siny=bsin(z-x),sinz=csin(x-y).则有ab+bc+ca=__-1 _____.二、选择题1、被誉为中国现代数学祖师的是(1、C )。
2023年天津市高等数学竞赛真题答案经管类

2023年 天津市大学数学竞赛试题参照解答 (经管类)一. 填空题(本题15分,每题3分):1. 设()f x 是持续函数, 且0()lim41cos x f x x →=-, 则01()lim 1x xf x x →⎛⎫+= ⎪⎝⎭ 2e .2. 设223()2x f x ax b x +=++- , 若 lim ()0,x f x →∞= 则 a =2,- b =4.- 3.1e ln d x x x x ⎛⎫+= ⎪⎝⎭⎰ e ln .xx C + 4. 设(,)f x y 是持续函数, 且(,)(,)d d ,Df x y xy f x y x y =+⎰⎰其中D 由x 轴、y 轴以及直线1x y +=围成, 则(,)f x y =1.12xy +5.ln 4ln 2x =⎰.6π二. 选择题(本题15分,每题3分):1. 设()(2)ln(1),f x x x =+- 则()f x 在0x =处(A) (0)2f '=-, (B) (0)0f '=, (C) (0)2f '=, (D) 不可导. 答: (A)2. 设函数()y f x =具有二阶导数, 且满足方程sin e 0.x y y '''+-=已知0()0,f x '=则(A) ()f x 在0x 旳某个邻域中单调增长, (B) ()f x 在0x 旳某个邻域中单调增少,(C) ()f x 在0x 处获得极小值, (D) ()f x 在0x 处获得极大值. 答: ( C)3. 图中曲线段旳方程为()y f x =, 函数()f x 在区间[0,]a 上有持续旳导数, 则积分()d a x f x x '⎰表达(A) 直角三角形AOB 旳面积, (B) 直角三角形AOC 旳面积, (C) 曲边三角形AOB 旳面积, (D) 曲边三角形AOC 旳面积答: (D)4. 设在区间[,]a b 上旳函数()0,f x >且 ()0,f x '< ()0.f x ''> 令 1()d ,b aS f x x =⎰2()(),S f b b a =- 31[()()](),2S f a f b b a =+- 则 (A) 123,S S S << (B) 312,S S S << (C) 213,S S S << (D) 231.S S S << 答: (C )5. 设函数(,)f x y 持续, 且011d (,)d d (cos ,sin )d b dx acx f x y x f r r r r θθθ-+=⎰⎰⎰⎰, 则,,,a b c d 取值为(A) 1,,,1;2sin cos a b c d ππθθ====+(B) 1,,,1;2sin cos a b c d ππθθ====-(C) 0,,sin cos ,1;2a b c d πθθ===+=(D) 0,,sin cos , 1.2a b c d πθθ===-=答: (B)三. (7分) 设函数()f x 在点0x 处可微, 求极限 002lim cos ()cos ().n n f x f x n →∞⎡⎤--⎢⎥⎣⎦解 由导数旳定义和复合函数旳求导法则00002cos ()cos ()2lim cos ()cos ()(2)lim 2n n f x f x n n f x f x n n→∞→∞--⎡⎤--=-⋅⎢⎥⎣⎦-000(2)[cos ()]2sin()().x x f x f x f x =''=-⋅=⋅四. (7分) 设函数()f x 在(,)-∞+∞上二阶可导,且0()lim0x f x x→=,记10()()x f xt dt ϕ'=⎰,求)(x ϕ旳导数,并讨论)(x ϕ'在0x =处旳持续性. 解 由已知旳极限知(0)0,(0)0,f f '== 从而有 10(0)(0)d 0.f t ϕ'==⎰当 0x ≠时, 1100011()()()()d()()d ,x f x x f x t dt f x t x t f u u x x x ϕ'''====⎰⎰⎰从而有 (),0()0,0.f x x x xx ϕ⎧≠⎪=⎨⎪=⎩由于()lim ()lim0(0),x x f x x xϕϕ→→===因此, ()x ϕ在0x =处持续. 当 0x ≠时, 2()()(),xf x f x x x ϕ'-'=在0x =处, 由(0)0,ϕ= 有200()(0)()()1(0)limlimlim (0)22x x x x f x f x f xx x ϕϕϕ→→→'-'''==== 因此,2()(),0()1(0),0.2xf x f x x x x f x ϕ'-⎧≠⎪⎪'=⎨⎪''=⎪⎩而20000()()()()lim ()limlim lim lim 2x x x x x f x f x f x f x x x x xx ϕ→→→→→''''=-=- 001()1()(0)1lim lim (0)(0),222x x f x f x f f x x ϕ→→'''-'''==== 故 ()x ϕ'在0x =处持续.五. (7分) 已知函数()((,))y f x x =∈-∞+∞旳导函数()y f x ''=是三次多项式,其图像如下图所示:(Ⅰ)有关函数()x f y =,填写下表:(Ⅱ)若还懂得()x f y =旳极大值为6,点()2,2在曲线()x f y =上,试求出()x f y =旳体现式. 解(Ⅰ)(Ⅱ)设32,y ax bx cx d '=+++ 则由(0)0,(2)0,(2)0,y y y '''=-== 得0,0,4,d b c a ===- 故34,y ax ax '=- 从而422.4a y x ax m =-+ 再由(0)6,(2)2,y y == 得 1, 6.a m == 因此 4212 6.4y x x =-+ 六. (7分)设函数()y y x =在(,)-∞+∞上可导, 且满足22,(0)0.y x y y '=+=(Ⅰ) 研究()y x 在区间(0,)+∞旳单调性和曲线()y y x =旳凹凸性.(Ⅱ) 求极限 30()lim.x y x x →解 (Ⅰ) 当0x >时, 有220,y x y '=+>故 ()y x 在区间(0,)+∞单调增长. 从而当0x >时, 22y x y '=+也单调增长. 可见, 曲线()y y x =在区间(0,)+∞向下凸.(或当0x >时, 可得222222()0.y x y y x y x y '''=+⋅=++> 可见, 曲线()y y x =在区间(0,)+∞向下凸. ) (Ⅱ) 由题设知, (0)(0)0.y y '== 应用洛必达法则22322000()()lim lim lim 33x x x y x y x x y x x x→→→'+== []22011111lim (0).33333x y y x →⎛⎫'=+=+= ⎪⎝⎭七. (7分) 设()f x 在[0,1]上具有持续导数, 且0()1,(0)0.f x f '<≤= 试证211300()d ][()]d .f x x f x x ⎡⎤≥⎢⎥⎣⎦⎰⎰证 令 2300()()d [()]d ,x xF x f t t f t t ⎡⎤=-⎢⎥⎣⎦⎰⎰ 则 ()F x 在 [0,1]持续, 且对 (0,1)x ∈,30()2()()d [()]x F x f x f t t f x '=-⎰20()2()d ().xf x f t t f x ⎡⎤=-⎢⎥⎣⎦⎰ 又由题设知, 当(0,1)x ∈时, ()0.f x > 令20()2()d (),x g x f t t f x =-⎰则()g x 在[0,1]上持续, 且()2()[1()]0,(0,1),g x f x f x x ''=-≥∈故有()(0)0(0,1).g x g x ≥=∈因此()0,(0,1),F x x '≥∈于是()F x 在[0,1]上单调增长, ()(0)0,[0,1].F x F x ≥=∈ 取1x =, 即得211300(1)()d [()]d 0.F f t t f t t ⎡⎤=-≥⎢⎥⎣⎦⎰⎰ 所证结论成立.