1.2数轴、相反数和绝对值(1)
七年级数学上册1-2数轴相反数和绝对值第2课时相反数上课新版沪科版

负
4.-(+3)表示 +3 的相反数;-(-3)表示 -3 的相
反数,所以-(+3)= -3 ,-(-3)=
3 .
1.-5的相反数是( B )
A.
B.5
C.-
D.-5
2.下列各数互为相反数的是( A )
A.-(-2)与-2
B.-(-2)与2
C.-2与-
D.-2与
3.给出下列说法:①若两个数互为相反数,则它们的相反数
◎重点:相反数的意义以及双重符号的化简.
◎难点:相反数的概念以及“-a”的理解.
激趣导入
拔河与相反数
学校运动会开始啦,两支队伍开始拔河,中间地面上的白
线为起始点.当绳子上的红色布条向左移动1米,记为-1米,则
左边的队伍获胜;当红色布条向右移动1米,记为+1米,则右
边的队伍获胜.-1米与+1米有什么特殊的地方吗?它们就是一
1.2 数轴、相反数和绝对值
第2课时
相反数
1.能借助数轴知道只有符号不同的两个数互为相反数,知道
互为相反数的一对数在数轴上位于原点的两侧,且到原点的距
离相等.
2.能够利用相反数的概念求出一个数的相反数,会进行简单
的简化符号.
3.知道相反数的几何意义和代数意义,培养学生的归纳能力
以及数形结合思想.
A.③④⑤
B.②③④
C.②③
D.②③④⑤
A )
相反数的求法
2.分别写出下列各数的相反数.
(1)+ ;(2)-3;(3)0;(4)0.15;(5)-1 .
解:(1)+ 的相反数是- ;
2022年秋七年级数学上册 第1章 有理数 1.2 数轴、相反数与绝对值 1.2.3 绝对值课件 (

•
9、 人的价值,在招收诱惑的一瞬间被决定 。2022/3/12022/3/1Tuesday, March 01, 2022
•
10、低头要有勇气,抬头要有低气。2022/3/12022/3/12022/3/13/1/2022 8:39:43 AM
•
11、人总是珍惜为得到。2022/3/12022/3/12022/3/1M ar-221- Mar-22
B.原点或原点左侧
C.原点右侧
D.原点或原点右侧
2. 已知在数轴上,O为原点,A,B两点所表示的数 分别为a,b,利用下列A,B,O三点在数轴上的位置关 系,可以判断|a|<|b|的选项是( B )
A
B
C
D
3. 下列说法中正确的是( C ) A.任何一个有理数的绝对值都是正数 B.负数的绝对值是负数 C.若|a|+|b|=0,则|a|=0且|b|=0 D.若a≠b,则|a|≠|b| 4. 化简:|π-3.14|= π-3.14 , -|-25|= -25 .
【解析】当 a=0 时,A、B、C 说法均不正确,而|a| +1≥1,一定是正数,故 D 项正确.
6. 若|x-3|+|y-2|=0,则|x+y|的值为 5 . 7. a,b 在数轴上位置如图,化简|a|-|b|=-a-b .
1.若|a|=-a,则实数 a 在数轴上的对应点一定在
(B) A.原点左侧
②|-6|= 6 ;|-3.1|= 3.1 ;|-2.7|= 2.7 ; ③|0|= 0 . (2)根据(1)中的规律发现,不论正数、负数和0,它 们的绝对值一定是 非负数 ,即|a|≥0.
(3)根据(2)解决下列问题: ①当x= 0 时,|x|+5有最小值,此时的最小值 是 5; ②当x= 1 时,7-|x-1|有最大值,此时的最大值 是7.
