信息学院复变函数与积分变换试题A卷答案(2008年11月)
标准规范复变函数与积分变换考查(071A卷评分标准及参考答案)

广东技术师范学院2008—2009学年度第 ( 1)学期期末考查试卷《复变函数与积分变换》(A )卷评分标准及参考答案一、填空题(每空2分,共20分)1、复数i 31+的主幅角为3π。
2、复数i +3与复数i 32+乘积的主幅角为 23arctan 31arctan +。
3、复数i 31+-的三角表示为:)32sin 32(cos 2ππ+ 4、函数122+z z 的解析区域为:i z ±≠。
5、=+)31(i e πe -6、自原点到i +1的直线上,积分⎰+=i iydz 10i --1 7、级数∑∞=+-121])[(n n n i 的收敛性为 发散。
8、幂级数∑∞=13n n n z 的收敛半径为319、函数)1(sin 2z e z z -的全部奇点为∞=,2,0i k z π(答对一个给1分)。
10、函数1+z e z在1-=z 处的留数为 1-e 二、计算或证明(每小题10分,共80分)1、证明函数iy x z f +=2)(处处不解析证明:因为y v x u ==,2(3分);1,0,0,2=∂∂=∂∂=∂∂=∂∂y v x v y u x x u (3分);当21=x 时,C —R 条件满足,函数只在直线21=x 可导(3分);于是)(z f 在复平面处处不解析。
(2分) 2、证明 1cos sin 22=+z z证明:)(21sin iz iz e e i z --=(2分);)(21cos iz iz e e z -+=(2分);)2(41)2(41cos sin 222222+++-+-=+--z i z i z i z i e e e e z z (4分)=1(2 分); 3、计算积分dz e i z ⎰+20)2(解:函数2+z ze 的一个原函数为z e z 2+(4分);原式=i z z e 20|)2(+(4分)=)142-+i e i (2分)。
复变函数与积分变换试卷(答案)

一、填空题(每题3分,共30分)1. 设i z -=,则=)arg(z 2π-;2.i z -=1的指数式为i e 42π-;3. 设c 为沿原点0=z 到点i z +=1的直线段,则=⎰c zdz i__ ; 4.函数iay x z f +=2)(在复平面内处处解析,那么实常=a ___2__;5. 幂级数∑∞=02n n n z 的收敛半径=R 21;6. 函数)1(1)(z z z f -=在圆环10<<z 内的洛朗展开式为...1132+++++z z z z ; 7. 积分=⎰=dz z z 1||tan __0______;8. i z -=是函数222)1()(+=z z z f 2 级极点; 9、221)(2++=s s s F 的拉普拉斯逆变换是t e e e t t i t i cos 2)1()1(---+-+或 ; 10.单位脉冲函数)3(-t δ的傅氏变换=-⎰+∞∞--dt e t t j ωδ)3(jw e 3-; 二、(本题12分)1、求21的所有值 解:1221Ln e =……………………………………………………………………..2分=)]21(arg 1[ln 2πk i e ++ (2,1,0±±=k )…………………………… .…….2分 =)22sin()22cos(ππk i k + (2,1,0±±=k )……………………2分2、解方程0cos =z 解:02cos =+=-iziz e e z …………………………………………………1分 即0=+-iz iz e e ,即12-=iz e设iy x z +=,则有)1(1122-⨯=-=+-xi y e所以 ππn x e y 22,12+==- (...2,1,0±±=n ) ……………….. 3分 所以有:ππn x y +==2,0 (...2,1,0±±=n ) 即ππn z +=2 (...2,1,0±±=n ) …………………2分三、. 将函数22)(ze zf z-=在圆环10<<z 内展开为洛朗级数。
复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。
2.-8i得三个单根分别为:、、。
3.Lnz在得区域内连续。
4.得解极域为:ﻩﻩﻩﻩﻩ。
5.得导数ﻩﻩﻩﻩﻩ。
6. ﻩﻩ。
7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。
8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。
9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。
10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。
二、(10分)已知、求函数使函数为解析函数、且f(0)=0。
三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。