八. (7分) (Ⅰ) 设函数(),()f x g x 在区间 [,]a a - 上持续(0)a >, ()g x 为偶函数, ()f x 满足条件()()f x f x c +-= (c 为常数). 证明:()()d ()d a aaf xg x x c g x x -=⎰⎰;(Ⅱ) 设 ()()sin ,u x x nx ϕ= 其中n 为正整数, 22,0,(),0.x x x x x x x ππϕππ⎧+-≤<=⎨-≤≤⎩计算定积分()arccot e d x I u x x ππ--=⎰.解 (Ⅰ)()()d ()()d ()()d .a aaaf xg x x f x g x x f x g x x --=+⎰⎰⎰对于上式右边旳第一种积分, 令,x t =- 有()()d ()()d (())()d a aaf xg x x f t g t t c f x g x x -=--=-⎰⎰⎰0()d ()()d aacg x x f x g x x =-⎰⎰因此()()d ()()d ()()d ()d .a aaaaf xg x x f x g x x f x g x x c g x x --=+=⎰⎰⎰⎰(Ⅱ) 由于 22e (arccot e arccot e )0,1e 1x xxxx xe e ----'+=+=++ 而当 0x =时, arccot 1arccot 1,2π+=因此, arccot e arccot e .2x x π-+=轻易验证,()u x 是偶函数. 应用(Ⅰ)旳结论20()arccot ed ()sin d 2xI u x x x x nx xπππππ--==-⎰⎰2011()cos (2)cos d 02x x nx x nx x n n πππππ⎡⎤=--+-⎢⎥⎣⎦⎰2212(2)sin sin d 02x nx nx x nn ππππ⎡⎤=-+⎢⎥⎣⎦⎰33(1cos )[1(1)].nn nnπππ=-=--九. (7分) 设函数()f x 在闭区间[,]a b 上持续, 并且对任一[,]x a b ∈, 存在[,]y a b ∈使得1()|()|.2f y f x =证明: 存在[,],a b ξ∈ 使()0.f ξ= 证法一 应用闭区间上持续函数旳最值定理, 存在12,[,]x x a b ∈, 使 12[,][,]()min ()()max ().x a b x a b f x m f x f x M f x ∈∈====由题设, 对于 [,]x a b ∈, 存在[,]y a b ∈, 使得1()|()|0.2f y f x =≥ 可见 0.M ≥ 目前证明: 1[,]()min ()0.x a b f x m f x ∈==≤ 实际上, 假如1()0,f x m => 由题设, 存在0[,]x a b ∈, 使011111()()()()22f x f x f x f x ==<此与“1()f x 是()f x 在 [,]a b 上旳最小值 ” 矛盾.综上, 得到结论: 0.m M ≤≤ 于是, 应用介值定理, 存在[,],a b ξ∈ 使()0.f ξ= 证法二 任取一种0[,],x a b ∈ 由题设存在1[,],x a b ∈ 使101()().2f x f x =从而存在2[,],x a b ∈ 使210211()()().22f x f x f x ==如此继续下去, 可得数列{}[,],n x a b ⊂ 使01()()0().2n n f x f x n =→→∞ 由于有界无穷数列{}n x 必有一种收敛旳子数列{}kn x , 可设存在一种[,]a b ξ∈, 使lim .k kn x ξ→∞=由()f x 旳持续性, ()lim ()0.k kn f f x ξ→∞== 证毕.十. (7分) 设函数()y f x =具有二阶导数, 且()0.f x ''>直线a L 是曲线()y f x =上任意一点(,())a f a 处旳切线, 其中[0,1].a ∈ 记直线a L 与曲线()y f x =以及直线0,1x x ==所围成旳图形绕y 轴旋转一周所得旋转体旳体积为().V a 试问 a 为何值时 ()V a 获得最小值.解 切线a L 旳方程为 ()()(),y f a f a x a '-=- 即 ()()().y f a x af a f a ''=-+ 于是10()2[()()()()]d V a x f x f a x af a f a x π''=-+-⎰10112()d ()()().322a xf x x f a f a f a π⎡⎤''=-+-⎢⎥⎣⎦⎰ 可见, ()V a 在[0,1]持续, 在(0,1)可导. 令1()2[()()]()(32)0323a V a f a f a f a a ππ'''''''=-+=-=,由于 ()0,f a ''> ()V a 在(0,1)内有唯一旳驻点2.3a =并且, 当 2(0,)3a ∈时, ()0V a '<; 当2(,1)3a ∈时, ()0,V a '> 因此, ()V a 在23a =处获得最小值.十一. (7分) 设(1)闭曲线Γ是由圆锥螺线 OA :θθθθθ===z y x ,sin ,cos ,(θ从0变到2π)和直线段 AO 构成, 其中()0,0,0O , ()2,0,2A ππ; (2)闭曲线Γ将其所在旳圆锥面z =∑是其中旳有界部分. ∑在xOy 面上旳投影区域为D .(Ⅰ) 求D 上认为∑曲顶旳曲顶柱体旳体积; (Ⅱ) 求曲面∑旳面积.解(Ⅰ) ∑在xOy 面上旳投影区域为D , 在极坐标系下表达为:0,02.r θθπ≤≤≤≤故所求曲顶柱体旳体积为d d V x y =⎰⎰220d d r r πθθ=⎰⎰234014d .33πθθπ==⎰(Ⅱ) Γ所在旳圆锥面方程为z =曲面上任一点处向上旳一种法向量为(,,1)x y n z z =--=故所求曲面∑旳面积d d d DDS x y x y ==⎰⎰⎰⎰2223d d d .23r r πθπθθθ===⎰⎰十二.(7分) 设圆 222x y y += 含于椭圆 22221x y a b +=旳内部, 且圆与椭圆相切于两点(即在这两点处圆与椭圆均有公共切线).(Ⅰ) 求 a 与 b 满足旳等式; (Ⅱ) 求 a 与 b 旳值, 使椭圆旳面积最小解 (Ⅰ) 根据条件可知, 切点不在y 轴上. 否则圆与椭圆只也许相切于一点. 设圆与椭圆相切于点00(,)x y , 则00(,)x y 既满足椭圆方程又满足圆方程, 且在00(,)x y 处椭圆旳切线斜率等于圆旳切线斜率, 即2002001b x xa y y -=--. 注意到00,x ≠ 因此, 点00(,)x y 应满足2200222200022001(1)2(2)1(3)1x y a b x y y b a y y ⎧+=⎪⎪⎪+=⎨⎪⎪=-⎪⎩由(1)和(2)式, 得222200220.b a y y a b--+= (4)由 (3) 式得 2022.b y b a =- 代入(4) 式2242222222220.()b a b b a b b a b a-⋅-+=-- 化简得 2222,b a b a=- 或 22420.a b a b --= (5) (Ⅱ) 按题意, 需求椭圆面积S ab π=在约束条件 (5) 下旳最小值. 构造函数2242(,,)().L a b ab a b a b λλ=+-- 令2322242(24)0(6)(22)0(7)0(8)a b L b ab a L a a b b L a b a b λλλ⎧=+-=⎪=+-=⎨⎪=--=⎩(6) ·a − (7)·b , 并注意到 0λ≠, 可得 242b a =. 代入 (8) 式得 644220a a a --=, 故a =从而2b == 由此问题旳实际可知, 符合条件旳椭圆面积旳最小值存在,因此当2a b ==时, 此椭圆旳面积最小.。