1.2 数轴、相反数和绝对值 (有教学反思)

1.2 数轴、相反数和绝对值一、教学目标1.使学生正确理解数轴的意义,掌握数轴的三要素;2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.4. 使学生理解相反数的意义;5. 给出一个数,能求出它的相反数;6. 理解绝对值的意义,熟悉绝对值符号;7. 给一个数,能求它的绝对值。
二、教学重点、难点1、教学重点:⑴初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.⑵理解有理数的绝对值概念,并掌握其表示方法2、教学难点:⑴正确理解有理数与数轴上点的对应关系。
⑵熟练掌握求一个有理数的绝对值的方法。
三、课时:3课时四、教学过程㈠导入:从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.㈡讲授新课【1】数轴让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.㈢运用举例变式练习例1 画一个数轴,并在数轴上画出表示下列各数的点:例2 指出数轴上A,B,C,D,E各点分别表示什么数.课堂练习示出来.2.说出下面数轴上A,B,C,D,O,M各点表示什么数?最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.【2】相反数1. 相反数的概念:首先,咱们来画一条数轴,然后在数轴上标出下列各点:3和-3,1.6和-1.6,请同学们观察:(1)上述这两对数有什么特点?(2)表示这两对数的数轴上的点有什么特点?(3)请你再写出同样的几对点来?显然:(1)上面的这两对数中,每一对数,只有符号不同。
2024年新湘教版七年级上册数学教学课件 1.2.1 数轴

方法归纳
由数轴上点的位置找出该点所表示的有理数的方法: 先根据点的位置定出数的符号,原点右边的点为
正数,原点左边的点为负数; 再根据点到原点的距离定数值,距原点 2 个单位
长度的点表示的数是 2,距原点 3 个单位长度的点表 示的数是 3,以此类推.
例2 画一条数轴,并标出表示下列各数的点:
-5,1.5,-3.5,4.5,-
-5
-5
-10
-10
-10
5 ℃ -10 ℃ 0 ℃
数轴的概念
问题引入
50
问题1 观察如图的温度计,温度计刻度的正 40
45 35
负是怎样规定的?以什么为基准?
30 25
20
在 0 ℃ 以上为正,0 ℃ 以下为负,温度计 10 15
是以 0 ℃ 为基准的.
5 0
-5
问题2 每摄氏度两条刻度线之间的距离有什 -10 -15
(1)原点表示什么数? (2)原点右方表示什么数?原点左方表示什么数? (3)+3, 1 ,-1.5,0 分别在数轴的什么位置?
4
★ 任何一个有理数都可以用数轴上的一个点来表示.
典例精析
例1 指出数轴上 A,B,C,D,E 各点分别表示什 么数.
解:点 A 表示 1.5;点 B 表示-0.5;点 C 表示 -3;点 D 表示3;点 E 表示-2.
(2) 在数轴上描点时,先根据数的符号确定在原点 的左侧还是右侧,再根据数值的大小,确定距离原 点的距离;
(3) 找到位置后要用实心的小圆点画出来,并在数 轴的上方写出相应的数.
练一练
1. 数轴上表示 -2 的点在原点的__左___侧,距原点的 距离是__2_个__单__位__长__度___,表示 -6 的点在原点的_左___ 侧,距原点的距离是_6__个__单__位__长__度__.
沪科版数学七年级上册1-2 数轴、相反数和绝对值

感悟新知
2.画数轴的步骤
知1-讲
(1)画直线,取原点:在直线上任取一个点表示数 0,
这个点叫做原点 。
(2)标正方向:通常规定直线上从原点向右(或上)为正方
向,从原点向左(或下)为负方向;
感悟新知
知1-讲
(3)选取单位长度,标数: 选取适当的长度为单位长度, 直线上从原点向右,每隔一个单位长度取一个点,依次表示 1,2,3,…;从原点向左,用类似方法依次表示- 1, - 2, - 3,…。
感悟新知
特别警示 在画数轴时常出现以下三种错误:
1.“三要素”不全; 2. 单位长度不统一; 3. 标数时顺序不对 。
知1-练
感悟新知
知识点 2 数轴上的点与有理数的关系
知2-讲
对应关系 都可以用数轴上的点表示
有理数 不都表示有理数
数轴上的点
感悟新知
知2-讲
知识链接 有理数与数轴上的点的对应关系: (1)正有理数可以用数轴上原点右边(或上边)的点表示。 (2)负有理数可以用数轴上原点左边(或下边)的点表示。 (3) 0用原点表示 。
答案:C
感悟新知
知识点 4 绝对值
知4-讲
1. 定义 在数轴上,表示数 a 的点到原点的距离,叫做数 a 的绝对值,记作 | a |,读作“a 的绝对值” 。
感悟新知
2. 性质 一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0 的绝对值是 0。
a( a>0), 即: |a|=ቐ 0( a=0),
感悟新知
画法提醒
知2-练
根据给出的数画数轴,关键要把握两点:
(1) 确定原点的位置,一般地,原点居中,若给出的
正数较多,原点靠左边,若给出的负数较多,原
数轴教案16人教版高品质版