五、(10分)求函数在以下各圆环内得罗朗展式。
1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。
八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。
复变函数期末考试试卷及答案

2008年《复变函数与积分变换》试卷一、填空题(本题共5小题,每小题3分,满分15分。
) (1)i)1(-的主值是 。
(2)已知)()(2323lxy x i y nx my z f +++=为解析函数,则m = ,=n ,l = 。
(3)如果)2)((cos )(--=z i z z z f 的Taylor 级数为∑∞=-0)3(n nn z c ,则该级数的收敛半径为。
(4)设ze z zf 13)(=,则Res []=0),(z f 。
(5)设⎩⎨⎧≥<=,0,2,0,0)(1t t t f ⎩⎨⎧≥<=,0,sin ,0,0)(2t t t t f 则=*)()(21t f t f 。
二、选择题(本题共5小题,每小题3分,满分15分。
) (1)若21zze e =,则( )(A )21z z =。
(B )πk z z 221+=(k 为任意整数)。
(C )πik z z +=21。
(D )πk i z z 221-=(k 为任意整数)。
(2)设曲线C 为单位圆1=z ,取正向,则积分⎰=+C dz z z2cos 2( )(A )0. (B )i π。
(C )i π-。
(D )i π2。
(3)如果级数∑∞=-0)3(n nn z c 在点1=z 处收敛,则该级数必在( )(A )点4=z 处绝对收敛。
(B )点4=z 处条件收敛。
(C )点5=z 处收敛。
(D )点6=z 处发散。
(4)z w 1=将z 平面上的曲线1)1(22=+-y x 映射成w 平面上的曲线( ) (A )21=u 。
(B )21=v 。
(C )122=+v u 。
(D )1)1(22=+-v u 。
(5)0=z 是函数2sin )(zzz f =的( )(A )本性奇点。
(B )可去奇点。
(C )一级极点。
(D )二级极点 三、(10分)已知调和函数)0(22>+=x y x yv ,求调和函数u ,使iv u z f +=)(成为解析函数,并满足0)2(=f 。
复变函数与积分变换试题与答案

复变函数与积分变换试题与答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3π B.6πC.3πD.23π2.w=z 2将Z 平面上的实轴映射为W 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴3.下列说法正确的是( )A.ln z 的定义域为 z>0B.|sin z|≤1C.e z ≠0D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n C sin zdz z⎰=2π i ,则整数n 为( )A.-1B.0C.1D.2 5.设C 为正向圆周|z|=2,则2Czdz z ⎰=( )A.-2πiB.0C.2πiD.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( )A.-3i 36π B.3i 36π7.设nn n 0a z∞=∑n n n 0b z ∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( ) A.|z|<1 B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15!10.整数k≠0,则Res[cot kz, π]=( ) A.-1k B.0 C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。
2007-2008-2-《复变函数与积分变换A》期末考试题-b-参考答案

北 京 交 通 大 学2007-2008-2-《复变函数与积分变换A 》期末考试试卷(B)参考答案一.填空题(本题满分14分,每空1分),请将合适的答案填在空中.1.复数i i i z +-=2184,则=)Re(z _______;=)Im(z _______;=||z _______ =)arg(z ________________,复数z 的三角表达式为_____________________ 指数表达式为_______________________________________________________ 解:因为i i i i i i z 31414218-=+-=+-=所以,1)Re(=z ;3)Im(-=z ;10||=z ;3arctan )arg(-=z , 复数z 的三角表达式为)]sin(arg )[cos(arg 10z i z +, 指数表达式为)arg(10z i e.2.