2007年高中数学联合竞赛天津地区预赛试卷

2007 年高中数学结合比赛天津地域初赛试卷一、选择题1.方程3 x1x 43x25x 6 的实数解的个数为()A、 0B、 1C、 2D、大于 22.正 2007 边形P被它的一些不在P 内部订交的对角线切割成若干个地区,每个地区都是三角形,则锐角三角形的个数为()A、 0B、 1C、大于1D、与切割方法相关3.已知对于参数 a a0的二次函数y ax21a2 x a23a1 1 x R 的44a 最小值是对于 a 的函数f a ,则 f a的最小值为()A、2B、 137C、1D、以上结果都不对6444.已知 a,b 为正整数,a b ,实数 x, y 知足x y 4 x a y b,若 x y 的最大值为 40,则知足条件的数对a, b 的数量为()A、 1B、 3C、 5D、 75.定义区间c, d , c,d,c, d , c, d的长度均为 d c ,此中 d c .已知实数 a b ,则知足111的x组成的区间的长度之和为()a x bxA、 1B、a bC、a bD、26.过四周体 ABCD 的极点 D 作半径为1的球,该球与四周体ABCD 的外接球相切于点D ,且与平面ABC相切.若AD 2 3 ,BAD CAD45 ,BAC 60 ,则四周体 ABCD 的外接球的半径r 为()A、 2B、2 2C、3D、2 3二、填空题7.若对于 x, y 的方程组ax by1有解,且全部解都是整数,则有序数对a, b 的数x2y210目为8.方程 x23y22007 的全部正整数解的个数为9.若 D 为边长为 1的正三角形 ABC 的边 BC 上的点, VABD 与 VACD 的内切圆半径分别为 r1 ,r2,若 r1 r23D 有两个,分别设为D1, D2,在D1, D2之,则知足条件的点5间的距离为10.x 1 x 4 x 9 2 x31x343x3931的不一样非零整数解方程3333x 1 x 4 x 9x 1x 4x 9的个数为11.设会合 A a1, a2 , a3 , a4 , a5, B a12 , a22 , a32 ,a42 , a52,此中 a1, a2 , a3 ,a4 , a5是五个不一样的正整数, a1a2a3a4a5,A I B a1 ,a4, a1a410,若 AU B 中全部元素的和为246,则知足条件的会合 A 的个数为12.在平面直角坐标系中定义两点 P x1, y1, Q x2 , y2之间的交通距离为d P, Q x1x2y1y2. 若C x, y到点 A 1,3 ,B6,9的交通距离相等,此中实数 x, y 知足0 x10,0y10,则全部知足条件的点 C 的轨迹的长之和为三、解答题13.已知 VABC 的外心为 O ,A90, P 为 VOBC 的外接圆上且在 VABC 内部的随意一点,以 OA 为直径的圆分别与AB, AC 交于 D, E ,OD ,OE 分别与 PB, PC 或其延伸线交于点 F , G ,求证 A, F ,G 三点共线14.已知数列 a n n 0 满足a00, a11,对于所有正整数n,有a n 1 2a n2007a n 1,求使得 2008 | a n建立的最小正整数 n15.排成一排的10 名学生诞辰的月份均不同样,有n 名教师,挨次精选这些学生参加n 个兴趣小组,每个学生恰被一名教师精选,且保持学生的排序不变,每名教师挑出的学生一定知足诞辰的月份是渐渐增添或渐渐减少的(精选一名或两名学生也以为是渐渐增添或渐渐减少),每名教师尽可能多项选择学生,对于学生全部可能的排序,求n 的最小值.答案:1、 A2、 B3、 A4、 C5、 D6、 C7、 328、x42, y 9 9、611、 212、5 2 110 、4513、略14、 200815、 4。
(整理)天津市l理工高等数学竞赛真题答案.

2011年 天津市大学数学竞赛试题参考解答 (理工类)一. 填空题(本题15分,每小题3分): 1. 设()f x 是连续函数, 且0()lim41cos x f x x →=-, 则01()lim 1x xf x x →⎛⎫+= ⎪⎝⎭2e .2. 设223()2x f x ax b x +=++- , 若 lim ()0,x f x →∞= 则 a =2,- b =4.- 3. 1e ln d x x x x ⎛⎫+= ⎪⎝⎭⎰ e ln .x x C +4. 设(,)f x y 是连续函数, 且(,)(,)d d ,Df x y xy f x y x y =+⎰⎰其中D 由x 轴、y 轴以及直线1x y +=围成,则(,)f x y =1.12xy +5. 椭球面22221x y z ++=平行于平面20x y z -+=的切平面方程为20x y z -++= 和20.x y z -+= 二. 选择题(本题15分,每小题3分):1. 设()(2)ln(1),f x x x =+- 则()f x 在0x =处(A) (0)2f '=-, (B) (0)0f '=, (C) (0)2f '=, (D) 不可导. 答: (A) 2. 设函数()y f x =具有二阶导数, 且满足方程sin e 0.x y y '''+-=已知0()0,f x '=则(A) ()f x 在0x 的某个邻域中单调增加, (B) ()f x 在0x 的某个邻域中单调增少, (C) ()f x 在0x 处取得极小值, (D) ()f x 在0x 处取得极大值. 答: ( C) 3. 图中曲线段的方程为()y f x =, 函数()f x 在区间[0,]a()d af x x '表示(A) 直角三角形AOB 的面积, (B) 直角三角形AOC 的面积, (C) 曲边三角形AOB 的面积, (D) 曲边三角形AOC 的面积. 答: (D)4. 设在区间 [,]a b 上的函数()0,f x > 且 ()0,f x '< ()0.f x ''> 令 1()d ,aS f x x =⎰2()(),S f b b a =-31[()()](),2S f a f b b a =+- 则(A) 123,S S S << (B) 312,S S S << (C) 213,S S S << (D) 231.S S S << 答: (C )5. 设 曲面22{(,,)|,01},x y z z x y z ∑==+≤≤取上侧为正, 1∑是 ∑在 0x ≥的部分, 则曲面积分 (A) d d 0,x y z ∑=⎰⎰ (B) 1d d 2d d .z x y z x y ∑∑=⎰⎰⎰⎰x(C) 122d d 2d d ,y y z y y z ∑∑=⎰⎰⎰⎰ (D) 122d d 2d d ,x y z x y z ∑∑=⎰⎰⎰⎰ 答: (B)三. (6分) 设函数 ()2002[(1)()d ]d 0sin 00xt t u u t,x ,f x x,x .ϕ⎧-⎪≠=⎨⎪=⎩⎰⎰ 其中函数ϕ处处连续. 讨论()f x 在0x =处的连续性及可导性.