1.2 数轴、相反数和绝对值第1课时数轴1.掌握数轴的三要素,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数.2.理解任何有理数都可以用数轴上唯一的一个点表示出来.3.初步理解数形结合的数学思想.重点数轴的概念及其画法.难点数轴的画法以及有理数与数轴上的点的对应关系.一、复习旧知,导入新知回忆:你能说说什么叫正数,什么叫负数,什么叫有理数吗?教师提问:(1)观察带有刻度的尺子,边缘上的点是如何表示数的呢?能不能用一条直线上的点来表示有理数呢?二、自主合作,感受新知回忆以前学的知识、阅读课文并结合生活实际,完成?探究在线·高效课堂?“预习导学〞局部.到达三、师生互动,理解新知探究点一:认识数轴问题1:让机器人在一条直路上做走步取物试验.根据指令:它由O处出发,向西走A处,拿取物品,然后,返回O处将物品放入蓝中,再向东走2m到达B处取物.3m (1)在下面的直线上画出A,B两处的位置.______________________________________把向东走记作“+〞,向西走记作“-〞,在上面的直线上标出与A,B相对应的数.问题2:观察温度计,在温度计上有刻度,刻度上有度数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示 10℃;在0下5个刻度,表示-5℃.温度计可以看作表示正数、0、负数的直线吗?它和刚刚那个的图有什么共同点,有什么不同点?教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边),用这点表示0(相当于温度计上的0℃);定直上从原点向右正方向(箭所指的方向),那么从原点向左方向(相当于温度上0℃以上正,0℃以下);取适当的度作位度,在直上,从原点向右,每隔一个度位取一点,依次表示1,2,3,⋯从原点向左,每隔一个度位取一点,依次表示-1,-2,-3,⋯在此基上,出数的定,即:定了原点、正方向和位度的直叫做数.而提:在数上,一点P表示数-5,如果数上的原点不在原来位置,而改在另一位置,那么P的数是否是-5?如果位度改呢?如果直的正方向改呢?通上述提,向学生指出:数的三要素——原点、正方向和位度,缺一不可.探究点二:有理数与数上的点提:我能不能用条直表示任何有理数?(可列几个数)教指出:任何有理数都可以用数上的唯一的一个点来表示,但数上的点不一定都表示有理数,个以后再研究.思考:(1)如果你一些数,你能相地在数上找出它的准确位置?如果你数上的点,你能出它所表示的数?哪些数在原点的左,哪些数在原点的右,由此你会什么律?(3)如果a正数,那么数上表示a的点在原点的哪?到原点的距离是多少?-a呢?(小,交流):一般地,a是一个正数,数上表示a的点在原点的右,到原点的距离是a个位度;表示-a的点在原点的左,到原点的距离是a个位度.四、用迁移,运用新知1.数例1以下形中是数的是()A.B.C. D.解析:A中没有位度,;B中没有正方向,;C中足原点、正方向、位度,正确;D中没有原点,.方法:要判断一条直是不是数,要抓住它的三要素:原点、正方向和位度,三者缺一不可.2.出数上的点所表示的数例2本P8例1.方法:在确定数字,要真察点是在原点的左是右.于点A,D种情况,要注意它所表示的数是在哪两个整数之.3.在数上表示有理数例3本P8例2.方法:用数上的点表示数,首先由数的性符号确定数在原点的左是右,然后再根据数到原点的距离,确定位置.4.数上两点的距离例4数上的点A表示的数是+2,那么与点A相距5个位度的点表示的数是()A.5B.±5C.7D.7或-3解析:与点A相距5个位度的点表示的数有2个,分是7或-3.方法总结:解答此类问题要注意考虑两种情况,即要求的点在点的左侧或右侧.五、尝试练习,掌握新知 课本P9练习第1、2题.?探究在线·高效课堂?“随堂演练〞局部.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了数轴, 一条直线只有具备了原点、 正方向和单位长度才能成为数轴. 所有 的有理数都可以用数轴上的点表示出来. 数轴的引入,使我们能用直观图形来理解数的有关概念,这就是数形的结合,它是一种很重要的数学思想方法,我们应特别注意掌握.七、深化练习,稳固新知 课本P12习题第4题.第2课时 相反数1.在具体的情境中了解相反数,能求一个数的相反数.2.了解两个相反数在数轴上的特征,懂得相反数的对立统一的关系.重点理解相反数的概念和求一个数的相反数.难点相反数概念的理解.一、复习旧知,导入新知回忆:在数轴上表示+ 3的点在原点的 ______侧,在数轴上表示-3的点在原点的______侧;距原点 5个单位的点是 ______.(要求学生画数轴并描点)观察上述数轴上的点的特点,并找出还有哪些点具有同样的特点.+3与-3这样成对出现的数就是我们今天要学习的相反数.二、自主合作,感受新知回忆以前学的知识、阅读课文并结合生活实际,完成?探究在线·高效课堂?“预习导学〞局部.三、师生互动,理解新知探究点一:相反数的意义11问题:首先,画一条数轴,然后在数轴上标出以下各点:2与-2,4与-4,2与- 2.请同学们观察:(1) 上述这三对数有什么特点?(2) 表示这三对数的数轴上的点有什么特点? (3) 请你再写出同样的几对点来?显然:(1)上面的这三对数中,每一对数数值相同,只有符号不同.