【课件】最优化(华南理工)第2章(07-3)
最优化理论与方法概述 ppt课件

PPT课件
17
3、 多元函数的Taylor展开
多元函数Taylor展开式在最优化理论中十分重要。 许多方法及其收敛性的证明都是从它出发的。
定理:设 f : Rn R具1 有二阶连续偏导数。则:
g* f (x*) 0,G* 2 f (x*)半正定
PPT课件
24
5、凸集、凸函数和凸规划
凸集和凸函数在非线性规划的理论中具有重要作用,下面 给出凸集和凸函数的一些基本知识。
定义1 设 D Rn,若对D中任意两点 x(1)与 x(2),连接 x(1)
与 x(2) 的线段仍属于D;换言之,对 x(1),x(2)∈D,
配料
每磅配料中的营养含量
钙
蛋白质
纤维
石灰石 谷物 大豆粉
0.380 0.001 0.002
0.00
0.00
0.09
0.02
0.50 PPT课件
0.08
每磅成本(元)
0.0164 0.0463 0.1250 4
解:根据前面介绍的建模要素得出此问题的数学模型如下:
设 x1 x2 x3 是生产100磅混合饲料所须的石灰石、谷物、
2 f 0 x1x3
故Hesse阵为:
2 f x22
2,
2 f 2, x2x3
2 f x32Leabharlann 2 2 2 0 2 f X 2 2 2
0 2 2
PPT课件
16
下面几个公式是今后常用到的:
(1)f X bT X ,则 f X b. 2 f X 0nn
2 f X
【课件】运筹学与最优化方法(华南理工)第3章(07-4)

的最优解S(k)和最优值
(k +1) (k ) (k )
q(S(k) )
(k + 1) (k )
) f (X = X + S 若 f (X (3)令 X 取 X * = X (k+1) ,停止,否则转(4) (4)计算 f = f (X (k) ) f (X (k+1) ), q = f (X (k) ) q(S(k) ) 1/ 2k ..若 f < 0.1q 令
第三章
无约束非线性规划
3.4 信赖域法, Matlab解无约束非线性规划
一.信赖域法: 1.思想: 1) 前两节方法的结构原理为用二次模型产生下降方 向,在下降方向上确定可接受的步长,得到新迭代点. 若二次模型不近似原目标函数,则在搜索方向上无 法找到满意的下降迭代点. 能否先指定步长的界,再用二次模型确定方向和步 长? *注:保证在下近似,可使f(x)与 二次模
y(1) = x +α(x xmax )
2 扩展:给定扩展系数 >1,计算.(加速) 扩展:给定扩展系数γ 计算.(加速) 计算.(加速
y(2) = x +γ ( y(1) x)
3.5 直接算法
一, 2,改进单纯形法: (续) ,改进单纯形法: (1)若f(y(1))<f(x min), 则 若 那么y 取代x 否则, 取代x 若f(y(1))> f(y(2)), 那么 (2)取代 max; 否则, y(1)取代 max (2)若max{f(x(i))| x(i) ≠x max } ≥ f(y(1)) ≥ f(x min), y(1)取代 max . 取代x 若 3° 收缩:若f(x max )> f(y(1)) > f(x(i)), x(i) ≠x max ,计算 ° 收缩: 计算
最优化 PPT课件

• 另外也可用学术味更浓的名称:“运筹 学”。由于最优化问题背景十分广泛,涉 及的知识不尽相同,学科分枝很多,因此 这个学科名下到底包含哪些分枝,其说法 也不一致。
• 比较公认的是:“规划论”(包括线性和
非线性规划、整数规划、动态规划、多目
标规划和随机规划等),“组合最优化”,
“对策论”及“最优控制”等等。
j
1, 2,L
,n
(5)
14
nn
min
cij xij
i 1 j 1
n
xij 1, i 1, 2,L
,n
s.t.
j 1 n
(5)
xij 1, j 1, 2,L , n
i1
xij
0
或 1 ,i,
j
1, 2,L
,n
(5)的可行解既可以用一个矩阵(称为解矩阵)表示,其每行每列均有且只
mn
min
cij xij
i 1 j 1
n
xij ai ,
i 1, , m
j 1
s.t.
m xij bj ,
j 1,2, , n
i 1
xij
0
11
对产销平衡的运输问题,由于有以下关系式存在:
n
bj
j1
m
i1
n xij
j1
n m
j1 i1
xij
费的总时间最少?
引入变量 xij ,若分配 i 干 j 工作,则取 xij 1,否则取 xij 0 。上
述指派问题的数学模型为
nn
min
cij xij
i 1 j 1
n
xij 1,i 1, 2,L
,n
j1
第二章 线性规划--最优化方法课件

