2020-2021学年北师大版数学七年级下册第一章至第四章 期中复习卷二(综合卷)
2020-2021学年北师大版七年级数学下册第1章1.7整式的除法 专题培优训练卷

2020-2021北师大版七年级数学下册第1章1.7整式的除法 专题培优训练卷一、选择题1、计算:(-3b 3)2÷b 2的结果是( )A.-9b 4B.6b 4C.9b 3D.9b 42、计算27m 6÷(﹣3m 2)3的结果是( )A .1B .﹣1C .3D .﹣33、下列计算正确的是( )A .(x 3+x 4)÷x 3=x 4B .(-7x 3-8x 2+x )÷x =-7x 2-8xC .(2x 2+x 6)÷x 2=2+x 4D .(ab 2-4a 3b 4)÷2ab =b -2a 2b 34、计算:(4x 3﹣2x )÷(﹣2x )的结果是( )A .2x 2﹣1B .﹣2x 2﹣1C .﹣2x 2+1D .﹣2x 25、下列等式成立的是( )A.(3a 2+a )÷a =3aB.(2ax 2+a 2x )÷4ax =2x +4aC.(15a 2-10a )÷(-5)=3a +2D.(a 3+a 2)÷a =a 2+a6、(-15a 3b 2+8a 2b )÷( )=5a 2b -83a ,括号内应填( ) A .3ab B .-3ab C .3a 2b D .-3a 2b7、小亮在计算(6x 3y ﹣3x 2y 2)÷3xy 时,错把括号内的减号写成了加号,那么正确结果与错误结果的乘积是( )A .2x 2﹣xyB .2x 2+xyC .4x 4﹣x 2y 2D .无法计算8、计算(-4x 3+12x 2y -7x 3y 2)÷(-4x 2)等于( )A .x +74xy 2B .x -3y +74xy 2C .x 2-3y +74xy 2D .x -3y +47x 9、若长方形的面积是4a 2+8ab +2a ,它的一边长为2a ,则它的周长为( )A .2a +4b +1B .2a +4bC .4a +4b +1D .8a +8b +210、已知长方形的面积为18x 3y 4+9xy 2-27x 2y 2,长为9xy ,则宽为( )A .2x 2y 3+y +3xyB .2x 2y 2-2y +3xyC .2x 2y 3+2y -3xyD .2x 2y 3+y -3xy二、填空题11、计算:(xy 2)2÷xy 3= .12、计算:(5x 5﹣3x 2)÷(﹣x )2= .13、计算(m 2n )3•(﹣m 4n )÷(﹣mn )2的结果为 .14、如果“□×2ab =4a 2b ”,那么“□”内应填的代数式是 .15、计算:(7x 2y 3﹣14x 3y 2z )÷7x 2y 2= .16、计算:(6x 5y -3x 2)÷(-3x 2)=_____.17、计算3a 2÷13a 4的结果是_________ 18、月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,若坐飞机飞行这么远的距离需 小时.19、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 3y -2xy 2,若商必须是2xy ,则小亮报的除式是________.20、计算:(1))32732(523n mn n +-÷23n 2=________; (2)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3=________. 三、解答题21、计算:(1)(﹣3x 2y )2÷(﹣3x 2y 2); (2) 3a 3b •(﹣2ab )÷(﹣3a 2b )2.(3)(2×109)÷(5×103). (4)(6x 3+3x 2﹣2x )÷(﹣2x )﹣(x ﹣2)2.(5)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.(6)(30x4-20x3+10x)÷10x(7)(32x3y3z+16x2y3z-8xyz)÷8xyz (8)(6a n+1-9a n+1+3a n-1)÷3a n-1.(9)[(a+b)2-(a-b)2]÷4ab;(10)[x(x2y2-xy)-y(x2-x3y)]÷3x2y.22、先化简,再求值:(1)[(xy-2)2-(xy+2)(2-xy)]÷(-14xy),其中x=2019,y=12019.(2)[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷y;其中|x﹣|+(y+2)2=0.23、李老师给学生出了一道题:当x=2019,y=2020时,求[2x(x2y-xy2)+xy(2xy-x2)]÷x2y的值.题目出完后,小明说:“老师给的条件y=2020是多余的.”小颖说:“不给这个条件,就不能求出结果,所以不是多余的.”你认为他们谁说得有道理?为什么?2020-2021北师大版七年级数学下册第1章1.7整式的除法 专题培优训练卷(答案)一、选择题1、计算:(-3b 3)2÷b 2的结果是( )A.-9b 4B.6b 4C.9b 3D.9b 42、计算27m 6÷(﹣3m 2)3的结果是( )A .1B .﹣1C .3D .﹣3解:27m 6÷(﹣3m 2)3=27m 6÷(﹣27m 6)=﹣1. 故选:B .3、下列计算正确的是( C )A .(x 3+x 4)÷x 3=x 4B .(-7x 3-8x 2+x )÷x =-7x 2-8xC .(2x 2+x 6)÷x 2=2+x 4D .(ab 2-4a 3b 4)÷2ab =b -2a 2b34、计算:(4x 3﹣2x )÷(﹣2x )的结果是( )A .2x 2﹣1B .﹣2x 2﹣1C .﹣2x 2+1D .﹣2x 2解:(4x 3﹣2x )÷(﹣2x )=﹣2x 2+1. 故选:C5、下列等式成立的是( )A.(3a 2+a )÷a =3aB.(2ax 2+a 2x )÷4ax =2x +4aC.(15a 2-10a )÷(-5)=3a +2D.(a 3+a 2)÷a =a 2+a【解答】A 、(3a 2+a )÷a =3a +1,本选项错误;B 、(2ax 2+a 2x )÷4ax =x +a ,本选项错误;C 、(15a 2-10a )÷(-5)=-3a 2+2a ,本选项错误;D 、(a 3+a 2)÷a =a 2+a ,本选项正确,故选D6、(-15a 3b 2+8a 2b )÷( )=5a 2b -83a ,括号内应填( B ) A .3ab B .-3ab C .3a 2b D .-3a 2b7、小亮在计算(6x 3y ﹣3x 2y 2)÷3xy 时,错把括号内的减号写成了加号,那么正确结果与错误结果的乘积是( )A .2x 2﹣xyB .2x 2+xyC .4x 4﹣x 2y 2D .无法计算解:正确结果为:原式=6x 3y ÷3xy ﹣3x 2y 2÷3xy =2x 2﹣xy ,错误结果为:原式=6x 3y ÷3xy +3x 2y 2÷3xy =2x 2+xy ,∴(2x 2﹣xy )(2x 2+xy )=4x 4﹣x 2y 2,故选:C .8、计算(-4x 3+12x 2y -7x 3y 2)÷(-4x 2)等于( )A .x +74xy 2B .x -3y +74xy 2C .x 2-3y +74xy 2D .x -3y +47x [解析] (-4x 3+12x 2y -7x 3y 2)÷(-4x 2)=x -3y +74xy 2. 故选B.9、若长方形的面积是4a 2+8ab +2a ,它的一边长为2a ,则它的周长为( )A .2a +4b +1B .2a +4bC .4a +4b +1D .8a +8b +2解:另一边长是:(4a 2+8ab +2a )÷2a =2a +4b +1,则周长是:2[(2a +4b +1)+2a ]=8a +8b +2.故选:D .10、已知长方形的面积为18x 3y 4+9xy 2-27x 2y 2,长为9xy ,则宽为( )A .2x 2y 3+y +3xyB .2x 2y 2-2y +3xyC .2x 2y 3+2y -3xyD .2x 2y 3+y -3xy[解析] 由题意得:长方形的宽=(18x 3y 4+9xy 2-27x 2y 2)÷9xy =2x 2y 3+y -3xy .故选D.二、填空题11、计算:(xy 2)2÷xy 3= .解:原式=x 2y 4÷xy 3=xy . 故答案为xy .12、计算:(5x 5﹣3x 2)÷(﹣x )2= .解:(5x 5﹣3x 2)÷(﹣x )2=(5x 5﹣3x 2)÷x 2=5x 3﹣3,故答案为:5x 3﹣3.13、计算(m 2n )3•(﹣m 4n )÷(﹣mn )2的结果为 .解:(m 2n )3•(﹣m 4n )÷(﹣mn )2=(m 6n 3)•(﹣m 4n )÷(m 2n 2)=(﹣m 10n 4)÷(m 2n 2)=﹣m 8n 2.故答案为:﹣m 8n 214、如果“□×2ab =4a 2b ”,那么“□”内应填的代数式是 .解:□×2ab =4a 2b ,∴4a 2b ÷2ab =2a ,则“□”内应填的代数式是2a .15、计算:(7x 2y 3﹣14x 3y 2z )÷7x 2y 2= .解:原式=7x 2y 3÷7x 2y 2﹣14x 3y 2z ÷7x 2y 2=y ﹣2xz ,故答案为:y ﹣2xz16、计算:(6x 5y -3x 2)÷(-3x 2)=_____.