方程083=+z 的所有根是2,1,0,28323==-=+k ez k iππ3..,2,1,0,)1()]24(2[ln )1( ±±===++++k e ei k i i i iLn i ππ4.函数z ln 在复平面上的连续性为在除去原点和负实轴的平面上连续. 5.若幂级数∑∞=+1)(n nn i z c 在i z =处发散,则该级数在1=z 的敛敛性为发散6.映射ze w =将带形域43)Im(0π<<z 映照成角形域43)arg(0π<<z . 7.幂函数3z w =,把扇形域2||,3)arg(0<<<z z π映照为w 平面上的扇形域8||,)arg(0<<<z z π.8.在傅氏变换意义下,函数)(1t f 和)(2t f 的卷积)(*)(21t f t f 定义⎰+∞∞--τττd t ff )()(21.9.设)()(0t t t f -=δ,则)]([t f F =0t i eω-.二.判断下列命题的真假(本题满分10分,共有10道小题,每道小题1分),对的填“∨”,错的填“⨯”.(∨)1.指数函数ze 是以i π2为周期的周期函数. (⨯)2.正弦函数z sin 一定是有界函数. (⨯)3.奇点一定是孤立奇点.(⨯)4.)(z f 在0z 可导是)(z f 在0z 解析的充分条件.(∨)5.若u 和v 都是D 内的调和函数,且满足柯西-黎曼方程,则 iv u z f +=)(在区域D 内是解析函数.(⨯)6.若积分⎰=Cdz z f 0)(,C 是一条简单闭曲线,则)(z f 在C 内无奇点.(⨯)7.幂级数∑∞=1n nn z 的收敛半径为1,则在1||=z 上的点一定处处收敛.(⨯)8.函数y x v +=是y x u +=的共轭调和函数.(⨯)9.如果无穷远点∞是)(z f 的一阶极点,则0=z 是)1(zf 的一阶极点,并且)1(lim ]),([Re 0zzf z f s z →=∞.(⨯)10.映射2z w =在z 平面上每一点都具有伸缩率和旋转角的不变性.三.讨论函数33)1()(y i x z f -+=的可导性、解析性(8分).解:设3x u =,3)1(y v -=,则v u ,处处可微且22)1(3,0,0,3y yvx v yu x x u --=∂∂=∂∂=∂∂=∂∂但1,00)1()1(332222==⇒=-+⇒--=⇒∂∂=∂∂y x y x y x yv x u即仅在点)1,0(处满足柯西-黎曼方程,因此,33)1()(y i x z f -+=在点)1,0(处可导,但在整个复平面上不解析.四.在扩充复平面上找出函数23)(23+-+=z z iz z f 的孤立奇点并加以分类,若是极点,指出其阶(或级)数,最后分别计算在每个孤立奇点的留数(8分).解:)2)(1(23)(323--+=+-+=z z iz z z i z z f所以,)(z f 共有两个一阶极点2,121==z z 和一个无穷远点∞.i i z i z z f z z f s z z --=-+=-+=-=→→1112lim )()1(lim ],[Re 3111i i z i z z f z z f s z z +=+=-+=-=→→8181lim )()2(lim ],[Re 32227)2311(lim 21]0,)21)(1(1[Re ]0,1)1([Re ],[Re ''230332-=+-+-=--+-=-=∞→z z iz z z z iz s zz f s f s z五.1.证明: 当C 为任何不通过原点的闭曲线时,⎰=Cdz z012;(3分). 2. 沿怎样的简单闭曲线有⎰=++Cdz z z 0112;(3分).3. 计算⎰--Cdz z z )3)(1(15,2|:|=z C .(3分); 1. 证明:当C 不包含0=z 时,由柯西定理得,⎰=Cdz z 012; 当C 包含0=z 时,由高阶导数的柯西积分公式得,0)1(!121'2==⎰Ci dz z π 2. 当i z 23212,1±-=均不被简单曲线C 包围或全部被包围时,⎰=++Cdz z z 0112. 3.]]),[Re ]3,[([Re 2)3)(1(15∞+-=--⎰f s f s i dz z z Cπ121)02421(2])0,)31)(11(1[Re 2421(252ii z z z s i πππ-=+-=----=六.计算⎰Cdz z __,这里曲线C 为)11(12≤≤--+=x x i x z ,方向分别取逆时针和顺时针方向 (6分).解:⎪⎩⎪⎨⎧-==⎰⎰-,顺时针逆时针i ,__ππθθθi d e ie dz z C i i C七.将函数)(1)(i z z z f -=分别在圆环1||0<<z 与+∞<-<||1i z 内展成罗朗级数(8分).