定理2.1.5证明(思路)
(i)x*为局部极小点,若存在x0使得f(x0)<f(x*), 则f (t x0 +(1-t) x*)≤t f (x0)+(1-t) f (x*) 令 t 取一个足够小的正数,可导出矛盾.
(ii)若存在x*,y*都是整体极小点(f (x*)=f (y*)), 则f (t x*+(1-t)y*)<t f (x*)+(1-t) f (y*)=f (x*) 矛盾.
20
凸函数的判断
21
一阶条件
定理2.1.2 (一阶条件) 设在凸集D Rn上f(x)可微,则f(x)在D上为凸函 数的充要条件是对任意的x,y ∈ D,都有 f(y)≥f(x)+ f(x)T(y-x) 定理2.1.3 (一阶条件) 设在凸集D Rn上f(x)可微,则f(x)在D上为严格凸 函数的充要条件是对任意的x,y ∈ D, x≠y,都有 f(y)>f(x)+ f(x)T(y-x)
解:令x4=7-(x1+x2+x3), x5=(x1-x2+x3)-2,再令 x3=x3’-x3’’,得到标准型 min y=2x1-x2-3x3’+3x3’’ s.t. x1+x2+x3’-x3’’+x4=7 x1-x2+x3’-x3’’-x5=2 -3x1-x2+2x3’-2x3’’=5 x1,x2,x3’,x3’’,x4,x5≥0
5
凸集的例
例2.1.2 超球||x||≤r为凸集 证明 设x,y为超球中任意两点, ≤a≤1,则有 ||ax+(1-a)y||≤a||x||+(1-a)||y|| ≤a r+(1-a) r = r, 即点ax+(1-a)y属于超球,所以超球为凸集.
《最优化理论》课件

机器学习中的应用
介绍最优化理论在神经网络训练 中的作用。
工程优化中的应用
应用最优化理论优化机械设计和 自动化控制系统。
总结
通过本课程的学习,您掌握了最优化理论的基本知识和应用方法,为实际问 题的解决提供了有力工具和支持。期待您在未来能够更好地应用这些知识, 为创新和发展做出更大的贡献。
凸优化问题的定义
详细讲解凸优化问题的定义和常用求解方法。
对偶问题
讲解凸优化问题的对偶问题和应用案例。
其他优化问题
1
整数规划
讲解整数规划在实际问题中的应用及其求解方法。
2
半正定规划
介绍半正定规划的定义和求解方式。
3
非线性规划
学习非线性规划问题的求解方法和应用案例。
应用案例
Hale Waihona Puke 经济学中的应用讲解最优化理论在竞争市场模型 中的应用。
数学符号与常用概念
介绍数学符号的含义和常用概念,为后 续学习内容打下基础。
一元函数的最优化问题
讲解一元函数求极值的方法,如牛顿法 和梯度下降法等。
无约束优化问题
一维搜索法
介绍线性搜索和二分搜索等一维 搜索算法。
牛顿法
讲解牛顿法的动机和实现方式。
梯度下降法
详细介绍梯度下降法的原理和特 点。
共轭梯度法
《最优化理论》PPT课件
最优化理论是数学中一项重要的领域,涉及到许多实际问题的求解,如经济 学、机器学习和工程优化等。本课程将为您介绍最优化理论的基础知识和应 用案例,帮助您深入了解这个精彩的领域。
优化理论的基础知识
1
函数的极值
2
学习函数的最值概念和求解方法。
3
多元函数的最优化问题
最优化第二章解析PPT课件

例2.6 考虑例2.5中的线性规划关于 B0 [a4,a2] 的
G-J方程组
x1 2x3 x4 1
x1 x2 x3 4 试把 a1 [1,1]T 和 a3 [2,1]T分别引入基,求新的基本
容许解。
ⅱ)下降性条件
新解 x x x N B b 1 , ,b k 1 ,0 ,b k 1 , ,b m ,0 , ,0 ,b k ,0 , ,0 T 。x N
那么,B 是容许基,且关- 于 B 的基本容许解的 7
目标函数值小于关于 B 的基本容许解的目标函数值。 定理2.12 在标准线性规划(2.21)中,假设: ⅰ)B[a1,a2, ,am ]是容许基;
ⅱ)非基本变量 x l 的判别数 l 0 ;
ⅲ)al B1al 0。 那么线性规划(2.21)存在可以使目标函数值任意减小的 容许解。
-
13
3. 初始基本容许解的产生
对于标准线性规划
m in c T x
s .t. A x b
(2.54)
x
0
,
引入 m 个人工变量 u1,u2, ,um,求解辅助线性规划——
一个典范线性规划
其中 e1,1,
m in e T u
s.t. Iu A x b
u
0,
x
0
,
,1T。
(2.55)
a1lxl
a1nxn b1
a2m1xm1 a2lxl a2nxn b2 (2.29)
xmamm1xm1 a- mlxl amnxn bm.
2
(2.29)称为关于基 B 的Gauss-Jordan方程组(G-J方程组)
典范线性规划的主约束即是一个G-J方程组。
G-J方程组的性质:
最优化及最优化方法讲稿