【解答】(6x 5y -3x 2)÷(-3x 2)=6x 5y ÷(-3x 2)+(-3x 2)÷(-3x 2)=-2x 3y +1.17、计算3a 2÷13a 4的结果是( D )A .9a 6B .a 6 C.9a -2 D.9a 218、月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,若坐飞机飞行这么远的距离需 小时.解:依题意得(3.84×105)÷(8×102),=0.48×103,=4.8×102(小时).∴坐飞机飞行这么远的距离需4.8×102小时.19、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 3y -2xy 2,若商必须是2xy ,则小亮报的除式是________.[解析] (x 3y -2xy 2)÷2xy =12x 2-y.故答案是12x 2-y.20、计算:(1))32732(523n mn n +-÷23n 2=________; (2)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3=________.答案:(1)n -212m +n 3 (2)3x 2y 3-2y -4xy 2三、解答题21、计算:(1)(﹣3x 2y )2÷(﹣3x 2y 2); (2) 3a 3b •(﹣2ab )÷(﹣3a 2b )2.(3)(2×109)÷(5×103). (4)(6x 3+3x 2﹣2x )÷(﹣2x )﹣(x ﹣2)2.(5)[x (x 2y 2﹣xy )﹣y (x 2﹣x 3y )]÷3x 2y . (6)(30x 4-20x 3+10x )÷10x(7)(32x 3y 3z +16x 2y 3z -8xyz )÷8xyz (8)(6a n +1-9a n +1+3a n -1)÷3a n -1.(9)[(a +b )2-(a -b )2]÷4ab ; (10)[x (x 2y 2-xy )-y (x 2-x 3y )]÷3x 2y .解:(1)原式=9x 4y 2÷(﹣3x 2y 2)=﹣3x 2;(2)3a 3b •(﹣2ab )÷(﹣3a 2b )2=3a 3b •(﹣2ab )÷9a 4b 2=﹣6a 4b 2÷9a 4b 2=﹣.(3)原式=0.4×106=4×105.(4)原式=6x 3÷(﹣2x )+3x 2÷(﹣2x )+(﹣2x )÷(﹣2x )﹣(x ﹣2)2=﹣3x 2﹣x +1﹣(x 2﹣4x +4)=﹣3x 2﹣x +1﹣x 2+4x ﹣4=﹣4x 2+x ﹣3.(5)[x (x 2y 2﹣xy )﹣y (x 2﹣x 3y )]÷3x 2y=(x 3y 2﹣x 2y ﹣x 2y +x 3y 2))÷3x 2y=(2x 3y 2﹣2x 2y )÷3x 2y =xy ﹣; (6)(30x 4-20x 3+10x )÷10x =3x 3-2x 2+1;(7)(32x 3y 3z +16x 2y 3z -8xyz )÷8xyz =4x 2y 2+16xy 2-1;(8)(6a n +1-9a n +1+3a n -1)÷3a n -1=(-3a n +1+3a n -1)÷3a n -1=-3a 2+1.(9)[(a +b )2-(a -b )2]÷4ab =(a 2+b 2+2ab -a 2-b 2+2ab )÷4ab =4ab ÷4ab =1.(10)原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷3x 2y =23xy -23.22、先化简,再求值:(1)[(xy -2)2-(xy +2)(2-xy )]÷(-14xy ),其中x =2019,y =12019.(2)[(x +2y )2﹣(x +y )(x ﹣y )﹣5y 2]÷y ;其中|x ﹣|+(y +2)2=0.解:(1)原式=(x 2y 2-4xy +4-4+x 2y 2)÷(-14xy) =(2x 2y 2-4xy)÷(-14xy) =-8xy +16.当x =2019,y =12019时,原式=-8+16=8. (2)原式=(x 2+4xy +4y 2﹣x 2+y 2﹣5y 2)÷y =4xy ÷y =4x ,∵|x ﹣|+(y +2)2=0,∴x =,y =﹣2,当x =时,原式=4×=2.23、李老师给学生出了一道题:当x =2019,y =2020时,求[2x (x 2y -xy 2)+xy (2xy -x 2)]÷x 2y 的值.题目出完后,小明说:“老师给的条件y =2020是多余的.”小颖说:“不给这个条件,就不能求出结果,所以不是多余的.”你认为他们谁说得有道理?为什么?解:小明说得有道理.理由:原式=(2x 3y -2x 2y 2+2x 2y 2-x 3y )÷x 2y =x 3y ÷x 2y =x .显然最后的化简结果不含y ,所以最后的结果与y 的值无关,所以小明说得有道理.。
2020-2021学年七年级数学北师大版下册综合练习——第4章三角形【含答案】

第4章三角形一、选择题1.下列说法正确的是( )A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形2.如图,∠1=140°,∠2=100°,则∠3=( )A.100°B.120°C.130°D.140°3.如图,点A,D在线段BC的同一侧,AC与BD相交于点E,连接AB,CD,已知∠1=∠2,现添加以下哪个条件仍不能判定△ABC≌△DCB的是( )A.∠A=∠D B.AC=DB C.∠ABC=∠DCB D.AB=DC4.下列各组长度的三条线段能组成三角形的是( )A.1,2,3B.1,1,2C.1,2,2D.1,5,75.如果三角形的两条边长分别是8厘米、6厘米,那么第三边的长不可能是( )A.9厘米B.4厘米C.3厘米D.2厘米6.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能( )A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形7.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于点E,与CD相交于点F,DH⊥BC于H,交BE于G,有下列结论:①BH=DH;②BD=CD;③AD+CF=BD;④CE=BF.其中正确的是( )A.①②B.①③C.①②③D.①②③④8.如图,△ABC的高CD、BE相交于点O,如果∠A=60°,那么∠BOC的大小为( )A.60°B.100°C.120°D.130°9.如图将一副三角板拼成如图所示的图形(∠D=30°,∠ABC=90°,∠DCE=90°,∠A=45°),BC交DE于点F,则∠DFC的度数是( )A.75°B.105°C.135°D.125°10.如图,△ABC的两条中线AD、CE交于点G,联结BG并延长,交边AC于点F,那么下列结论不正确的是( )A.AF=FC B.GF=BG C.AG=2GD D.EG=CE11.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF二、填空题12.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是 .13.如图,矩形的一个顶点落在边长为3的正方形中心(正方形对角线交点),则图中重合部分(阴影部分)的面积为 平方单位.14.在△ABC中,∠A:∠B:∠C=4:5:9,若按角分类,△ABC是 三角形.15.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P= °.16.如图,直线a过正方形ABCD的顶点A,点B、D到直线a的距离分别为1、3,则正方形的边长为 .17.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加 根木条才能固定.18.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,如果∠BDC=140°,∠BGC=110°,则∠A= .19.如图,BE平分∠ABC,CE平分∠ACD,∠A=60°,则∠E= .20.如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是 .三、解答题21.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).22.已知:如图,在△ABC中,∠DAE=10°,AD⊥BC于点D,AE平分∠BAC,∠B=60°,求∠C的度数.23.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.24.如图,点A,B,C,D在同一条直线上,AB=CD,∠A=∠D,AE=DF.(1)求证:△ACE≌△DBF.(2)若BF⊥CE于点H,求∠HBC的度数.25.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,E是对角线AC上一点,连接BE,DE.(1)求证:BE=DE.(2)当BE∥CD,∠BAD=78°时,求∠BED的度数.26.如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.27.