解 222[(1)()d ]d (1)()d lim ()limlim2x x x x t x t u u tx u uf x x xϕϕ→→→--==⎰⎰⎰220()d ()d limlim22x x x x x u uu ux x ϕϕ→→=-⎰⎰202()0lim0(0)2x x x f ϕ→⋅=-== 因此, ()f x 在0x =处连续.200300[(1)()d ]d ()(0)lim lim xx x t t u u t f x f x x ϕ→→--=⎰⎰ 220(1)()d lim 3x x x u u x ϕ→-=⎰ 22002200()d ()d 11lim lim33x x x x x u u u u x x ϕϕ→→=-⎰⎰ 1(0)3ϕ=- 因此, ()f x 在0x =处可导, 且 1(0)(0).3f ϕ'=-四. (6分) 设函数()x x t =由方程cos 0t x x +=确定, 又函数()y y x =由方程2e 1y xy --=确定, 求复合函数(())y y x t =的导数d d .t y t=解 方程cos 0t x x +=两边对t 求导 d d cos sin 0.d d x x x t x t t -⋅+=当 t=0时, x=0, 故00d cos 1.d sin 1t t x x xt t x ====--= 方程2e 1y xy --= 两边对x 求导 2d d e 0.d d y y yy x x x-⋅--⋅= 当 0x =时,2,y = 故0220d 2.de x y y x yy xx==-==-=因此,00d d d .d d d 2t x t y yxt xt ====⋅=-五. (6分) 设函数()f x 在(,)-∞+∞上二阶可导,且0()lim0x f x x→=,记10()()x f xt dt ϕ'=⎰,求)(x ϕ的导数,并讨论)(x ϕ'在0x =处的连续性.解 由已知的极限知(0)0,(0)0,f f '== 从而有 10(0)(0)d 0.f t ϕ'==⎰当 0x ≠时, 1100011()()()()d()()d ,x f x x f x t dt f x t x t f u u x x x ϕ'''====⎰⎰⎰从而有 (),0()0,0.f x x x xx ϕ⎧≠⎪=⎨⎪=⎩因为()lim ()lim0(0),x x f x x xϕϕ→→=== 所以, ()x ϕ在0x =处连续. 当 0x ≠时, 2()()(),xf x f x x xϕ'-'=在0x =处, 由(0)0,ϕ= 有 200()(0)()()1(0)limlimlim (0)22x x x x f x f x f xx x ϕϕϕ→→→'-'''==== 所以,2()(),0()1(0),0.2xf x f x x x x f x ϕ'-⎧≠⎪⎪'=⎨⎪''=⎪⎩而200000()()()()lim ()limlim lim lim2x x x x x f x f x f x f x x x x xx ϕ→→→→→''''=-=- 001()1()(0)1lim lim (0)(0),222x x f x f x f f x x ϕ→→'''-'''====故 ()x ϕ'在0x =处连续. 六. (7分) 设函数()y y x =在(,)-∞+∞上可导, 且满足: 22,(0)0.y x y y '=+=(Ⅰ) 研究()y x 在区间(0,)+∞的单调性和曲线()y y x =的凹凸性.(Ⅱ) 求极限 30()lim.x y x x →解 (Ⅰ) 当0x >时, 有220,y x y '=+>故 ()y x 在区间(0,)+∞单调增加. 从而当0x >时, 22y x y '=+也单调增加. 可见, 曲线()y y x =在区间(0,)+∞向下凸.(或当0x >时, 可得222222()0.y x y y x y x y '''=+⋅=++> 可见, 曲线()y y x =在区间(0,)+∞向下凸. ) (Ⅱ) 由题设知, (0)(0)0.y y '== 应用洛必达法则22322000()()lim lim lim 33x x x y x y x x y x x x →→→'+==[]22011111lim (0).33333x y y x →⎛⎫'=+=+= ⎪⎝⎭七. (7分) 设()f x 在[0,1]上具有连续导数, 且0()1,(0)0.f x f '<≤= 试证211300()d ][()]d .f x x f x x ⎡⎤≥⎢⎥⎣⎦⎰⎰证 令 2300()()d [()]d ,x xF x f t t f t t ⎡⎤=-⎢⎥⎣⎦⎰⎰ 则 ()F x 在 [0,1]连续, 且对 (0,1)x ∈,30()2()()d [()]x F x f x f t t f x '=-⎰20()2()d ().xf x f t t f x ⎡⎤=-⎢⎥⎣⎦⎰ 又由题设知, 当(0,1)x ∈时, ()0.f x > 令20()2()d (),x g x f t t f x =-⎰则()g x 在[0,1]上连续, 且()2()[1()]0,(0,1),g x f x f x x ''=-≥∈故有()(0)0(0,1).g x g x ≥=∈ 因此()0,(0,1),F x x '≥∈于是()F x 在[0,1]上单调增加, ()(0)0,[0,1].F x F x ≥=∈ 取1x =, 即得211300(1)()d [()]d 0.F f t t f t t ⎡⎤=-≥⎢⎥⎣⎦⎰⎰ 所证结论成立.八. (7分) 设函数()y f x =具有二阶导数, 且()0.f x ''> 直线a L 是曲线()y f x =上任意一点(,())a f a 处的切线, 其中[0,1].a ∈ 记直线a L 与曲线()y f x =以及直线0,1x x ==所围成的图形绕y 轴旋转一周所得旋转体的体积为().V a 试问a 为何值时()V a 取得最小值. 解 切线a L 的方程为 ()()(),y f a f a x a '-=- 即 ()()().y f a x af a f a ''=-+ 于是10()2[()()()()]d V a x f x f a x af a f a x π''=-+-⎰10112()d ()()().322a xf x x f a f a f a π⎡⎤''=-+-⎢⎥⎣⎦⎰a可见, ()V a 在[0,1]连续, 在(0,1)可导. 令 1()2[()()]()(32)0323a V a f a f a f a a ππ'''''''=-+=-=, 由于 ()0,f a ''> ()V a 在(0,1)内有唯一的驻点2.3a =并且, 当 2(0,)3a ∈时, ()0V a '<; 当2(,1)3a ∈时, ()0,V a '> 因此, ()V a 在23a =处取得最小值. 九. (7分) 计算(sin )d (cos 1)d ,Ly y x x y y -+-⎰其中L 为从点(0,0)O 沿圆周222xy x +=在第一象限部分到点(1,1)A 的路径.解 令 sin ,cos 1,P y y Q x y =-=- 则cos (cos 1) 1.Q Py y x y∂∂-=--=∂∂ 取点(1,0).B 作有向直线段,OB 其方程为 0(y x =从0变到1).作有向直线段,BA 其方程为 1(x y =从0变到1). 由曲线L 、有向直线段AB 和BO 形成的闭曲线记为0L (沿顺时针方向), 0L 所围成的区域记为D , 则(sin )d (cos 1)d Ly y x x y y -+-⎰()((sin )d (cos 1)d )AB BOL y y x x y y =---+-⎰⎰⎰d (sin )d (cos 1)d DBAy y x x y y σ=-+-+-⎰⎰⎰(sin )d (cos 1)d OBy y x x y y +-+-⎰11(cos 1)d 04y y π=-+-+⎰ 1sin1 1.4π=-+- 十. (8分) 设(1)有向闭曲线Γ是由圆锥螺线 OA :θθθθθ===z y x ,sin ,cos ,(θ从0变到2π)和有向直线段 AO 构成, 其中()0,0,0O , ()2,0,2A ππ;(2)闭曲线Γ将其所在的圆锥面z =∑是其中的有界部分.