解:(1)当1||0<<z 时,++++++=+++++=--•=-=--112221])()(1[)1(11)(1)(n n n iz i z i z z i i zi z i z zi iz i zi z z z f(2)当+∞<-<||0i z 时,+--+--+---=+--+--+---=-+•-=+-•-=•-=-=+24232222)()1()()()(1])()1()(1[)(111)(1)(1)(11)(1)(1)(n n nn ni z i i z i i z i i z i z i i z i i z i i z iz i i z i i z i z z i z i z z z f+--+--+--=-++--+--+--=-+nn nn i z i i z i i z i iz i iz i i z i i z i iz i )()1()(1)11()()1()(1112'2八.计算dz z z z ⎰=+2||651 (8分). 解:原式=∑=+6165],1[Re 2k k z z z s i π iz z s i z z z s i z z s i ππππ2]0,)1(1[Re 2]0,1111[Re 2],1[Re 2626565=+=•+=∞+-= 九.计算θθθπd ⎰+202cos 45sin (8分).解:设θi e z =,则izdzd =θ,iz z 21sin 2-=θ,z z 21cos 2+=θ原式dz z z z z i z ⎰=++-=1||2222)4104()1(2 dz z z z z i z ⎰=++-=1||2222)4104()1(2 在1||<z 内,有一个二阶极点01=z 和一个一阶极点512-=z , 85]0),([Re -=z f s83]51),([Re =-z f s所以,原式4]}51,[Re ]0,[{Re 22ππ=-+=f s f s i i十.讨论将半径为1,圆心分别在0=z 和1=z 处的两圆的公共部分在分式线性映照)2321()2321(i z i z --+-=ω下的图形 (8分). 解:两圆1||=z 和1|1|=-z 的交点为i z 23212,1±=,两圆在2,1z 的夹角分别为32π, 该分式线性映照将1z 映成原点,而把2z 映成∞,且0|1'≠z ω,因此,分式线性映照在1z 是共形映照,所给的区域经映照后映照成以原点为顶点的角形区域,张角等于32π. 另外,为了确定角形域的位置,取1|21-==z ω,所以,所得的角形域如右图所示:十一. 求函数0,)(||>=-ββt e t f 的傅氏变换 (6分).解:dt e e F t i t ⎰+∞∞---=ωβω||)(22)(0)(211ωββωβωβωβωβ+=++-=+=⎰⎰+∞+-∞--i i dte dt et i ti十二.用拉普拉斯变换和它的逆变换求下列一阶常系数非齐次常微分方程的解: 0)0(,2'=+=-y t e y y t (6分).解:作Laplace 变换,记Y(s)=L[y(t)], 则 2121)()(ss s Y s sY +-=- 1)(112111111121)1(1)2)(1(1)(2222--=---=---+---=-+--=t e t y ss s s s s s s s s s s s Y t。
2007-2008-2-《复变函数与积分变换A》期末考试题_b_参考答案

北 京 交 通 大 学2007-2008-2-《复变函数与积分变换A 》期末考试试卷(B)参考答案一.填空题(本题满分14分,每空1分),请将合适的答案填在空中.1.复数i i i z +-=2184,则=)Re(z _______;=)Im(z _______;=||z _______ =)arg(z ________________,复数z 的三角表达式为_____________________ 指数表达式为_______________________________________________________ 解:因为i i i i i i z 31414218-=+-=+-=所以,1)Re(=z ;3)Im(-=z ;10||=z ;3arctan )arg(-=z , 复数z 的三角表达式为)]sin(arg )[cos(arg 10z i z +, 指数表达式为)arg(10z i e.2.方程083=+z 的所有根是2,1,0,28323==-=+k ez k iππ3..,2,1,0,)1()]24(2[ln )1( ±±===++++k ee i k i i i iLn i ππ4.函数z ln 在复平面上的连续性为在除去原点和负实轴的平面上连续. 5.若幂级数∑∞=+1)(n nn i z c 在i z =处发散,则该级数在1=z 的敛敛性为发散6.映射ze w =将带形域43)Im(0π<<z 映照成角形域43)arg(0π<<z . 7.幂函数3z w =,把扇形域2||,3)arg(0<<<z z π映照为w 平面上的扇形域8||,)arg(0<<<z z π.8.在傅氏变换意义下,函数)(1t f 和)(2t f 的卷积)(*)(21t f t f 定义⎰+∞∞--τττd t ff )()(21.9.设)()(0t t t f -=δ,则)]([t f F =0t i eω-.二.判断下列命题的真假(本题满分10分,共有10道小题,每道小题1分),对的填“∨”,错的填“⨯”.