如图所示,已知△ABC中,∠B=∠C,AB=4厘米,BC=3厘米,点D为AB的中点.如果点P在线段BC上以每秒1厘米的速度由点B向点C运动,同时,点Q在线段CA上以每秒a厘米的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).(1)用含t的式子表示PC的长度是 ;(2)若点P,Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P,Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?答案一、选择题1.D2.B3.D4.C5.D6.A7.D8.C9.B10.B11.B二、填空题12.三角形的稳定性.13..14.直角.15.35.16..17.3.18.80°.19.30°.20.ASA.三、解答题21.解:如图所示:.22.解:∵AD⊥BC,∠B=60°,∴在△ABD中,∠BAD=90°﹣60°=30°,又∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=30°+10°=40°,又∵AE平分∠BAC,∴∠BAC=2∠BAE=80°,∴在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣60°=40°.答:∠C的度数是40°.23.证明:(1)∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,,∴△ABD≌△ECB(AAS);(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=70°,∴∠DBC=40°,∴∠ADB=∠CBD=40°.24.(1)证明:∵AB=CD,∴AB+BC=CD+BC.∴AC=BD.在△ABC和△EDF中,,∴△ACE≌△DBF(SAS);(2)解:由(1)知△ACE≌△DBF,∴∠ACE=∠DBF.∵BF⊥CE,∴∠BHC=90°,∴∠HBC+∠HCB=90°,∴∠HBC=∠HCB=45°.25.(1)证明:∵AC平分∠BAD,∴∠BAE=∠DAE,在△BAE和△DAE中,,∴△BAE≌△DAE(SAS),∴BE=DE;(2)解:由(1)得:△BAE≌△DAE,∴∠BEA=∠DEA,∴∠BEC=∠DEC,∵AC平分∠BAD,∠BAD=78°,∴∠BAC=∠DAC=∠BAD=×78°=39°,∵AC=AD,∴∠ACD=∠ADC=×(180°﹣39°)=70.5°,∵BE∥CD,∴∠BEC=∠ACD=70.5°,∴∠BEC=∠DEC=70.5°,∴∠BED=2×70.5°=141°.26.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.27.解:(1)PC=3﹣t.(2)△CPQ≌△BDP,理由如下:∵P、Q的运动速度相等,∴1秒后,CQ=BP=1,CP=BC﹣BP=3﹣1=2,∵D为AB的中点,∴BD=,∴CP=BD,在△CPQ和△BDP中,,∴△CPQ≌△BDP(SAS).(3)解:由(1)知,PC=3﹣t,BP=t,CQ=at,BD=2,∵∠C=∠B∵△BPD与△CQP全等,①当△CPQ≌△BDP时,BP=CQ,t=at,∵t≠0,∴a=1与P、Q的运动速度不相等矛盾,故舍去.②当△CPQ≌△BPD时,BP=CP,CQ=BD,∴t=3﹣t,at=2,t=a=.即点P、Q的运动速度不相等时,点Q的运动速度a为时,能够使△BPD与△CQP全等.。
2020-2021学年北师大版七年级数学下册练习第一章《整式的乘除》图形专练(二)

七年级数学下册练习第一章《整式的乘除》图形专练(二)1.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,左右两边修两条宽为a米的道路.(a>0,b>0)(1)①试用含a,b的代数式表示绿化的面积是多少平方米?②假设阴影部分可以拼成一个矩形,请你求出所拼矩形相邻两边的长;如果要使所拼矩形面积最大,求a与b满足的关系式;(2)若a=3,b=2,请求出绿化面积.2.如图,甲、乙都是长方形,边长的数据如图所示(其中m为正整数).(1)图中的甲长方形的面积S1,乙长方形的面积S2,试比较S1、S2的大小,并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.3.如图,某小区有一块长为(4a+b)米,宽为(3a+b)米的长方形土地,物业管理公司计划在阴影部分的区域进行绿化,中间修建一个正方形喷水池.(1)求绿化的面积是多少平方米?(2)若a=1,b=2时,求绿化面积.4.如图,某市有一块长(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间空白处将修建一座雕像.(1)求绿化的面积是多少平方米.(2)当a=2,b=1时求绿化面积.5.如图,边长分别为a,b的两个正方形并排放在一起,请计算图中阴影部分面积,并求出当a+b=16,ab=60时阴影部分的面积.6.如图,从边长为(a+3)的正方形纸片中剪去一个边长为a的小正方形(a>0),剩余部分沿虚线剪拼成一个矩形(不重叠无缝隙).(1)用含a的代数式表示矩形的周长和面积.(2)当a=3时,求矩形的周长和面积.7.[知识生成]通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.例如:如图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.请解答下列问题:(1)图②中阴影部分的正方形的边长是;(2)请用两种不同的方法求图②中阴影部分的面积:方法1:;方法2:;(3)观察图②,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(4)根据(3)中的等量关系解决如下问题:若x+y=6,,则(x﹣y)2=;[知识迁移]类似地,用两种不同的方法计算同一几何体的体积,也可以得到一个恒等式.(5)根据图③,写出一个代数恒等式:;(6)已知a+b=3,ab=1,利用上面的规律求的值.8.如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).(1)图②中画有阴影的小正方形的边长等于多少?(2)观察图②,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若m+n=7,mn=5,求(m﹣n)2的值.9.如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,阴影部分是边长为(a+b)米的正方形.(1)计算广场上需要硬化部分的面积;(2)若a=30,b=10,求硬化部分的面积.10.如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均分成4个长方形,然后按图2形状拼成一个正方形.(1)图2中阴影部分的边长是(用含a、b的式子表示);(2)若2a+b=7,且ab=3,求图2中阴影部分的面积;(3)观察图2,用等式表示出(2a﹣b)2,ab,(2a+b)2的数量关系是.11.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是;(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)应用:利用你从(1)选出的等式,完成下列各题:①已知9x2﹣4y2=24,3x+2y=6,求3x﹣2y的值;②计算:.12.【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.13.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a =6,b=4时的绿化面积.14.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).15.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是.(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)参考答案1.解:(1)①绿化的面积为:(3a+b)(2a+b)﹣(a+b)2﹣a(3a+b﹣a﹣b)=6a2+5ab+b2﹣a2﹣2ab﹣b2﹣2a2=(3a2+3ab)平方米;答:绿化的面积是(3a2+3ab)平方米;②如图,∵3a2+3ab=3a(a+b),∴所拼矩形相邻两边的长分别为3a米和(a+b)米;所以要使所拼矩形面积最大,3a=a+b,所以2a=b;(2)当a=3,b=2,绿化面积是3a2+3ab=3×9+3×3×2=45(平方米).2.解:(1)S1=(m+1)(m+7)=m2+8m+7,S2=(m+2)(m+4)=m2+6m+8,∴S1﹣S2=(m2+8m+7)﹣(m2+6m+8)=2m﹣1,∵m为正整数,∴2m﹣1>0,∴S1>S2.(2)图中甲的长方形周长为2(m+7+m+1)=4m+16,∴该正方形边长为m+4,∴S﹣S1=(m+4)2﹣(m2+8m+7)=9,∴这个常数为9.3.