(2)这三对数所对应的点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的距离相同.1.相反数的概念像以上这样,只有符号不同的两个数互为相反数,如2与-2互为相反数,即数是-2,-2的相反数是 2.说明:(1)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数互为2的相反相反数.如4与-4是互为相反数.(2)0的相反数是0.也只有0的相反数是它的本身.2.相反数的表示在一个数的前面添上“-〞号就成为原数的相反数.数表示为-a.在一个数的前面添上“+〞号仍与原数相同.假设a表示一个有理数,那么a的相反例如,+7=7,特别地,+0=0,-0=0.3.相反数的特性假设a、b互为相反数,那么a+b=0;反之假设a+b=0,那么a、b互为相反数.探究点二:多重符号的化简提出问题:a前面加“-〞表示a的相反数,-(+1.1)表示什么?-(-7)呢?-(-9.8)呢?它们的结果应是多少?学生活动:讨论、分析、答复.学生答复后教师引导:在一个数前面加上“-〞表示这个数的相反数,如果在这些数前面加上“+〞呢?学生讨论后答复.说明:(1)相反数的意义是简化多重符号的依据.如-(-1)是-1的相反数,而-1的相反数为+1,所以-(-1)=+1=1.多重符号化简的结果是由“-〞号的个数决定的.如果“-〞号是奇数个,那么结果为负;如果是偶数个,那么结果为正.可简写为“奇负偶正〞.归纳:化简一个数就是把多重符号化成单一符号,假设结果是“+〞号,一般省略不写.四、应用迁移,运用新知1.相反数的代数意义例1见课本P10例3.方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0.2.相反数的几何意义例2(1)数轴上离原点3个单位长度的点所表示的数是______,它们的关系为______.(2)在数轴上,假设点A和点B分别表示互为相反数的两个数,点A在点B的左侧,并且这两个数的距离是,那么A=______,B=______.解析:(1)左边距离原点3个单位长度的点所表示的数是-3;右边距离原点3个单位长度的点所表示的数是3,所以距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)因为点A和点B分别表示互为相反数的两个数,所以原点到点A与点B的距离相等,原点到点A和点B的距离都等于 6.4.因为点A在点B的左侧,所以这两点所表示的数分别是-,6.4.方法总结:此题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等.3.相反数与数轴相结合的问题例3如图,图中数轴(缺原点)的单位长度为1,点A,B表示的两数互为相反数,那么点C所表示的数为()A.2B.-4C.-1D.0解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,所以点C所表示的数为- 1.方法总结:先在数轴上找到原点,从而确定点C所表示的数,同时牢记互为相反数的两个点到原点的距离相等.4.多重符号的化简例4化简以下各数:(1)-(-8)=______;1-(+15)=______;8-[-(+6)]=______;3(4)+(+5)=______.解析:(1)-(-8)表示-8的相反数;11-(+158)表示158的相反数;先看括号内-(+6)表示+6的相反数,即-6,所以-[-(+6)]=-(-6);正数前面的“+〞号可以省略.13解:(1)8;(2)-158;(3)6;(4)5.方法总结:化简多重符号时,只需数一下数字前面有多少个负号,假设有偶数个,那么结果为正;假设有奇数个,那么结果为负.五、尝试练习,掌握新知课本P10练习第1、2、3题.?探究在线·高效课堂?“随堂演练〞局部.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等.七、深化练习,稳固新知课本P12习题第1、2、5题.第3课时绝对值1.借助数轴,初步理解绝对值的概念,能求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.重点正确理解绝对值的概念,能求一个数的绝对值.难点正确理解绝对值的几何意义和代数意义.一、复习旧知,导入新知回忆:(1)在数轴上分别标出-5,,0及它们的相反数所对应的点.(2)在数轴上找出与原点距离等于6的点.(3)相反数是怎样定义的?引导学生从代数与几何两方面的特点出发答复相反数的定义.从几何方面可以说在数轴上原点两旁,离原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数.那么互为相反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、自主合作,感受新知回忆以前学的知识、阅读课文并结合生活实际,完成?探究在线·高效课堂?“预习导学〞局部.三、师生互动,理解新知探究点一:绝对值的代数与几何意义1问题1:在练习本上画一个数轴,并标出表示-4,2,0及它们的相反数的点.学生活动:一个学生板演,其他学生在练习本上画.提问:-4与4是相反数,它们只有符号不同,它们什么相同呢?