最优化及最优化方法讲稿ppt xx年xx月xx日CATALOGUE目录•最优化问题概述•线性规划问题及其求解方法•非线性规划问题及其求解方法•动态规划问题及其求解方法•最优化算法的收敛性分析•最优化算法的鲁棒性分析•最优化算法的应用举例 - 解决生产调度问题01最优化问题概述最优化问题是一个寻找某个或多个函数的特定输入,以使该函数的输出达到最小或最大的问题。
定义根据不同的分类标准,可以将最优化问题分为线性规划、非线性规划、多目标规划、约束规划等。
分类最优化问题的定义与分类描述所追求的最小或最大值的函数。
目标函数约束条件数学模型限制搜索范围的约束条件。
目标函数和约束条件的数学表达。
03最优化问题的数学模型0201最优化问题的求解方法牛顿法利用目标函数的Hessian矩阵(二阶导数矩阵)进行搜索。
梯度下降法迭代搜索,逐步逼近最优解。
混合整数规划将整数变量引入优化模型中,求解整数规划问题。
模拟退火算法以概率接受劣质解,避免陷入局部最优解。
进化算法模拟生物进化过程的启发式搜索算法。
02线性规划问题及其求解方法线性规划问题定义:在一组线性约束条件下,求解一组线性函数的最大值或最小值的问题。
数学模型:将实际问题转化为线性规划模型,包括决策变量、目标函数和约束条件。
线性规划问题的求解方法 - 单纯形法基本概念:介绍单纯形法的相关概念,如基、可行解、最优解等。
单纯形法步骤:阐述单纯形法的基本步骤和算法流程,包括初始基可行解的求解、最优解的迭代搜索和最终最优解的确定。
单纯形法改进:介绍一些改进的单纯形法,如简化单纯形法、对偶单纯形法等。
线性规划问题的定义与数学模型通过一个具体的生产计划问题,说明如何建立线性规划模型并进行求解。
生产计划问题通过一个配货问题,说明如何运用线性规划模型解决实际问题。
配货问题通过一个投资组合优化问题,说明如何运用线性规划进行风险和收益的平衡。
投资组合优化问题线性规划问题的应用举例03非线性规划问题及其求解方法非线性规划问题定义:非线性规划问题是一类求最优解的问题,其中目标函数和约束条件均为非线性函数。
最优化及最优化方法讲稿课件