解:(1)由图形可得:(4a+b)(3a+b)﹣(a+b)2=12a2+4ab+3ab+b2﹣a2﹣2ab﹣b2=11a2+5ab.∴绿化的面积是(11a2+5ab)平方米.(2)当a=1,b=2时,绿化面积为:11×1+5×1×2=21(平方米).∴当a=1,b=2时,绿化面积为21平方米.4.解:(1)S绿化面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab;答:绿化的面积是(5a2+3ab)平方米;(2)当a=2,b=1时,绿化面积=5×22+3×2×1=20+6=26.答:当a=2,b=1时,绿化面积为26平方米.5.解:根据题意得:S阴影部分=a2+b2﹣a2﹣b(a+b)=a2+b2﹣a2﹣ab﹣b2=(a2+b2﹣ab)=[(a+b)2﹣3ab],把a+b=16,ab=60代入得:S阴影部分=38.故图中阴影部分的面积为38.6.解:(1)由拼图可得,拼成的长方形的长为a+3+a=2a+3,宽为a+3﹣a=3,所以周长为:(2a+3+3)×2=4a+12,面积为:(2a+3)×3=6a+9,答:拼成的矩形的周长为4a+12,面积为6a+9;(2)当a=3时,周长4a+12=4×3+12=24,面积6a+9=6×3+9=27.7.解:(1)由拼图可得,中间小正方形的边长为a﹣b,故答案为:a﹣b;(2)方法1,直接根据正方形的面积公式得,(a﹣b)2,方法2,大正方形面积减去四种四个长方形的面积,即(a+b)2﹣4ab,故答案为:(a﹣b)2,(a+b)2﹣4ab;(3)故答案为:(a﹣b)2=(a+b)2﹣4ab;(4)由(3)得,(x﹣y)2=(x+y)2﹣4xy=36﹣22=14;故答案为:14;(5)根据体积的不同计算方法可得;(a+b)3=a3+3a2b+3ab2+b3;故答案为:(a+b)3=a3+3a2b+3ab2+b3;(6)a+b=3,ab=1,∴===9.8.解:(1)图②中画有阴影的小正方形的边长(m﹣n);(2)(m+n)2=(m﹣n)2+4mn;(3)由(2)得:(m+n)2=(m﹣n)2+4mn;∵m+n=7,mn=5,∴(m﹣n)2=(m+n)2﹣4mn=49﹣20=29;答:(m﹣n)2的值为29.9.解:(1)根据题意,广场上需要硬化部分的面积是(2a+b)(3a+b)﹣(a+b)2=6a2+2ab+3ab+b2﹣(a+b)2=6a2+5ab+b2﹣(a2+2ab+b2)=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab答:广场上需要硬化部分的面积是(5a2+3ab)m2.(2)把a=30,b=10代入5a2+3ab=5×302+3×30×10=5400 m2答:广场上需要硬化部分的面积是5400m2.10.解:(1)图2的阴影部分的边长是2a﹣b,故答案为:2a﹣b;(2)由图2可知,阴影部分的面积=大正方形的面积﹣4个小长方形的面积,∵大正方形的边长=2a+b=7,∴大正方形的面积=(2a+b)2=49,又∵4个小长方形的面积之和=大长方形的面积=4a×2b=8ab=8×3=24,∴阴影部分的面积=(2a﹣b)2=49﹣24=25;(3)由图2可以看出,大正方形面积=阴影部分的正方形的面积+四个小长方形的面积,即:(2a+b)2﹣(2a﹣b)2=8ab.故答案为:(2a+b)2﹣(2a﹣b)2=8ab.11.解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a ﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)①∵9x2﹣4y2=(3x+2y)(3x﹣2y),∴24=6(x﹣2y)得:3x﹣2y=4;②原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+),=×××××…××××,=×,=.12.解:(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,…(2分)故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;…(4分)(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴,∴x+y+z=9,故答案为:9;…(6分)(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.…(8分)13.解:S阴影=(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab(平方米),当a=6,b=4时,5a2+3ab=5×36+3×6×4=180+72=252(平方米).14.解:(1)根据图形得:a2﹣b2=(a+b)(a﹣b),上述操作能验证的等式是B,故答案为:B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y)=12,x+2y=4,∴x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.15.解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.3)×(10﹣0.3)=102﹣0.32=100﹣0.09=99.91;②解:原式=[2m+(n﹣p)]•[2m﹣(n﹣p)] =(2m)2﹣(n﹣p)2=4m2﹣n2+2np﹣p2.。
2020-2021学年北师大版七年级下册数学 1.4:整式的乘法 同步练习(含解析)

1.4整式的乘法同步练习一.选择题1.下列计算正确的是()A.a3+a3=a6B.a3•a3=a6C.(4a3)2=8a6D.a3•b3=ab32.若(x+a)(x+b)=x2+4x+3,则a+b的值为()A.3B.﹣3C.4D.﹣43.计算3a(5a﹣2b)的结果是()A.15a﹣6ab B.8a2﹣6ab C.15a2﹣5ab D.15a2﹣6ab4.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5B.﹣5C.3D.﹣35.在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:﹣3x(﹣2x2+3x﹣1)=6x3+□+3x,“□”的地方被墨水污染了,你认为“□”内应填写()A.9x2B.﹣9x2C.9x D.﹣9x6.若单项式﹣8x a y和x2y b的积为﹣2x5y6,则ab的值为()A.2B.30C.﹣15D.157.若2x+m与x+3的乘积中不含x的一次项,则m的值为()A.﹣6B.0C.﹣2D.38.某同学在计算﹣3x2乘一个多项式时错误的计算成了加法,得到的答案是x2﹣x+1,由此可以推断该多项式是()A.4x2﹣x+1B.x2﹣x+1C.﹣2x2﹣x+1D.无法确定9.根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b210.已知a、b、c三个数中有两个奇数,一个偶数,n是整数,如果S=(a+n+1)+(b+2n+2)+(c+3n+3),那么()A.S是偶数B.S是奇数C.S的奇偶性与n的奇偶性相同D.S的奇偶不能确定二.填空题11.计算(﹣2a)3(﹣3a)2=.12.计算:(x﹣2y)(x+5y)=.13.一个长方体的长、宽、高分别是(3x﹣4)米,2x米和x米,则这个长方体的体积是.14.若(x+m)与(x+3)的乘积中不含x的一次项,则m=.15.已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=.三.解答题16.计算:(ab2﹣2ab)•ab.17.计算:6a2(ab﹣b2)﹣2a2b(a﹣b).18.小轩计算一道整式乘法的题:(2x+m)(5x﹣4),由于小轩将第一个多项式中的“+m”抄成“﹣m”,得到的结果为10x2﹣33x+20.(1)求m的值;(2)请计算出这道题的正确结果.19.如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,阴影部分是边长为(a+b)米的正方形.(1)计算广场上需要硬化部分的面积;(2)若a=30,b=10,求硬化部分的面积.参考答案一.选择题1.解:A、a3+a3=2a3,故此选项错误;B、a3•a3=a6,故此选项正确;C、(4a3)2=16a6,故此选项错误;D、a3•b3=a3b3,故此选项错误;故选:B.2.解:∵(x+a)(x+b)=x2+4x+3,∴x2+(a+b)x+ab=x2+4x+3,∴a+b=4.故选:C.3.解:3a(5a﹣2b)=15a2﹣6ab.故选:D.4.解:(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.5.解:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+3x,故选:B.6.解:﹣8x a y×x2y b=﹣2x a+2y b+1=﹣2x5y6,∴a+2=5,b+1=6,解得a=3,b=5,∴ab=3×5=15,故选:D.7.