(Ⅰ)如果()x z F -=,1, 表示一力场,求F沿Γ所做的功W ;(Ⅱ)如果()x z F -=,1,表示流体的流速,求流体通过∑流向上侧的流量. (单位从略)解(Ⅰ)作有向直线段,AO 其方程为 ⎩⎨⎧==x z y 0(x 从 2π变到0).所求F沿Γ所做的功为d d d W z x y x z Γ=+-⎰()(d d d )OAAOz x y x z =++-⎰⎰()20cos sin sin cos cos d πθθθθθθθθθθ=-++-⎡⎤⎣⎦⎰()02d x x x π+-⎰220(cos sin )d 0πθθθθθ=-+⎰24π=.(Ⅱ)Γ所在的圆锥面方程为z =∑上任一点处向上的一个法向量为(,,1)x yn z z=--=∑在xOy面上的投影区域为D, 在极坐标系下表示为:0,02.rθθπ≤≤≤≤故所求流体通过∑流向上侧的流量为d d d d d d()()d dx yz y z z x x x y z z z x x y∑∑⎡⎤Φ=+-=⋅-+--⎣⎦⎰⎰⎰⎰d dx x x y∑⎛⎫=---⎪⎪⎝⎭⎰⎰()200d2cos sin dr r rπθθθθ=-+⎰⎰2232cos sin d32πθθθθθ⎛⎫=-+⎪⎝⎭⎰26π-=.注: (Ⅰ)的另一解法应用Stokes公式,可得W2d d2d dyz x z x y∑∑==-⎰⎰⎰⎰2d x y∑=⎰⎰222000sin2d d sin drr rrπθπθθθθθ=-⋅=-⎰⎰⎰24π=.十一. (8分) 设函数(,)u u x y=在心形线:1cosL rθ=+所围闭区域D上具有二阶连续偏导数, n是在曲线L上的点处指向曲线外侧的法向量(简称外法向),un∂∂是(,)u x y沿L的外法向的方向导数, L取逆时针方向.(Ⅰ) 证明: d d d .L Lu u us x yn y x∂∂∂=-+∂∂∂⎰⎰(Ⅱ) 若222221,u ux y yx y∂∂+=-+∂∂求dLusn∂∂⎰的值.(Ⅰ) 证由方向导数的定义d(cos sin)d.L Lu u us sn x yαα∂∂∂=+∂∂∂⎰⎰其中, α是n相对于x轴正向的转角.设1α是L的切向量τ相对于x轴正向的转角, 则1,2παα=+或1.2παα=-故11d(sin cos)d.L Lu u us sn x yαα∂∂∂=-∂∂∂⎰⎰d d.Lu ux yy x∂∂=-+∂∂⎰(Ⅱ) 解应用格林公式22222d ()d d(1)d dD DLu uus x y x y y x yn x y∂∂∂=+=-+∂∂∂⎰⎰⎰⎰⎰由对称性x1cos 00d 1d d 2d d D L us x y x r rn πθ+∂==∂⎰⎰⎰⎰⎰203(1cos )d .2πθθπ=+=⎰十二.(8分) 设圆222x y y +=含于椭圆22221x y a b +=的内部, 且圆与椭圆相切于两点(即在这两点处圆与椭圆都有公共切线).(Ⅰ) 求 a 与b 满足的等式; (Ⅱ) 求a 与b 的值, 使椭圆的面积最小.解 (Ⅰ) 根据条件可知, 切点不在y 轴上. 否则圆与椭圆只可能相切于一点. 设圆与椭圆相切于点00(,)x y , 则00(,)x y 既满足椭圆方程又满足圆方程, 且在00(,)x y 处椭圆的切线斜率等于圆的切线斜率, 即2002001b x xa y y -=--. 注意到00,x ≠ 因此, 点00(,)x y 应满足2200222200022001(1)2(2)1(3)1x y a b x y y b a y y ⎧+=⎪⎪⎪+=⎨⎪⎪=-⎪⎩由(1)和(2)式, 得222200220.b a y y a b--+=(4)由 (3) 式得 2022.b y b a =- 代入(4) 式2242222222220.()b a b b a b b a b a-⋅-+=-- 化简得 2222,b a b a=- 或 22420.a b a b --= (5) (Ⅱ) 按题意, 需求椭圆面积S ab π=在约束条件 (5) 下的最小值.构造函数2242(,,)().L a b ab a b a b λλ=+-- 令2322242(24)0(6)(22)0(7)0(8)a b L b ab a L a a b b L a b a b λλλ⎧=+-=⎪=+-=⎨⎪=--=⎩(6) ·a − (7)·b , 并注意到 0λ≠, 可得 242b a =. 代入 (8) 式得644220a a a --=, 故a = 从而2b ==由此问题的实际可知, 符合条件的椭圆面积的最小值存在,因此当22a b ==时, 此椭圆的面积最小.。
2017天津市大学数学竞赛试题解答(经管类)

)1en +++12121211nnnne e ee e e en nn n n n+++++≤+++≤++++1111110()limlim (1)(1)t t t nn n t n t nee et e e e n e +=+→∞→+++--==--0(1)lim 1t t te e e t→+-==-- 12lim111nnn e n e e ee n n→∞+++++==-+两边夹法则,即得. ln(1)1cos x x+=- 2 .2111cos ),024x x x -→( 200sin ln(1)4lim 4lim x x x x x→→-+==2(1)21n n -+++2(1)2)(21n x x x n -++++()0(n n f x o x n +++()!(50)0=49f ()50!250!=49⋅). =⎰-0()xtf t dt显然()xf t dt ⎰为T 周期函数⇔()=0Tf t dt ⎰,故选(D ).2. 设函数()y f x =满足方程()(1)210()()'()()0n n n ya x y a x y a x y a x -++++=,若1)000'()=()=()0n f x f x f x -''==(,10000()(()V a x f x a x =+), 则正确的是( )(A )若n 为奇数且0V ≠,则0x 点为极值点; (B )若n 为奇数且0V =,则0x 点为极小点; (C )若n 为偶数且0V ≠,则0x 点为极值点; (D )若n 为偶数且0V >,则0x 点为极小值点. 解:选(C ).由条件可得:当n 为偶数,且()0()V 0n f x =-≠时,()f x 在0x 点取得极值,特别地,()0()V 0n fx =-<,()f x 在0x 点取得极大值.3. 设()f x 在[0,)+∞上连续,且单调非增,对0b a >>,则一定有( )(A)00()()baa f x dxb f x dx ≥⎰⎰(C)0()()baaf x dx b f x dx ≤⎰⎰(B) 00()()baa f x dxb f x dx >⎰⎰(D) 0()()baaf x dx b f x dx <⎰⎰解:选(C )设0()(),0xf x dx F x x x=>⎰.因为()f x 在[0,)+∞上连续且单调非增,则由积分中值定理,有02()()()()()0,(0,)xxf x f x dxf x f F x x xxξξ--'==≤∈⎰. 当0b a >>时,()()F a F b ≥,即0()()ba af x dx b f x dx ≤⎰⎰,故(C )成立.4. 设函数()f x 在闭区间[,]a b 上可导,且()()0f a f b <,'()'()0f a f b <,则(A )存在1(,),a b ξ∈ 使1()0f ξ=;不一定存在2(,),a b ξ∈使2'()0f ξ=. (B )不一定存在1(,),a b ξ∈ 使1()0f ξ=;存在2(,),a b ξ∈使2'()0f ξ=. (C )不存在1(,),a b ξ∈ 使1()0f ξ=;存在2(,),a b ξ∈使2'()0f ξ=. (D )存在1(,),a b ξ∈ 使1()0f ξ=;存在2(,),a b ξ∈使2'()0f ξ=.