最优化的发展简史
以苏联 Л.В.康托罗维奇和美国G.B.丹齐克为 代表的线性规划;
以美国库恩和塔克尔为代表的非线性规划;以 美国R.贝尔曼为代表的动态规划;
以苏联Л.С.庞特里亚金为代表的极大值原理 等。这些方法后来都形成体系,成为近代很活跃 的学科,对促进运筹学、管理科学、控制论和系 统工程等学科的发展起了重要作用。
最优化的发展简史
第二次世界大战前后,由于军事上的需要和科 学技术和生产的迅速发展,许多实际的最优化问 题已经无法用古典方法来解决,这就促进了近代 最优化方法的产生。
近代最优化方法的形成和发展过程中最重要 的事件有:
1847年法国数学家Cauchy研究了函数值沿什么方向下 降最快的问题,提出最速下降法。
② 最优最计划优:现化代方国民法经的济具或部体门应经济用的举计划例,直
至企业的发展规划和年度生产计划,尤其是农业 规划、种植计划、能源规划和其他资源、环境和 生态规划的制订,都已开始应用最优化方法。一个 重要的发展趋势是帮助领导部门进行各种优化决策。
③最优管理:一般在日常生产计划的制订、调度和 运行中都可应用最优化方法。随着管理信息系统 和决策支持系统的建立和使用,使最优管理得到 迅速的发展。
最优化的发展简史
但是最优化方法真正形成为科学方法则在17世 纪以后。
17世纪,I.牛顿和G.W.莱布尼茨在他们所创 建的微积分中,提出求解具有多个自变量的实值 函数的最大值和最小值的方法,后来又出现 Lagrange乘数法。以后又进一步讨论具有未知 函数的函数极值,从而形成变分法。这一时期的 最优化方法可以称为古典最优化方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 若 f(x) 在 x* 可导,则 f `(x*;d) = [f (x*) ]Td .
方向导数,等高线,梯度的关系
二元函数的等高线 (复习水平集) 方向导数与梯度的公式 图形说明 推广到n元函数.
2.2 凸集、凸函数和凸规划(续)
二、凸函数 2、凸函数的性质:
1) 方向导数:设 S Rn 为非空凸集,函数 f :SR , 再设 x* S, d 为单位方向向量,使当 > 0 充分小 时有 x*+d S, 如果 lim [ f(x*+ d )-f(x*) ] / 存在(包括 )
则称 f(x) 为在点沿方向的方向导数存在,记
数? 2) f(x)= max{ f1(x) , f2 (x) } , g(x)= min{ f1(x) ,
f2 (x) }是否凸函数?
2.2 凸集、凸函数和凸规划(续)
二、凸函数 1、凸函数及水平集:
定义:设集合 S Rn ,函数 f :SR, R ,
称 S = { x S∣f(x) ≤ } 为 f(x) 在 S 上 的 水平集。
严格凸函数
凸函数
严格凹函数
2.2 凸集、凸函数和凸规划(续)
二、凸函数 1、凸函数及水平集:
定理: f(x) 为凸集 S 上的凸函数 S 上任 意有限点的凸组合的函数值不大于各点函 数值的凸组合。
思考:设f1, f2是凸函数,
1) 设1, 2 > 0, 1f1+2f2 , 1f1 - 2f2是否凸函
2.2 凸集、凸函数和凸规划(续)
二、凸函数 1、凸函数及水平集 定义: 设集合 S Rn 为凸集,函数 f :SR
若 x(1), x(2) S, ( 0 , 1 ) ,均有 f( x(1)+(1- ) x(2) ) ≤f(x(1))+(1- )f(x(2)) ,
则称 f(x) 为凸集 S 上的凸函数。 若进一步有上面不等式以严格不等式成立,则 称 f(x) 为凸集 S 上的严格凸函数。 当- f(x) 为凸函数(严格凸函数)时,则称 f(x) 为 凹函数(严格凹函数)。
二、凸函数 2、凸函数的性质:
以下设 S Rn 为非空凸集,函数 f :SR 2)若f 凸,则 f 在 S 的内点集上连续;
注: f 在 S 上不一定连续。 例: f(x)=2(当x=1); f(x)=x2 (当x<1) .
3)设f 凸,则对任意方向方向导数存在。 4)设 S 是开集,f 在 S 上可微,则
f凸 x*S,有f (x) ≥ f (x*)+ f T(x*)(x-x*) , x S . 对于二元函数,即:曲线在切线的上方
5) 设 S 是开集,f 在 S 上二次可微,则
a) f 凸 xS,2f (x) 半正定;
b) 若 xS,2f (x) 正定,则f严格凸。
正定矩阵和负定矩阵的判定
定理: (1)对称矩阵A的各阶顺序主子式都大于零,
f(x) 为凸集 S 上的凸函数。x*为问题(fs)的 l.opt,则x*为g.opt;又如果f是严格凸函数 ,那么x*是(fs)的唯一g.opt。
2.3 多面体、极点、极方向
1)多面体:有限个半闭空间的交
例:S = { xRnAx = b , x≥0 }
2.3 多面体、极点、极方向
2) 多面体的极点(顶点): xS,不存在 S 中的另外两个点x(1)和
x(2),及 λ(0,1),使 x = λx(1)+(1-λ)x(2). 3) 方向:xS , dRn , d 0 及 λ > 0 , 总有
x + λd S. d(1) = λd(2) ( λ>0) 时,称 d(1)和d(2)同方向。 4) 极方向:方向 d 不能表示为两个不同 方向的组合 ( d = d(1)+d(2) ) .
则A为正定矩阵. (2)对称矩阵A的偶数阶顺序主子式都大于
零,奇数阶顺序主子式都小于零,则A为负 定矩阵.
多元函数极值点的判定
定理:设函数f(X)二阶可微,X*是一个极值点,则:
f (X*)=ORn , X*称为驻点.
多元函数求极值的步骤: (1)求出函数的驻点.(以上定理) (2)判断是否为极值点.(泰勒公式) (3)是否为最值点.(凸集与凸函数的相关定理)
定理:设集合 S Rn 是凸集,函数 f :SR是
凸函数,则对 R ,S 是凸集。
注:
1) 水平集的概念相当于在地形图中,海拔高度不高于某一 数值的区域。
2) 上述定理的逆不真。
考虑分段函数f(x)=1(x≥0)或0(x&函数和凸规划(续)
注:Hesse矩阵的作用
(1)函数是否为凸函数; (2)函数在某点是否取到极值点.
2.2 凸集、凸函数和凸规划(续)
三、凸规划:
当(f S)中,S为凸集,f是S上的凸函数 (求min),称(f S)为凸规划;
对于(fgh), f,gi为凸函数,hj为线性函数 时,(fgh)为凸规划。
定理:设集合 S Rn 为凸集,函数 f :SR