解:(2x+m)(x+3)=2x2+(m+6)x+3m,∵2x+m与x+3的乘积中不含x的一次项,∴m+6=0,解得:m=﹣6.故选:A.8.解:根据题意得:多项式为x2﹣x+1﹣(﹣3x2),x2﹣x+1﹣(﹣3x2)=x2﹣x+1+3x2=4x2﹣x+1,故选:A.9.解:根据图2的面积得:(a+3b)(a+b)=a2+4ab+3b2,故选:A.10.解:(a+n+1)+(b+2n+2)+(c+3n+3)=a+b+c+6(n+1).∵a+b+c为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴S是偶数.故选:A.二.填空题11.解:原式=﹣8a3•9a2=﹣72a5.12.解:原式=x2+5xy﹣2xy﹣10y2=x2+3xy﹣10y2,故答案为:x2+3xy﹣10y2.13.解:由题意可得,这个长方体的体积是(3x﹣4)×2x×x=(3x﹣4)×2x2=(6x3﹣8x2)立方米.故答案为:(6x3﹣8x2)立方米.14.解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故答案为:﹣3.15.解:由题意得:,解得:,则A+B=,故答案为:.三.解答题16.解:原式=ab2⋅ab﹣2ab⋅ab=a2b3﹣a2b2.17.解:原式=6a2×ab﹣6a2×b2﹣2a2b×a+2a2b×b =2a3b﹣6a2b2﹣2a3b+2a2b2=﹣4a2b2.18.解:(1)由题知:(2x﹣m)(5x﹣4)=10x2﹣8x﹣5mx+4m=10x2﹣(8+5m)x+4m=10x2﹣33x+20,所以8+5m=33或4m=20,解得:m=5.故m的值为5;(2)(2x+5)(5x﹣4)=10x2﹣8x+25x﹣20=10x2+17x﹣20.19.解:(1)根据题意,广场上需要硬化部分的面积是(2a+b)(3a+b)﹣(a+b)2=6a2+2ab+3ab+b2﹣(a+b)2=6a2+5ab+b2﹣(a2+2ab+b2)=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab答:广场上需要硬化部分的面积是(5a2+3ab)m2.(2)把a=30,b=10代入5a2+3ab=5×302+3×30×10=5400 m2答:广场上需要硬化部分的面积是5400m2.。
北师大版2020-2021学年七年级数学下册期中考试综合训练题及答案

9.如图,已知直线a,b与直线c相交,下列条件中不能判定直线a与直线b平行的是()
A.∠2+∠3=180°B.∠1+∠5=180°C.∠4=∠7D.∠1=∠8
9题图10题图11题图
10.如图,直线 ,点C在 上,点B在 上,∠ACB=90°,∠1=25°,则∠2的度数是()
A.35°B.45°C.55°D.65°
11.如图,矩形ABCD中,AB=2,BC=1,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )
A. B. C. D.
12.平面内两两相交的8条直线,其交点个数最少为m个,最多为n个,则m+n等于( )
北师大版2020-2021学年七年级数学下册期中考试综合训练题
一、单选题(将唯一正确答案的代号填在题后括号内,每题3分,共36分)
1.下列运算中,正确的是( )
A. B. C. D.
2.一个三角形的面积为(x3y)2,它的一条边长为(2xy)2,那么这条边上的高为( )
A. x4B. x4C. x4yD. x2
26.(1)方法1:图2是边长为 的正方形,∴ ;
方法2:图2可看成1个边长为 的正方形、1个边长为 的正方形以及2个长为 宽为 的长方形的组合体,∴ .
故答案为: ; ;
(2)由(1)可得: = .
故答案为: ;
(3)①∵ ,∴ =25,∴ ,
13.-1.解析: = =-1.故答案为:-1.
14.∠ABD=∠EBD(答案不唯一) .
解析:应添加的一个条件可以是∠ABD=∠EBD.
∵∠ABD=∠EBD,∠BDE=∠EBD,
2020-2021学年北师大版数学七年级下册 第四章 三角形 单元检测卷及答案

第四章三角形单元综合测试一.选择题1.已知三条线段长分别为2cm、4cm、acm,若这三条线段首尾顺次联结能围成一个三角形,那么a的取值可以是()A.1cm B.2cm C.4cm D.7cm2.全等形是指两个图形()A.大小相等B.完全重合C.形状相同D.以上都不对3.下列各选项中的两个图形属于全等形的是()A.B.C.D.4.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC =75°,∠ACB=35°,然后在M处立了标杆,使∠CBM=75°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA5.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.45°B.60°C.90°D.100°6.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D7.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E8.下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个9.如图,已知△ABC的六个元素,则下面甲、乙、丙、丁四个三角形中一定和△ABC全等的图形是()A.甲、丁B.甲、丙C.乙、丙D.乙10.如图,AB=AC,角平分线BF、CE交于点O,AO与BC交于点D,则图中共有()对全等三角形.A.8B.7C.6D.5二.填空题11.已知三角形的三边长为3、7、a,则a的取值范围是.12.如图,测量三角形中线段AB的长度为cm;判断大小关系:AB+AC BC(填“>”,“=”或“<”).13.如图,把两根钢条AB,CD的中点连在一起做成卡钳,可测量工件内槽的宽,已知AC的长度是6cm,则工件内槽的宽BD是cm.14.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.15.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是.16.下列说法正确的是(填写语句的序号):①形状相同的图形是全等图形;②边长相等的等边三角形是全等图形;③面积相等的三角形是全等三角形;④平移前后的两个图形一定是全等形;⑤全等图形的对应边和对应角都相等.17.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.18.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.19.如图,已知线段AB与CD相交于点E,AC=AD,CE=ED,则图中全等三角形有对.20.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE交于点F,若BF =AC,CD=3,BD=8,则线段AF的长度为.三.解答题21.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.22.下面图形中有哪些是全等图形?23.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.24.如图,在五边形ABCDE和五边形A′B′C′D′E′中,如果AB=A′B′,BC=B′C′,CD=C′D′,DE=D′E′,EA=E′A′.请添加尽可能少的条件,使它们全等(写出添加的条件,不需要说明理由)25.阅读下题及其证明过程:已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.证明:在△AEB和△AEC中,.∴△AEB≌△AEC(第一步).∴∠BAE=∠CAE(第二步).问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.26.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,E是对角线AC上一点,连接BE,DE.(1)求证:BE=DE.(2)当BE∥CD,∠BAD=78°时,求∠BED的度数.27.已知:在△ABC和△DBE中,AB=DB,BC=BE,其中∠ABD=∠CBE.(1)如图1,求证:AC=DE;(2)如图2,AB=BC,AC分别交DE,BD于点F,G,BC交DE于点H,在不添加任何辅助线的情况下,请直接写出图2中的四对全等三角形.参考答案一.选择题1.解:依题意有4﹣2<a<4+2,解得:2<a<6.只有选项C在范围内.故选:C.2.解:能够完全重合的两个图形叫做全等形,故选:B.3.解:A、两个图形属于全等形,故此选项符合题意;B、两个图形不属于全等形,故此选项不符合题意;C、两个图形不属于全等形,故此选项不符合题意;D、两个图形不属于全等形,故此选项不符合题意;故选:A.4.解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故选:D.5.解:∵在△ABC和△AED中,∴△ABC≌△AED(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故选:C.6.