学生活动:思考讨论.教师归纳:在数轴上标出到原点距离是4个单位长度的点,显然A点(表示4的点)到原点的距离是4,B点(表示-4的点)到原点距离同样是4个单位长度,两者相同,我们把这个距离叫+4与-4的绝对值.-4的绝对值是表示-4的点到原点的距离,-4的绝对值是4;4的绝对值是表示4的点到原点的距离,4的绝对值是4.11呢?(2)思考:a的绝对值呢?学生活动:(1)2的绝对值表示什么?-2呢?0教师小结归纳:在数轴上,表示数a的点到原点的距离,叫做数a的绝对值,记作|a|.探究点二:绝对值的非负性思考:从上面结果中,你能发现什么规律?(小组讨论,合作学习).引导学生得出:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.因为正数可用>0来表示,负数可用a <0来表示,所以上述三条可改写成:a(1)如果a>0,那么|a|=a,如果a<0,那么|a|=-a,如果a=0,那么|a|=0.上面这几个式子可合并写成:〔a>0〕|a|=0〔a=0〕a〔a<0〕由上面的几个式子可以看出,不管a取何值,它的绝对值总是正数或0(通常也称为非负数),即对任意有理数a而言,总有:|a|≥0.这是一条非常重要的性质,这里的“非负〞就是“不是负数〞,而有可能是正数或者是0.上面的这几个式子还告诉咱们怎样求一个数的绝对值:如果求一个正数的绝对值,根据法那么,就直接写出结果即可.如果求一个负数的绝对值,根据法那么,就需要找它的相反数.而就“0〞而言,它的绝对值就是它本身.四、应用迁移,运用新知1.求一个数的绝对值例1见课本P11例4.例2-3的绝对值是()11A.3B.-3C.-3D.3解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是 3.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.利用绝对值求有理数2例3如果一个数的绝对值等于3,那么这个数是______.解析:因为2或-2的绝对值都等于332,所以绝对值等于32的数是32或-233.方法总结:绝对值等于某一个数(0除外)的值有两个,它们互为相反数.3.绝对值的非负性及应用例4假设|a-3|+|b-2021|=0,求a,b的值.解析:由绝对值的性质可得|a -3|≥0,|-2021|≥0.b解:由题意得 |a-3|≥0,|b-2021|≥0,又因为|a-3|+|b-2021|=0,所以|a-3|0,|b-2021|=0,所以a=3,b=2021.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0.4.含绝对值的化简计算3例5化简:-5=______;|-1.5|=______;|-(-2)|=______.33;-|-1.5|=-;|-(-2)|=|2|=2.解析:-5=5方法总结:根据绝对值的意义解答.即假设>0,那么||=;假设a=0,那么||=0;假设a a a a a<0,那么|a|=-a.5.绝对值在实际问题中的应用例6第53届世乒赛于2021年4月26日至5月质量有严格的规定,下表是6个乒乓球质量检测的结果为正数).3日在苏州举办,此次比赛中对球的(单位:克,超过标准质量的克数记一号球二号球三号球四号球五号球六号球-0--请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明.(2)假设规定与标准质量误差不超过g的为优等品,超过g但不超过g的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近.将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0,正好等于标准的质量,五号球,|-0.08|=,比标准球轻克,二号球,|+0.1|=,比标准球重克;(2)一号球|-0.5|=,不合格,二号球|+0.1|=,优等品,三号球|0.2|=,合格品,四号球|0|=0,优等品,五号球|-0.08|=,优等品,六号球|-0.15|=,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.五、尝试练习,掌握新知课本P11~12练习第1~5题.?探究在线·高效课堂?“随堂演练〞局部.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了绝对值的概念,了解了绝对值的非负性,并认识了绝对值的性质,即正数的绝对值是它本身;0的绝对值是0;负数的绝对值是它的相反数.互为相反数的两个数的绝对值相等.七、深化练习,稳固新知对爸爸的印象,从记事的时候,就有了,他留给我的印象就是沉默少言的,但是脸上却始终有微笑,不管家里遇到了什么样的困难,只要有爸爸在,一切都能够雨过天晴的,小时候,家里很穷,可是作为孩子的我们〔我和哥哥〕,却很幸福。
2024七年级数学上册第1章有理数1.2数轴相反数和绝对值第3课时绝对值课件新版沪科版

又因为| a |=4,所以 a =-4.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
8. 若| a |=- a ,则在下列选项中, a 不可能是(
D
)
-
A. -2
B.