(∨)1.指数函数z e 是以i π2为周期的周期函数. (⨯)2.正弦函数z sin 一定是有界函数. (⨯)3.奇点一定是孤立奇点.(⨯)4.)(z f 在0z 可导是)(z f 在0z 解析的充分条件.(∨)5.若u 和v 都是D 内的调和函数,且满足柯西-黎曼方程,则 iv u z f +=)(在区域D 内是解析函数.(⨯)6.若积分⎰=Cdz z f 0)(,C 是一条简单闭曲线,则)(z f 在C 内无奇点.(⨯)7.幂级数∑∞=1n nnz 的收敛半径为1,则在1||=z 上的点一定处处收敛.(⨯)8.函数y x v +=是y x u +=的共轭调和函数.(⨯)9.如果无穷远点∞是)(z f 的一阶极点,则0=z 是)1(zf 的一阶极点,并且)1(lim ]),([Re 0zzf z f s z →=∞.(⨯)10.映射2z w =在z 平面上每一点都具有伸缩率和旋转角的不变性.三.讨论函数33)1()(y i x z f -+=的可导性、解析性(8分).解:设3x u =,3)1(y v -=,则v u ,处处可微且22)1(3,0,0,3y yvx v yux x u --=∂∂=∂∂=∂∂=∂∂但1,00)1()1(332222==⇒=-+⇒--=⇒∂∂=∂∂y x y x y x yv x u 即仅在点)1,0(处满足柯西-黎曼方程,因此,33)1()(y i x z f -+=在点)1,0(处可导,但在整个复平面上不解析.四.在扩充复平面上找出函数23)(23+-+=z z iz z f 的孤立奇点并加以分类,若是极点,指出其阶(或级)数,最后分别计算在每个孤立奇点的留数(8分).解:)2)(1(23)(323--+=+-+=z z iz z z i z z f所以,)(z f 共有两个一阶极点2,121==z z 和一个无穷远点∞.i i z i z z f z z f s z z --=-+=-+=-=→→1112lim )()1(lim ],[Re 3111i i z i z z f z z f s z z +=+=-+=-=→→8181lim )()2(lim ],[Re 32227)2311(lim 21]0,)21)(1(1[Re ]0,1)1([Re ],[Re ''230332-=+-+-=--+-=-=∞→z z iz z z z iz s zz f s f s z五.1.证明: 当C 为任何不通过原点的闭曲线时,⎰=Cdz z012;(3分). 2. 沿怎样的简单闭曲线有⎰=++Cdz z z 0112;(3分).3. 计算⎰--Cdz z z )3)(1(15,2|:|=z C .(3分); 1. 证明:当C 不包含0=z 时,由柯西定理得,⎰=Cdz z 012; 当C 包含0=z 时,由高阶导数的柯西积分公式得,0)1(!121'2==⎰Ci dz z π 2. 当i z 23212,1±-=均不被简单曲线C 包围或全部被包围时,⎰=++Cdz z z 0112. 3.]]),[Re ]3,[([Re 2)3)(1(15∞+-=--⎰f s f s i dz z z Cπ121)02421(2])0,)31)(11(1[Re 2421(252ii z z z s i πππ-=+-=----=六.计算⎰Cdz z __,这里曲线C 为)11(12≤≤--+=x x i x z ,方向分别取逆时针和顺时针方向 (6分).解:⎪⎩⎪⎨⎧-==⎰⎰-,顺时针逆时针i ,__ππθθθi d e ie dz z C i i C七.将函数)(1)(i z z z f -=分别在圆环1||0<<z 与+∞<-<||1i z 内展成罗朗级数(8分).解:(1)当1||0<<z 时,++++++=+++++=--∙=-=--112221])()(1[)1(11)(1)(n n n iz i z i z z i i zi z i z zi iz i zi z z z f(2)当+∞<-<||0i z 时,+--+--+---=+--+--+---=-+∙-=+-∙-=∙-=-=+24232222)()1()()()(1])()1()(1[)(111)(1)(1)(11)(1)(1)(n n nn ni z i i z i i z i i z i z i i z i i z i i z iz i i z i i z i z z i z i z z z f+--+--+--=-++--+--+--=-+nn nn iz i i z i i z i i z i iz i i z i i z i iz i )()1()(1)11()()1()(1112'2八.计算dz z z z ⎰=+2||651 (8分). 解:原式=∑=+6165],1[Re 2k k z z z s i π iz z s i z z z s i z z s i ππππ2]0,)1(1[Re 2]0,1111[Re 2],1[Re 2626565=+=∙+=∞+-= 九.计算θθθπd ⎰+202cos 45sin (8分). 