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选:C.7.解:A.AB=DE,BC=DC,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项符合题意;B.AC=DC,AB=DE,BC=EC,符合全等三角形的判定定理SSS,能推出△ABC≌△DEC,故本选项不符合题意;C.∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,∵∠B=∠E,AB=DE,∴△ABC≌△DEC(AAS),故本选项不符合题意;D.AB=DE,∠B=∠E,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;故选:A.8.解:(1)能够完全重合的两个图形全等,正确;(2)两边和一角对应相等的两个三角形全等,必须是SAS才可以得出全等,错误;(3)根据“ASA”或“AAS”定理,有两角和一边对应相等的两个三角形,比如一边是两角的夹边和一角对边相等,则这两个三角形就不全等,故原说法错误;(4)全等三角形对应边相等,正确.所以有2个判断正确.故选:B.9.解:A、△ABC和甲两个三角形根据SAS可以判定全等,△ABC与丁三角形根据ASA可以判定全等,故本选项正确;B、△ABC与丙两个三角形的对应角不一定相等,无法判定它们全等,故本选项错误;C、△ABC与乙、丙都无法判定全等,故本选项错误;D、△ABC与乙无法判定全等,故本选项错误;故选:A.10.解:∵AB=AC,角平分线BF、CE交于点O,∴AO平分∠BAC,点D为BC的中点,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS);同理可证:△OBD≌△OCD,△OBE≌△OCE,△OEA≌△OF A,△OBA≌△OCA,△BEC ≌△CFB,△ABF≌△ACF,由上可得,图中共有7对全等的三角形,故选:B.二.填空题11.解:根据三角形的三边关系,得7﹣3<a<7+3,即:4<a<10.故答案为:4<a<10.12.解:测量可知,三角形中线段AB的长度为2cm;判断大小关系:AB+AC>BC.故答案为:2,>.13.解:∵把两根钢条AB,CD的中点连在一起做成卡钳,∴AO=BO,CO=DO,在△BOD和△AOC中,∴△BOD≌△AOC(SAS),∴BD=AC=6cm,故答案为:6.14.解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.15.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.16.解:①形状相同,大小相等的图形是全等图形,故本小题错误;②边长相等的等边三角形是全等图形,正确;③面积相等的三角形是全等三角形,错误;④平移前后的两个图形一定是全等形,正确;⑤全等图形的对应边和对应角都相等,正确.所以,正确的说法有②④⑤.故答案为:②④⑤.17.解:设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴3t=100﹣2t,解得:t=20,∴AG=BE=2t=2×20=40;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴2t=100﹣2t,解得:t=25,∴AG=BF=3t=3×25=75,综上所述,AG=40或AG=75.故答案为:40或75.18.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=28°,∴∠3=∠1+∠ABD=28°+30°=58°,故答案为:58°.19.解:在△ACE和△ADE中,,∴△ACE≌△ADE(SSS),∴∠CAE=∠DAE,在△CAB和△DAB中,∴△CAB≌△DAB(SAS),∴BC=BD,在△BCE和△BDE中,∴△BCE≌△BDE(SSS).∴图中全等三角形有3对.故答案为:3.20.解:∵AD是BC边上的高,BE是AC边上的高,∴∠ADC=∠BDF=∠AEB=90°,∴∠DAC+∠C=90°,∠C+∠DBF=90°,∴∠DAC=∠DBF,在△ADC和△BDF中,,∴△ADC≌△BDF(AAS),∴CD=FD=3,AD=BD=8,∵CD=3,BD=8,∴AD=8,DF=3,∴AF=AD﹣FD=8﹣3=5,故答案为:5.三.解答题21.解:∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.22.解:如图所示:(1)和(8)是全等图形.23.(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.24.解:如图:,连接AC,AD,A′C′,A′D′,AC=A′C′,AD=A′D′,五边形ABCDE≌五边形AB′C′D′E′.25.解:上面证明过程不正确;错在第一步.正确过程如下:∵BE=CE,∴∠EBC=∠ECB,又∵∠ABE=∠ACE,∴∠ABC=∠ACB,∴AB=AC,在△AEB和△AEC中,,∴△AEB≌△AEC(SSS),∴∠BAE=∠CAE.26.(1)证明:∵AC平分∠BAD,∴∠BAE=∠DAE,在△BAE和△DAE中,,∴△BAE≌△DAE(SAS),∴BE=DE;(2)解:由(1)得:△BAE≌△DAE,∴∠BEA=∠DEA,∴∠BEC=∠DEC,∵AC平分∠BAD,∠BAD=78°,∴∠BAC=∠DAC=∠BAD=×78°=39°,∵AC=AD,∴∠ACD=∠ADC=×(180°﹣39°)=70.5°,∵BE∥CD,∴∠BEC=∠ACD=70.5°,∴∠BEC=∠DEC=70.5°,∴∠BED=2×70.5°=141°.27.证明:(1)∵∠ABD=∠CBE,∴∠ABD+∠DBC=∠CBE+∠DBC,即∠ABC=∠DBE,在△ABC与△DBE中,,∴△ABC≌△DBE(SAS),∴AC=DE;(2)由(1)得△ABC≌△DBE,∴∠A=∠D,∠C=∠E,AB=DB,BC=BE,∴AB=BE,∵AB=BC,∴∠A=∠C,∴∠A=∠E,在△ABG与△EBH中,,∴△ABG≌△EBH(ASA),∴BG=BH,在△DBH与△CBG中,,∴△DBH≌△CBG(SAS),∴∠D=∠C,∵DB=CB,BG=BH,∴DG=CF,在△DFG与△CFH中,,∴△DFG≌△CFH(AAS).1、三人行,必有我师。
2020-2021学年北师大版七年级数学下册第四章 4.2图形的全等 同步练习题

2020-2021学年北师大版七年级数学下册第四章 4.2图形的全等同步练习题A组(基础题)一、填空题1.如图,C和D是两个全等三角形的对应顶点,且∠AOC与∠BOD是对应角.(1)写出表示两个三角形全等的式子______________;(2)对应相等的边是______,______,______;(3)对应相等的角是______,______,______.2.(1)如图,两个三角形为全等三角形,则∠α的度数是______.(2)如图,△ACE≌△DBF,点A,B,C,D共线,若AC=5,BC=2,则CD的长度为______.3.如图,图中由实线围成的图形与①是全等图形的有______.(填序号)①②③④⑤4.如图,点D,E分别在AC,AB上,若△ADE≌△BDE≌△BDC,则∠A的度数为______.二、选择题5.给出下列四对图形,其中为全等图形的有( )A.1对B.2对C.3对D.4对6.下列命题中正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.两个等边三角形是全等三角形D.全等三角形是指能够完全重合的两个三角形7.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是( ) A.AC=CE B.∠BAC=∠ECDC.∠ACB=∠ECD D.∠B=∠D8.如图,△ABD≌△ACE,AE=3 cm,AC=5 cm,则线段CD的长为( )A.2 cm B.3 cm C.4 cm D.5 cm三、解答题9.(1)如图,已知△ABC≌△FED,求证:AB∥EF.(2)如图,已知△ABC≌△DCB.①分别写出对应角和对应边;②求证:∠1=∠2.10.(1)如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.(2)如图,若点A,D,E,B共线,△ACD≌△ECD,△CEF≌△BEF,∠ACB=90°.①求证:CD⊥AB;②求∠B的度数.B组(中档题)一、填空题11.如图是由全等的图形组成的,其中AB=3 cm,CD=2AB,则AF=______cm.12.如图所示的方格中,∠1+∠2+∠3=______.13.将五边形纸片ABCDE按如图所示方式折叠,折痕为AF,点E,D分别落在点E′,D′处,已知∠AFC=76°,则∠CFD′=______.二、解答题14.沿图形中的虚线,分别把下面图形划分为两个全等图形.C组(综合题)15.如图,已知△ABC≌△ADE,BC的反向延长线交AD于点F,交AE于点G,∠ACB=105°,∠CAD=10°,∠ADE=25°,求∠DFB和∠AGB的度数.参考答案2020-2021学年北师大版七年级数学下册第四章 4.2图形的全等同步练习题A组(基础题)一、填空题1.