C. 0
D. 5
【点拨】
因为| a |=- a ,
所以 a ≤0,
所以 a 不可能是正数.
数中最小的数是0.
(1)当 x =
时,| x -2 026|有最小值,这个最
2 026
小值是
0
(2)当 x =
1
大值是
;
时,2 026-| x -1|有最大值,这个最
.
2 026
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
易错点
忽略0也是绝对值等于其相反数的数而致错
11. [新考法 逆向思维法]如果| x -2|=2- x ,那么 x 的取
12
13
14
15
14. [新考向 知识情境化]一条直线流水线上依次有5个机器
人,它们站的位置在数轴上依次用点 A1, A2, A3,
A4, A5表示,如图.
在点
上的机器人表示的数的绝对值最大,站
A1
(1)站在点
A2
和点
A5
,点
和点
A3
A4
1.2 数轴、相反数、绝对值

第二讲 数轴、相反数、绝对值知识点一:数轴1、数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。
2、数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的一个点来表示。
正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
考点一:数轴与有理数的对应关系例1 己知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )。
A .a b >B .0ab <C .0b a ->D .0a b +>例2 如图,数轴上A 、B 两点分别对应实数a 、b 则下列结论正确的是( )A .0a b +>B .b a >C .0a b ->D .0a b ->例3 已知a 、b 、c 在数轴上的位置如图。
则在1a-,a -,c b -,c a +中,最大的一个是( )A .a -B .c b -C .c a +D .1a-例4 三个有理数c b a 、、在数轴上的位置如图所示,则( ) A .111c a c b a b >>--- B .111b c c a b a>>--- C .111c a b a b c >>--- D .111a b a c b c>>---考点二:寻找、判断数轴上的点例5 如图,数轴上的A 、B 、C 三点所表示的数分别是c b a 、、,其中BC AB =,如果|a |>|b |>|c |,那么该数轴的原点O 的位置应该在( )b B A a1A 、点A 的左边B 、点A 与点B 之间C 、点B 与点C 之间D 、点B 与点C 之间或点C 的右边例6 如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、B 、C 、D 对应的数分别为整数a 、b 、c 、d ,且24d a -=。
试问:数轴上的原点在哪一点上?例7在数轴上,坐标是整数的点称为“整点”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 数轴、相反数和绝对值(1)
整体设计
教学目标
知识与技能:
1.正确理解数轴的意义,掌握数轴的三要素。
2.正确画出数轴,初步了解有理数与数轴上点的对应关系。
过程与方法:
在探索数轴画法的过程中,鼓励学生通过类比,大胆猜想,使学生初步理解数形结合的思想方法。
情感、态度与价值观:
感受有特定的条件下数与形是可以相互转化的,体验生活中的数学,渗透对立统一的辩证唯物主义观点及数形结合的数学思想。
学情介绍
在学生学习了有理数的基础上,引入一种全新的理念,用数轴这一图形来表示有理数。
概念并不难理解,关键是让学生对数形结合思想有初步的体会。
内容分析
教材在安排有理数的基础上,引出了数轴这一有效的工具,让学生建立数形结合的思想,同时为后面学习相反数和绝对值建立了有效的数学模型。
教学重、难点
重点:能正确画出数轴,理解数轴的三要素和有理数在数轴上的表示方法。
难点:有理数与数轴上点的对应关系。
教学过程
一、新课引入