解:设θi e z =,则izdzd =θ,iz z 21sin 2-=θ,z z 21cos 2+=θ原式dz z z z z i z ⎰=++-=1||2222)4104()1(2 dz z z z z i z ⎰=++-=1||2222)4104()1(2 在1||<z 内,有一个二阶极点01=z 和一个一阶极点512-=z , 85]0),([Re -=z f s83]51),([Re =-z f s所以,原式4]}51,[Re ]0,[{Re 22ππ=-+=f s f s i i十.讨论将半径为1,圆心分别在0=z 和1=z 处的两圆的公共部分在分式线性映照)2321()2321(i z i z --+-=ω下的图形 (8分). 解:两圆1||=z 和1|1|=-z 的交点为i z 23212,1±=,两圆在2,1z 的夹角分别为32π, 该分式线性映照将1z 映成原点,而把2z 映成∞,且0|1'≠z ω,因此,分式线性映照在1z 是共形映照,所给的区域经映照后映照成以原点为顶点的角形区域,张角等于32π. 另外,为了确定角形域的位置,取1|21-==z ω,所以,所得的角形域如右图所示:十一. 求函数0,)(||>=-ββt e t f 的傅氏变换 (6分).解:dt e e F t i t ⎰+∞∞---=ωβω||)(22)(0)(211ωββωβωβωβωβ+=++-=+=⎰⎰+∞+-∞--i i dte dt e t i ti十二.用拉普拉斯变换和它的逆变换求下列一阶常系数非齐次常微分方程的解: 0)0(,2'=+=-y t e y y t (6分).解:作Laplace 变换,记Y(s)=L[y(t)], 则 2121)()(ss s Y s sY +-=- 1)(112111111121)1(1)2)(1(1)(2222--=---=---+---=-+--=t e t y ss s s s s s s s s s s s Y t。
《复变函数与积分变换》期末考试试卷A及答案

y ( x) 5 y ( x) 4 y( x) e x y(0) y (0) 1
六、(本题 8 分)求 f (t) e t (
0) 的傅立叶变换,并由此证明:
f (t) 1 2
ei t F ( )d (
0) - -------5 分
1 2
ei t
2
2
2d
(
0)
1 2 2 (cos t i sin t )d ( 0)
2
cos t
i
0
2
2d
sin t 2 2d ( 0)
2
cos t
f (t)
0
2
2d (
0) , -------6
分
共 6 页第 6 页
cos t
则 f (z)dz 0 C
( C)如果 f (z)dz 0 ,则函数 f ( z) 在 C 所围成的区域内一定解析; C
( D)函数 f ( z) u( x, y) iv ( x, y) 在区域内解析的充分必要条件是
u( x, y) 、 v( x, y) 在该区域内均为调和函数.
5.下列结论不正确的是( D ).
(C) f ( z) u x iv y ; (D) f ( z) u y iv x .
2.C是正向圆周 z 3 ,如果函数 f (z) ( D ),则 f (z)dz 0 . C
(A) 3 ; z2
(B) 3(z z
1) ; 2
( C)
3( z (z
1) 2) 2
;
( D) (z
3 2)2
.
3.如果级数 cn zn 在 z 2 点收敛,则级数在( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
∞ ∞ 1 1 (1 − 2∑ z n ) = 2 − 2∑ z n −1 ····························································(6 分) z2 z n=0 n=0
当 1 < z < +∞ 时, |
1 |< 1 z
z +1 1 2 1 (9 = 1 + ⋅ ························································································ 分) z 2 ( z − 1) z 2 z 1 − 1 z
Res[ f ( z ), −1] = lim( z + 1) ⋅
z →−1
因此,I = 2π i ( + ) = 10π i
3 2
7 2
注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 生须在试题图上作解答,请另附该试题图。3、请在试卷类型、考试方式后打勾注明。 (第 1 页)
1 dF (ω ) dF (ω ) =− ⋅ − 3F (ω ) = j ⋅ − 3F (ω ) ············································· 分) (8 j dω dω
20、利用 Laplace 变换,求解微分积分方程: y′(t ) =
∫ y (τ ) cos(t − τ )dτ , y(0) = 1 .