如图,C和D是两个全等三角形的对应顶点,且∠AOC与∠BOD是对应角.(1)写出表示两个三角形全等的式子:△AOC≌△BOD;(2)对应相等的边是AO=BO,OC=OD,AC=BD;(3)对应相等的角是∠A=∠B,∠C=∠D,∠AOC=∠BOD.2.(1)如图,两个三角形为全等三角形,则∠α的度数是72°.(2)如图,△ACE≌△DBF,点A,B,C,D共线,若AC=5,BC=2,则CD的长度为3.3.如图,图中由实线围成的图形与①是全等图形的有②③.(填序号)①②③④⑤4.如图,点D,E分别在AC,AB上,若△ADE≌△BDE≌△BDC,则∠A的度数为30°.二、选择题5.给出下列四对图形,其中为全等图形的有(A)A.1对B.2对C.3对D.4对6.下列命题中正确的是(D)A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.两个等边三角形是全等三角形D.全等三角形是指能够完全重合的两个三角形7.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是(C) A.AC=CE B.∠BAC=∠ECDC.∠ACB=∠ECD D.∠B=∠D8.如图,△ABD≌△ACE,AE=3 cm,AC=5 cm,则线段CD的长为(A)A.2 cm B.3 cm C.4 cm D.5 cm三、解答题9.(1)如图,已知△ABC≌△FED,求证:AB∥EF.证明:∵△ABC≌△FED,∴∠A=∠F,∴AB∥EF.(2)如图,已知△ABC≌△DCB.①分别写出对应角和对应边;②求证:∠1=∠2.解:①对应角:∠BAC与∠CDB,∠ABC与∠DCB,∠ACB与∠DBC;对应边:AB与DC,AC与DB.BC与CB.②证明:∵△ABC≌△DCB,∴∠ABC=∠DCB,∠ACB=∠DBC.∴∠ABC-∠DBC=∠DCB-∠ACB.∴∠1=∠2.10.(1)如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.解:在△ABC中,∠A=25°,∠B=65°,∴∠BCA=180°-∠A-∠B=180°-25°-65°=90°.∵△ABC≌△DEF,∴∠BCA=∠EFD,BC=EF.∴EC=BF=3 cm.∴∠DFE=90°,EC=3 cm.(2)如图,若点A,D,E,B共线,△ACD≌△ECD,△CEF≌△BEF,∠ACB=90°.①求证:CD⊥AB;②求∠B的度数.解:①证明:∵△ACD≌△ECD,∴∠A=∠CED,∠ADC=∠EDC.∵∠ADC+∠EDC=180°,∴∠ADC∠EDC=90°.∴CD⊥AB.②∵△CEF≌△BEF,∴∠B=∠ECF.设∠B=∠ECF=x,则∠CED=2x=∠A.∵∠ACB=90°,∴x+2x=90°.∴x=30°,即∠B=30°.B组(中档题)一、填空题11.如图是由全等的图形组成的,其中AB=3 cm,CD=2AB,则AF=27cm.12.如图所示的方格中,∠1+∠2+∠3=135°.13.将五边形纸片ABCDE按如图所示方式折叠,折痕为AF,点E,D分别落在点E′,D′处,已知∠AFC=76°,则∠CFD′=28°.二、解答题14.沿图形中的虚线,分别把下面图形划分为两个全等图形.解:如图所示.(答案不唯一)或C组(综合题)15.如图,已知△ABC≌△ADE,BC的反向延长线交AD于点F,交AE于点G,∠ACB=105°,∠CAD=10°,∠ADE=25°,求∠DFB和∠AGB的度数.解:∵△ABC≌△ADE,∴∠ACB=∠AED,∠ABC=∠ADE,∠CAB=∠EAD.∵∠ADE=25°,∴∠ABC=∠ADE=25°.∵∠ACB=105°,∴∠CAB=180°-105°-25°=50°.∴∠DFB=∠DAB+∠ABC=50°+10°+25°=85°,∠AGB=∠ACB-∠GAC=105°-50°-10°=45°.。
2021北师大版七年级下册数学《期中测试卷》含答案解析

2020-2021学年度第二学期期中测试北师大版七年级数学试题一、选择题(本大题共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.以下四个标志中,是轴对称图形的是( ) A.B.C.D.2.下列计算正确的是( ) A. 347a a a +=B. 632a a a ÷=C. 326()a a =D. ()222a b a b -=-3.新型冠状病毒的直径大约是0.00000006m ~0.00000014m ,将0.00000014m 用科学记数法表示为( ) A. 60.1410-⨯mB. 70.1410-⨯mC. 61.410-⨯mD. 71.410-⨯m4.下列事件是必然事件的是( ) A. 乘坐公共汽车恰好有空座 B. 购买一张彩票,中奖C. 同位角相等D. 三角形的三条高所在的直线交于一点5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A .7cm 、9cm 、2cm B. 7cm 、15cm 、10cm C. 7cm 、9cm 、15cmD. 7cm 、10cm 、13cm6.如图,在下列四组条件中,能得到AB //CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠ADC +∠BCD =180°D. ∠BAC =∠ACD7.如图,AB ∥ED ,CD=BF ,若要说明△ABC ≌△EDF ,则不能补充的条件是( )A. AC=EFB. AB=EDC. ∠A=∠ED. AC∥EF8.如果249x mx-+是完全平方式,则m的值为()A. 6 B. ±6 C. 12 D. ±12 9.下列条件中①∠A+∠B=∠C ②∠A﹕∠B﹕∠C=1﹕2﹕3 ③∠A=∠B=13∠C ④∠A=∠B=2∠C ⑤∠A=∠B=12∠C 中能确定△ABC为直角三角形的条件有().A. 2个B. 3个C. 4个D. 5个10.如图,点C在∠AOB的边OB上,用直尺和圆规作∠BCN=∠AOC,这个尺规作图的依据是()A. SASB. SSSC. AASD. ASA11.五一小长假的某一天,亮亮全家上午8时自驾小汽车从家里出发,到某旅游景点游玩,该小汽车离家的距离(千米)与时间(时)之间的关系如图所示,根据图像提供的有关信息,判断下列说法错误的是()A. 景点离亮亮的家180千米B. 亮亮到家的时间为17时C. 小汽车返程的速度为60千米/时D. 10时至14时,小汽车匀速行驶12.如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点1A,1B,1C,使1A B AB=,1B C BC =,1C A CA =,顺次连接1A ,1B ,1C ,得到△111A B C .第二次操作:分别延长11A B ,11B C ,11C A 至点2A ,2B ,2C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接2A ,2B ,2C ,得到△222A B C ,…按此规律,要使得到的三角形的面积超过2020,最少经过多少次操作( )A. 4B. 5C. 6D. 7二、填空题(本大题共6个小题,每小题4分,共24分.把正确答案填在题中横线上)13.计算:()03.14π-=_____________________.14.一个等腰三角形两边的长分别是13cm 和6cm ,则它的周长是 _____________cm .15.如图,在△ABC 中,AB =10,AC =8,AD 为中线,则ABD △与ACD 的周长之差=_____________________16.已知a ∥b ,某学生将一直角三角板如图所示放置,如果∠1=30°,那么∠2的度数为______________________°.17.已知3a b +=,7ab =-,则22a b +=_________________.18.如图,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,连接CD ,若三角形△ABC 内有一点P ,则点P 落在△ADC 内(包括边界的阴影部分)的概率为__________.三、解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤) 19.计算下列各式: (1)()()235743x x x --⋅ ; (2)()45344321234.2a b a b a bab ⎛⎫-+÷ ⎪⎝⎭20.先化简,再求值:()()()()()222222a b a b a b a b a b --+-+-+,其中2,1a b =-=-.21.已知:如图,已知∠B =45°,∠BDC =45°,∠A =∠1. 求证:∠2=∠BDE .22.在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有4个白球,从中任意摸出一个球,求摸出的是白球的概率; (2)如果任意摸出一个球是绿球的概率是15,求袋内有几个白球? 23.如图,线段AD 、BE 相交与点C,且△ABC ≌△DEC ,点M 、N 分别为线段AC 、CD 的中点.求证:(1)ME=BN ; (2)ME ∥BN .24.