解:选(D )由连续函数的零点定理以及导函数的零点定理即得.5. 设210sin x I dx xπ=⎰,220sin xI dx x π=⎰,则正确的是( )(A) 121I I >> ; (B )211I I >>;(C )211I I >>;(D )121I I >>. 解: 选(B )显然当(0,)2x π∈时,2sin x x x π<<, 2sin 1xx π<<,210sin 1x I dx xπ=>⎰sin ,x x <则22sin x x <,从而sin sin x xx x<,则221200sin sin x x I dx I dx x xππ=<=⎰⎰,即有211I I >>,选(B)三. (6分) 求极限0arcsin(arcsin )arctan(arctan )limarcsin arctan x x x x x→--.解:331arcsin ()6x x x o x =++ ,331arctan ()3x x x o x =-+ 331arcsin(arcsin )()3x x x o x =++, 332arctan(arctan )()3x x x o x =-+ (4分)330033arcsin(arcsin )arctan(arctan )()lim lim 1arcsin arctan ()2x x x x x o x x x x o x →→-+=-+=2 (6分) 四. (6分)求常数,a b 之值,使得函数cos , 0()12(1)lim (1cos cos cos ),0n ax b x x f x x x n xnx x nn n n →∞+≤⎧⎪=-⎨++++->⎪⎩在=0x 处可导. 解:因为12(1)lim(1cos cos cos)n x xn xnx n n nn→∞-++++- 11001sin =lim cos()cos()n n i i xx x tx dt x x nn x -→∞=-=-=-∑⎰ (2分)此时cos , 0()sin ,0ax b x x f x x x x x+≤⎧⎪=⎨->⎪⎩.函数()f x 在0x =处连续,则有1b =.。
2007年全国高中数学联赛天津赛区预赛(含详细答案)
2007年全国高中数学联赛天津赛区预赛(含详细答案)一、选择题(每小题6分,共36分)1.方程6)5)(2()4)(1(33=-++-+x x x x 的实数解的个数为( )A .0B .1C .2D .大于2 2.正2007边形P 被它的一些不在P 内部相交的对角线分割成若干个区域,每个区域都是三角形,则锐角三角形的个数为( )A .0B .1C .大于1D .与分割的方法有关 3.已知关于参数a (0>a )的二次函数aa a x a ax y 414131222+--+-+=(R x ∈)的最小值是关于a 的函数)(a f ,则)(a f 的最小值为( )A .-2B .64137-C .41- D .以上结果都不对 4.已知b a ,为正整数,b a ≤,实数y x ,满足)(4b y a x y x +++=+,若y x +的最大值为40,则满足条件的数对),(b a 的数目为( )A .1B .3C .5D .75.定义区间),(d c ,),[d c ,],(d c ,],[d c 的长度均为c d -,其中c d >.已知实数b a >,则满足111≥-+-bx a x 的x 构成的区间的长度之和为( ) A .1 B .b a - C .b a + D .26.过四面体ABCD 的顶点D 作半径为1的球,该球与四面体ABCD 的外接球相切于点D ,且与平面ABC 相切.若32=AD , 45=∠=∠CAD BAD ,60=∠BAC ,则四面体ABCD 的外接球的半径r 为( )A .2B .22C .3D .32 二、填空题(每小题9分,共54分) 7.若关于y x ,的方程组⎩⎨⎧=+=+10122y x by ax 有解,且所有的解都是整数,则有序数对),(b a 的数目为______________.8.方程2007322=+y x 的所有正整数解为_____________.9.若D 是边长为1的正三角形ABC 的边BC 上的点,ABC ∆与ACD ∆的内切圆半径分别为1r ,2r ,若5321=+r r ,则满足条件的点D 有两个,分别设21,D D ,则21,D D 之间的距离为_______________.10.方程1])9(9)4(4)1(1[32)9)(4)(1()9)(4)(1(33333333=++++++++++++---x x x x x x x x x x x x 的不同非零整数解的个数为_____________.11.设集合},,,,{54321a a a a a A =,},,,,{2524232221a a a a a B =,其中54321,,,,a a a a a 是五个不同的正整数,54321a a a a a <<<<,},{41a a B A = ,1041=+a a ,若B A 中所有元素的和为246,则满足条件的集合A 的个数为_____________.12.在平面直角坐标系中定义两点),(11y x P ,),(22y x Q 之间的交通距离为||||),(2121y y x x Q P d -+-=.若),(y x C 到点)3,1(A ,)9,6(B 的交通距离相等,其中实数yx ,满足100≤≤x ,100≤≤y ,则所有满足条件的点C 的轨迹的长之和为________.三、论述题(每小题20分,共60分)13.已知ABC ∆的外心为O ,90<∠A ,P 为OBC ∆的外接圆上且在ABC ∆内部的任意一点,以OA 为直径的圆分别与AB ,AC 交于点E D ,,OE OD ,分别与PC PB ,或其延长线交于点G F ,,求证G F A ,,三点共线.14.已知数列}{n a (0≥n )满足00=a ,11=a ,对于所有正整数n ,有1120072-++=n n n a a a ,求使得n a |2008成立的最小正整数n .15.排成一排的10名学生生日的月份均不相同,有n 名教师,依次挑选这些学生参加n 个兴趣小组,每个学生恰被一名教师挑选,且保持学生的排序不变,每名教师挑出的学生必须满足生日的月份是逐渐增加或逐渐减少的(挑选一名或两名学生也认为是逐渐增加或逐渐减少),每名教师尽可能多选学生.对于学生所有可能的排序,求n 的最小值.参考答案一、选择题(每小题6分,共36分)16=的实数解的个数为( )。
2001年全国大学生数学建模竞赛参考答案
2001年全国大学生数学建模竞赛参考答案A 题 血管的三维重建 参考答案以每个管道内的点为球心,可作内含于管道的球,其中具有最大半径的球记为该点的最大内含球。
容易证明最大内含球和管道曲面相切,且在同一截平面内中轴线上的点为球心的最大内含球具有最大的半径,即滚动球半径。
由此可设计相应的算法。
第一,最大内含球和管道曲面相切,意味着球心和管道边界上的点最短距离为最大内含球的半径。
为此需计算边界,方法如下: 首先定义象素(x ,y )的领域:4-领域,其周围的四个象素,包括(x-1,y ),(x ,y-1),(x ,y+1)8-领域,其周围的八个象素,包括(x+1,y ),(x ,y-1),(x ,y+1),(x+1,y-1),(x-1,y+1),(x+1,y+1), 则边界点是4-领域(8-领域)的颜色值不全相同的象素点,由图象可得管道边界,由此估算最大含球的半径(若更精细得到内外两边界,则能估算最大内含球半径的大小范围)。
第二,在同一截平面内中轴线上的点为球心的最大内含球具有最大的半径。
为找到中轴线上的点,有多种方法。
方法之一是分割象素到足够小,遍历管道内所有子象素点,求各个内部子象素点的最大内含球半径。
第三,上述方法可求的中轴线上与给顶截平面的交点和在该点的半径。