故 F (t ) = 1 − cos t
t > 0 ···························································································· 分) (7
注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 生须在试题图上作解答,请另附该试题图。3、请在试卷类型、考试方式后打勾注明。 (第 3 页)
13、利用留数计算积分 I1 = 解:由于函数 f ( z ) = 故
∫
+∞
cos x x +4
2
−∞
dx 和 I 2 =
∫
sin x dx . −∞ x 2 + 4
+∞
eiz 在上半平面内只有一个极点 z = 2i ·································· (1 分) z2 + 4
注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 生须在试题图上作解答,请另附该试题图。3、请在试卷类型、考试方式后打勾注明。 (第 2 页)
16、设 C 为正向圆周 ζ = 1 , f ( z ) = 解: f ( z ) =
∫
sin 2ζ d ζ ( z < 1 ),求 f ′(z ) . C (ζ − z )3
f ′( z ) = −8π i cos 2 z
五、(本大题 12 分) 17、将 f ( z ) = ··································································································(6 分)
1 s ( s + 1)
2
的 Laplace 逆变换.
1 Байду номын сангаас − 2 s ( s + 1)
·································································································· 3 分) (
2
= 2π i ⋅
=
z 9 − z2
·········································································································· 分) (4
z =− i
π
5
································································································································ 6 分) (
························································································· 分) (6
= 2( x + yi ) − i ( x + yi ) = (2 − i ) z ··································································· 分) (3
z +1 在圆环域(1) 0 < z < 1 ;(2) 1 < z < +∞ 内展开成洛朗级数. z ( z − 1)
2
解:当 0 < z < 1 时
z +1 z −1 + 2 1 2 = 2 = 2 (1 − ) ··········································································(3 分) z ( z − 1) z ( z − 1) z 1− z
Res[ f ( z ),1] = lim( z − 1) ⋅
z →1
5z − 2 3 = z 2 −1 2 5 z − 2 −7 7 = = z 2 − 1 −2 2
················································································· (6 分)
复变函数与积分变换(A 卷)参考答案及评分标准
……………………………………………………………………………………………………… (每小题 3 分,共 15 分) 一、单项选择题。 单项选择题。 1、B 2、D 3、A 4、B 5、C
(每小题 3 分,共 15 分) 二、填空题。 填空题。 6、 0, − 1 ± 3i 7、2 8、0 9、 −
所以, I1 =
∫
+∞
−∞
+∞ sin x cos x π dx = 2 , I 2 = ∫ dx = 0 ··································· (6 分) 2 −∞ x 2 + 4 x +4 2e
四、解答题。(本大题共 3 小题,每题 6 分,共 18 分) 解答题。 14、已知调和函数 u = x 2 − y 2 + xy ,求解析函数 f ( z ) = u + iv 使 f (i ) = −1 + i . 解:由 C-R 条件,有 则 f ′( z ) =
= 1 z2
∞ 1 2 ∞ 1 n 1 1 + ∑ ( ) = 2 + 2∑ n +3 ······················································· (12 分) z n =0 z n =0 z z
六、 (本大题共 3 小题,第 18、19 题各 7 分,第 20 题 8 分,共 22 分) 18、求函数 F ( s ) = 解:F ( s ) =
1 2
10、 −
1 . ( s + 2) s 2
(本大题共 4 小题,每小题 6 分,共 18 分) 三、计算下列积分。 计算下列积分。 11、设 C 为正向圆周 z = 2 ,计算积分 I = 解: I =
∫
C
z dz . (9 − z )( z + i )
2
∫
C
z dz (9 − z )( z + i )
19、若 F (ω ) = Y [ f (t )] ,利用 Fourier 变换的性质,求函数 g (t ) = (t − 3) f (t ) 的 Fourier 变 换. 解:由线性性质及象函数的微分性质,有 (4 Y [ f (t )] = Y [(t − 3) f (t )] = Y [tf (t )] − 3 Y [ f (t )] ··················································· 分)
∂v ∂u ∂v ∂u =− = 2y − x , = − = 2x + y ∂x ∂y ∂y ∂x
································(1 分)
∂u ∂v + i = (2 x + y ) + i (2 y − x) ∂x ∂x z2 + C ············································································· 5 分) ( 2 i 2
····························································· 3 分) (
∫
C
sin 2ζ 2π i dζ = (sin 2ζ )′′ |ζ = z 3 (ζ − z ) 2!
= π i (−4sin 2ζ ) |ζ = z = −4π i sin 2 z ·······································································(5 分)