导语:在我们的日常生活中,你能举出一些用刻度来表示物品数量的事例吗?通过讨论,让学生明白知识是从实践中得到的,它与我们的生活息息相关;再有,数除了可以用符号表示外,还有其他表示方法,从而引出新课:数轴。
二、讲授新课
【问题展示】
1.温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度。
(多媒体出示3幅图,三个温度计分别为零上、零度和零下)
2.在一条东西向的马路上,有一个汽车站,汽车站东3米和7.5米处分别有一棵柳树和一棵杨树,汽车站西3米和4.8米处分别有一棵槐树和一根电线杆,试画图表示这一情境。
师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
【合作探究】
生:让学生在讨论的基础上动手操作,在操作的基础上归纳。
师:(学生思考有困难)帮助学生联系实际模型:秤杆上的点表示物体的重量;温度计上的点表示温度;水闸标尺上的点表示水位等;然后抽象出秤杆、温度计和标尺都有共同属性:度量的起点、度量的单位和方向。
请同学们仿照温度表示有理数。
【问题解答】
教师巡视学生画法,并在黑板上板书画图过程(边画边说):
(1)请同学们跟着老师画:
(2)板书画数轴的步骤:
①画直线,定原点;
②取原点向右为正方向;
③选取适当长度作单位长度。
师:引导学生观察自己所画的数轴,分组讨论,并归纳数轴的定义:(及时反馈) 数轴——规定了原点、正方向和单位长度的直线。
【问题展示】
(投影显示)下列图形是数轴吗?为什么?
生:思考、交流
【问题解答】
A.(×)缺单位长度
B.(×)缺原点
C.(×)缺正方向
D.(×)单位长度不一致
E.(×)不是直线
F.(×)正负不一致
师:从以上解答中你有何收获?
生:思考交流。
师:(与学生一起归纳)
(1)数轴是一条直线,画图时不能把它画成射线、线段或曲线。
(2)原点、正方向和单位长度是数轴的三要素,三者缺一不可。
(3)画单位长度时,注意各刻度长短要统一,且注意从原点向左依次表示⋅⋅⋅---,3,2,1
(4)数轴的三要素都规定的,所以根据具体情况灵活选取原点的位置;正方向的指向(通常自左向右为正方向);单位长度的大小也可灵活选择,但这三要素一经确定,就不能随便变更。
(5)从数轴上可看出,0是特殊位置的点,它是正数和负数的分界点。
【问题展示】
指出数轴上A ,B ,C ,D 各点分别表示什么数?
【问题解答】
点A 表示2-;点B 表示2;点C 表示0;点D 表示1-。
三、巩固新知
画一数轴,并用数轴上的点表示4,1.5,,3-3
7-,0。
分析:每一步先画出数轴;第二步,把这些数在数轴上对应的点找出来;第三步,在数轴上用户字母表示出来。
师:从以上问题可以看出,任何一个有理数,都可以用数轴上的一个点来表示,反过来,数轴上的点不都是有理数(顺便提一下,现在不要作深入讨论,等到下学期学习实数时再讨论)
【自主解答】
在数轴上表示下列各数:2
3,4,5,0,5,23---,并比较它们的大小。
四、小结与评价
教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
【回答要点】
(1)数轴的概念。
(2)画数轴的一般步骤。
(3)三数轴上的点表示有理数。
(4)本节课的数学思想方法——数形结合的思想方法,数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形的内在联系,为我们研究问题提供了新的方法。
五、习题超市
1.判断题:
(1)所有的有理数都可以用数轴上的点来表示; ( )
(2)数轴上表示3-的点在原点的左侧(规定向右为正) ( )
(3)因为零表示不存在,所以数轴上没有零这个点。
( )
2.一只小虫从数轴上表示2-的点A 出发,沿着数轴爬行了4个单位长度,到达B 点,则点B 表示的数是 。
3.一个点从数轴上的1-点开始,按下列条件移动两次后到达终点,说出终点是表示什么数的点,并画出图来。
(1)向右移动3个单位,再向右移动2个单位。
(2)向左移动5个单位,再向左移动3个单位。
(3)向左移动6个单位,再向右移动8个单位。
(4)向右移动1个单位,再向左移动11个单位。