若要得到更多的点,需计算两相邻截平面之间与其平行的平面和中轴线的交。
与已知截平面不同的是该平面内特征函数未知,为判断平面上某点是否为管道内的点,以其在相邻截平面上的领域点是否在管道内部为准。
综上所述,解决本问题的关键在于几何推理;计算机图象处理的边界提取技术,及算发设计。
参考算法:1、 对每个Z 平面,计算管道的边界(或内外边界)。
2、 分割象素为较小的子象素点,把Z 平面管道的子象素点作为候选点(穷举法)。
3、 计算候选点到所有边界上的最小距离,即最大内含球的半径。
4、 挑选具最大半径的候选点作为中轴线与切片的交点。
5、 为求相邻两Z 平面之间的平行平面与中轴线的交,首先挑选在该截面内有可能的管道内部点作为候选,重复3、4。
天津市大学数学竞赛历年试题及答案(完整)
天津市大学数学竞赛历年试题及答案(1)(人文学科及医学等类)一、填空:(请将最终结果填在相应的横线上面。
)1..22322302220sin sin cos ()()lim 1,lim lim ()()34sin sin limlimcos 34cos sin 2sin cos lim6122sin 2cos lim lim 16126243x x x xxx x x a x xf x f xg x g x xxa x xxxa x a x xx xa x a x a x xx 2.2ln 1x0y2ln 22,得令xxx y 3.=.udue dxex u ux 2,12131令22222212212121222222222eeee e e e e e eee due ue udeu uu u4.,24,2222222x f xx f dxy d x x f dxdy 5.切线方程为. 1.3 2. -1/ln2 3.2e24. 5.06yx3)1(33y3y 1,3-1,x ,3,63312即切线方程:时,即得令而,切线的斜率为xx y y x xy x二、选择题:(每个小题的四个选项中仅有一个是正确的,把你认为“正确选项”前的字母填在括号内。
选对得分;选错、不选或选出的答案多于一个,不得分。
)1.设函数)(x f 连续,则下列函数中必为偶函数的是( A ).(A);(B);(C);(D).2. D3. B4. B5. C解:令)()()()()()()(,)()()(0u d u f u f u dt t f t f t x F dt t f t f t x F x x x )()()()()(0x F dtt f t f t duu f u f u xx 2.设函数)(x f 具有一阶导数,下述结论正确的是( D )。
(A)若)(x f 只有一个零点,则)('x f 必至少有两个零点;反例:y=2x(B) 若)('x f 至少有一个零点,则)(x f 必至少有两个零点;反例:y=x2(C) 若)(x f 没有零点,则)('x f 至少有一个零点;反例:y=2+sinx(D) 若)('x f 没有零点,则)(x f 至多有一个零点。
2001—2010年天津市大学数学竞赛(用于打印)解析
2010年天津市大学数学竞赛试题参考答案(理工类)一、填空:(本题15分,每小题3分。
请将最终结果填在相应的横线上面。
) 1. 设nx n +++++++= 21131211,则=∞→n n x lim _______ 。
2.已知()x f 的一个原函数为x xsin ,则()='⎰ππx x f x 2d _______ 。
3.=⎰+∞e2ln d xx x_______。
4. 设a ,b 为非零向量,且满足(a + 3b )⊥(7a – 5b ),(a – 4b )⊥(7a – 2b ),则a 与b 的夹角为_______ 。
5.根据美国1996年发布的《美国能源报告》原油消耗量()t C 1的估计公式为(单位:十亿桶/年):()15159060781000137021≤≤-++-=t ,.t .t .t C ,式中t 的原点取为2000年1月。
如果实测模型为:()15158761207000137022≤≤-++-=t ,.t .t .t C ,则自1995年至2015年共节省原油 _______ 。
二、选择题:(本题15分,每小题3分。
每个小题的四个选项中仅有一个是正确的,把你认为“正确选项”前的字母填在括号内。
选对得分;选错、不选或选出的答案多于一个,不得分。
)1. 设函数()()⎪⎩⎪⎨⎧≤>-=.x ,x x ,x ,xxx f 0g 0cos 1其中()x g 是有界函数,则()x f 在0=x 点处( )。
(A )极限不存在; (B )极限存在,但不连续;(C )连续但不可导; (D )可导。
2. 设曲线的极坐标方程为ϑcos 1+=r ,则在其上对应于32πϑ=点处的切线的直角坐标方程为( )。
(A )01=+x ; (B )01=+y ; (C )0=+y x ; (D )0=-y x 。
3. 设函数()x f 连续,则()=-⎰x t t x f t x 0223d d d ( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年天津市大学数学竞赛试题参考答案(理工类)一、填空:(本题15分,每空3分。
请将最终结果填在相应的横线上面。
) 1. 设函数()()⎰⋅=xt at x f sin 02d sin ,()43x x x g +=,且当x →0时,()x f 与()x g 为等价无穷小,则a = 3 。
2. 设函数x x y 2=在0x x =点处取得极小值,则=0x ln21-。
3.()=+⎰+∞121d x x xln21-。
4. 曲线⎪⎩⎪⎨⎧=+++=+022401223:L 22222z y--z y x z--y x 在点(1,1,2)处的切线方程为524111--=--=-z y x 。
5.=+⎰⎰1132d 1d xy yxy x ()1231-。
二、选择题:(本题15分,每小题3分。
每个小题的四个选项中仅有一个是正确的,把你认为“正确选项”前的字母填在括号内。
选对得分;选错、不选或选出的答案多于一个,不得分。
)1. 设函数()x f 连续,则下列函数中必为偶函数的是( A ) (A )()()[]⎰⋅-+xt t f t f t 0d ; (B )()()[]⎰⋅--xt t f t f t 0d ;(C )()⎰x t tf 02d ; (D )()[]⎰xt t f 02d 。
2. 设函数()x f 具有一阶导数,下述结论中正确的是( D ) (A )若()x f 只有一个零点,则()x f '必至少有两个零点; (B )若()x f '至少有一个零点,则()x f 必至少有两个零点; (C )若()x f 没有零点,则()x f '至少有一个零点; (D )若()x f '没有零点,则()x f 至多有一个零点。
3. 设函数()x f 在区间()+∞,0内具有二阶导数,满足()00=f ,()0<''x f ,又b a <<0,则当b x a <<时恒有( B )(A )()()a xf x af >; (B )()()b xf x bf >;(C )()()b bf x xf >; (D )()()a af x xf >。
4.考虑二元函数()x,y f 在点()00,y x 处的下面四条性质: ①连续; ②可微;③()00,y x f x '与()00,y x f y '存在; ④()x,y f x '与()x,y f y '连续。
若用“P ⇒Q ”表示可由性质P 推出性质Q ,则有( B )(A )②⇒③⇒①; (B )④⇒②⇒①; (C )②⇒④⇒①; (D )④⇒③⇒②。
5.设二元函数()x,y f 具有一阶连续偏导数,曲线L :()1=x,y f 过第二象限内的点M 和第四象限内的点N ,Γ为L 上从点M 到点N 的一段弧,则下列积分值为负的是( C )(A )()⎰Γ⋅s x,y f d ; (B )()⎰Γ⋅x x,y f d ;(C )()⎰Γ⋅y x,y f d ; (D )()()y x,y f x x,y f y x d d '+'⎰Γ⋅。
三、已知曲线()x f y =与曲线⎰-=x t t y arctan 0d e 2在点(0,0)处具有相同的切线,写出该切线方程,并求极限⎪⎭⎫⎝⎛⋅∞→n f n n 2lim 。
(本题6分) 解:由已知,显然有()00=f ,且在点(0,0)处()(),x x f x 2arctan 1e 2+='-故()10='f因此,所求切线方程为y = x 。
()()2022022lim 2lim ='=-⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⋅∞→∞→f nf n f n f n n n 。
四、证明:当x > 2时,()02e e e 2x 222<+----x x x 。
(本题7分) 证明:设()()()22e e e2222->+--=--x ,x x x x x ϕ,()()()02e 2e 4e 2e e 2e 22222222222=++-=+----=--------ϕ,()()x x x x x x x e e e22e2222+--+='--ϕ。
又设:()uuu u f e e +=,则()()x f x f x -⎪⎭⎫⎝⎛-='22ϕ。
由拉格朗日中值定理知,存在⎪⎭⎫⎝⎛-∈,x x 22ξ,使 ()()()2222+'-=⎪⎭⎫⎝⎛--'='x f x x f x ξξϕ, 而()()ξξξ+='2e f ,又0222222>+=+->+x x ξ,故()0>'ξf 。
从而,当x > 2时, ()()022<+'-='x f x ξϕ,即()x ϕ单调减少,从而()0<x ϕ。
命题得证。
五、设()x x x f sin22=,求()()()30≥n f n 。
(本题7分) 解:利用牛顿—莱布尼兹公式:()()()()()()()n k k n k n n n n n uv v uv u v u uv ++++'+=-- C C 11。
设x ,v x u sin22==,注意到:()()302,2≥==''='j u u ,x u j ;()()()⎪⎭⎫ ⎝⎛+==22sin 2sin2n πx x v n n n ,()()()()⎪⎭⎫ ⎝⎛-+==---212sin 2sin2111πn x x v n n n , ()()()()⎪⎭⎫ ⎝⎛-+==---222sin 2sin2222πn x x v n n n 。
故()()()()()⎪⎭⎫ ⎝⎛-+⋅⋅-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+=-222sin 2221n n 212sin 222sin 2sin2222πn x πn x x n n πx x x x n nnn, 于是有()()()()()()32sin2122sin 21022≥--=--=--n n n n n n n fn n n ππ。
六、设当10<≤x 时,()()21x x x f -=,且()()x af x f =+1,试确定常数a 的值,使()x f 在x = 0点处可导,并求此导数。
(本题7分)解:首先写出()x f 在 x < 0附近的表达式:当01<≤-x 时,110<+≤x 。
由()()x af x f =+1知,()()()()[]()()2111111112++-=+-+=+=x x x ax x a x f a x f , 故有()()()()()⎪⎩⎪⎨⎧<≤+-<≤-++-=.x ,x x x ,x ,x x x ax f 101101211显然,()x f 在点 x = 0处连续,且()00=f ,()()()ax x x x a f x 20211lim 00-=-++-='-→-, ()()()1011lim 00=-+-='+→+xx x x f x 。
因()x f 在x = 0点处可导的充要条件为:()()00+-'='f f ,即 212-==-a ,a, 且()10='f 。
七、设函数()t f 在区间()+∞∞-,内连续,且满足()21294d 221320-++=⎰++xy y x t t f y x ,⑴ 求()t f ; ⑵ 计算()()⎰⋅+++=Ly x y x f I d 3d 2132,其中L 是从原点O 到点M (1,3)的任意一条光滑弧。
(本题7分)解:⑴ 将原等式两边对x 求导,得到()y x y x f 1281322+=++,所以()()y x y x f 322132+=++。
命:t y x =++132,于是有()()12-=t t f 。
⑵ 因为()()()()13231322++=++=y x f x,y Q ,y x f x,y P ,所以()xQ y x f y P ∂∂=++'=∂∂1326。
于是可知I 与积分路径无关,从而()()()()()()⎰⎰+++=+++=3100d 3d 2132d 3d 2132,,Ly x y x f y x y x f I ,命:t y x =++132,当x = 0,y = 0时,t = 1;x = 1,y = 3时,t = 12。
故 ()()()1211122d 12d 2121121=-=-==⎰⎰tt t t t t f I 。
八、求过第一卦限中的点(a ,b ,c )的平面,使之与三坐标平面所围成的四面体的体积最小。
(本题8分) 解:设所求平面的截距式方程为()0001>>>=++ςηξ,,ςz ηy ξx 。
因平面过点(a ,b ,c ),故有1=++ςcηb ξa 。
四面体体积ξης61=V 。
应用拉格朗日乘数法,设()⎪⎪⎭⎫ ⎝⎛-+++=161ςc ηb ξa ,,,F λξηςλςηξ, 命: ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=-++=-=∂∂=-=∂∂=-=∂∂.ςc ηb ξa ,λc ηF ,λb ςF ,ξλa ηςξF 01061061061222ςξςηξη得到ξηςλςc ,ξηςλb ,ξηςλξa 616161===η。
显然0≠λ,否则0=ξης,这与题意不符。
代入上述第四个方程,得到λ2=ξης,从而c b,ςa,ηξ333===是唯一驻点,也是唯一最小值点。
故所求平面为1333=++czb y a x 。
九、设(){}(){}1010Max ≤≤≤≤==y ,x x,y ,D x,y x,y f D,计算()⎰⎰-=Dσx y x,y f I d 2。
(本题7分)解:将区域D 分成三块:(){}(){}(){}23221010D 10D 110D x y ,x x,y x y ,x x x,y y ,x x x,y ≤≤≤≤=≤≤≤≤=≤≤≤≤= 于是()()()()()()4011d 2d 22d 23231d d d d d d d d d 105105431043202121012210D 2D 2D 222321=+⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+--=-+-+-=-+-+-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x x x x x x x x x yy xx x y x y x x y yx y x y xx x y x x y y I x xxxσσσ十、设函数()()x,y y x x,y f ϕ-=,其中()x,y ϕ在点(0,0)的一个邻域内连续,证明:()x,y f 在点(0,0)处可微的充要条件是()000=,ϕ。