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ; (4)运用你所得到的公式,计算下列各题: ① 20.2×19.8 ;②()()22m n p m n p +--+.25.下表是小颖往表姐家打长途电话的收费记录: 通话时间x (分钟) 1 2 3 4 5 6 7 电话费y (元) 3333.64.24.85.4(1)上表的两个变量中, 是自变量, 是因变量; (2)写出y 与x 之间的关系式;(3)若小颖的通话时间是15分钟,则需要付多少电话费? (4)若小颖有24元钱,则她最多能打多少分钟电话?26.(1)如图1,AB ∥CD ,点P 在AB 、CD 外部,若∠B =60°,∠D =30°,则∠BPD = °; (2)如图2,AB ∥CD ,点P 在AB 、CD 内部,则∠B ,∠BPD ,∠D 之间有何数量关系?证明你的结论; (3)在图2中,将直线AB 绕点B 按逆时针方向旋转一定角度交直线CD 于点M ,如图3,若∠BPD =86°,∠BMD =40°,求∠B +∠D 的度数.图1 图2 图327.CD 是经过∠BCA 定点C 的一条直线,CA=CB ,E 、F 分别是直线CD 上两点,且∠BEC =∠CF A =∠β. (1)若直线CD 经过∠BCA 内部,且E 、F射线CD 上,①若∠BCA=90°,∠β=90°,例如左边图,则BE CF ,EF |BE - AF | (填“>”,“<”,“=”);②若0°<∠BCA <180°,且∠β+∠BCA=180°,例如中间图,①中的两个结论还成立吗?并说明理由; (2)如右边图,若直线CD 经过∠BCA 外部,且∠β=∠BCA ,请直接写出线段EF 、BE 、AF 的数量关系(不需要证明).附加题(本大题共3个题,每小题5分,共20分, 得分不计入总分.)28.已知2241210340x y x y +--+=,则2x y += __________________.29.已知()()222019202130x x -+-=,则()22020x -=_____________.30.如图,MN //EF , 点C 为两直线之间一点,若∠CAM 的平分线与∠CBF 的平分线所在的直线相交于点 D ,则∠ACB 与 ∠ADB 之间的数量关系是 .31.如图,∠A +∠B +∠C +∠D +∠E +∠F 的度数是_________________.答案与解析一、选择题(本大题共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.以下四个标志中,是轴对称图形的是( ) A.B.C.D.【答案】C 【解析】 【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念对各选项分析判断即可.【详解】解:A 、不是轴对称图形,故本选项错误; B 、不是轴对称图形,故本选项错误; C 、是轴对称图形,故本选项正确; D 、不是轴对称图形,故本选项错误. 故选:C .【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键. 2.下列计算正确的是( ) A. 347a a a += B. 632a a a ÷=C. 326()a a =D. ()222a b a b -=-【答案】C 【解析】 【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方运算法则和完全平方公式计算各项,进而可得答案.【详解】解:A 、3a 与4a 不是同类项,不能合并,所以本选项计算错误,不符合题意; B 、6332a a a a ÷=≠,所以本选项计算错误,不符合题意; C 、()236a a =,所以本选项计算正确,符合题意;D 、()222222a b a ab b a b -≠-=+-,所以本选项计算错误,不符合题意.故选:C .【点睛】本题考查了合并同类项的法则、同底数幂的除法法则、幂的乘方运算法则和完全平方公式等知识,属于基础题型,熟练掌握基本知识是解题关键.3.新型冠状病毒的直径大约是0.00000006m ~0.00000014m ,将0.00000014m 用科学记数法表示为( ) A. 60.1410-⨯m B. 70.1410-⨯mC. 61.410-⨯mD. 71.410-⨯m【答案】D 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a×10−n ,其中1≤|a|<10,n 为整数,n 的值取决于原数变成a 时,小数点移动的位数,n 的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数. 【详解】0.00000014=71.410-⨯. 故选D .【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10−n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.下列事件是必然事件的是( ) A. 乘坐公共汽车恰好有空座 B. 购买一张彩票,中奖C. 同位角相等D. 三角形的三条高所在的直线交于一点【答案】D 【解析】 【分析】根据必然事件、不可能事件和随机事件的概念逐项判断,进而可得答案.【详解】解:A 、乘坐公共汽车恰好有空座是随机事件,不是必然事件,本选项不符合题意; B 、购买一张彩票,中奖,是随机事件,不是必然事件,本选项不符合题意;C 、同位角相等,只在两直线平行的前提下才成立,是随机事件,不是必然事件,本选项不符合题意;D 、三角形的三条高所在的直线交于一点,是必然事件,本选项符合题意. 故选:D .【点睛】本题考查了必然事件、不可能事件和随机事件的概念,属于基础概念题型,熟练掌握基本知识是解题的关键.5.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A. 7cm、9cm、2cmB. 7cm、15cm、10cmC. 7cm、9cm、15cmD. 7cm、10cm、13cm【答案】A【解析】【分析】根据三角形的三边关系依次判断即得答案.【详解】解:A、∵9-7=2,∴长度为7cm、9cm、2cm 的三条线段不能做成三角形框架,本选项符合题意;B、∵15-10<7<15+10,∴长度为7cm、15cm、10cm 的三条线段能做成三角形框架,本选项不符合题意;C、∵15-9<7<15+9,∴长度为7cm、9cm、15cm 的三条线段能做成三角形框架,本选项不符合题意;D、∵13-10<7<13+10,∴长度为7cm、10cm、13cm 的三条线段能做成三角形框架,本选项不符合题意.故选:A.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的三边关系是解题关键.6.如图,在下列四组条件中,能得到AB//CD的是()A. ∠1=∠2B. ∠3=∠4C. ∠ADC+∠BCD=180°D. ∠BAC=∠ACD【答案】D【解析】分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、若∠1=∠2,则AD//BC,故本选项错误;B、若∠3=∠4,则AD∥BC,故本选项错误;C、若∠ADC+∠BCD=180°,则AD∥BC,故本选项错误;D、∠BAC=∠ACD,则AB∥CD,故本选项正确.故选:D.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.7.如图,AB ∥ED ,CD=BF ,若要说明△ABC ≌△EDF ,则不能补充的条件是( )A. AC=EFB. AB=EDC. ∠A =∠ED. AC ∥EF【答案】A 【解析】 【分析】根据平行线的性质得出∠B=∠D ,再求出BC=DF ,根据全等三角形的判定定理逐个判断即可. 【详解】解:∵AB ∥DE , ∴∠B=∠D , ∵BF=DC , ∴BC=DF ,在△ABC 和△DEF 中, BC DF AC B EF D =⎧⎪⎨⎪=∠∠⎩=,不能证得△ABC ≌△DEF ,故A 选项正确;在△ABC 和△DEF 中,BC DF AB B DE D =⎧⎪⎨⎪=∠∠⎩=,能证得△ABC ≌△DEF (SAS ),故B 选项错误;在△ABC 和△DEF 中,D C E DF B A B ∠=∠∠=∠=⎧⎪⎨⎪⎩,能证得△ABC ≌△DEF (AAS ),故C 选项错误;∵AC ∥EF ,∴∠ACB =∠EFD ,在△ABC 和△DEF 中,B D ACB EFD BC DF ∠=∠∠=∠=⎧⎪⎨⎪⎩,能证得△ABC ≌△DEF (ASA ),故C 选项错误; 故选:A .【点睛】本题考查了平行线的性质,全等三角形的判定定理的应用,能熟练地运用全等三角形的判定定理进行推理是解此题的关键.8.如果 249x mx -+是完全平方式,则m 的值为( )A. 6B. ±6C. 12D. ±12 【答案】D【解析】【分析】根据完全平方式的定义解答即可.【详解】解:∵249x mx -+是完全平方式,∴22312m =±⨯⨯=±.故选:D .【点睛】本题考查的是完全平方式的定义,属于应知应会题型,熟练掌握完全平方式的概念是关键.9.在下列条件中①∠A +∠B =∠C ②∠A ﹕∠B ﹕∠C =1﹕2﹕3 ③∠A =∠B =13∠C ④∠A =∠B =2∠C ⑤∠A =∠B =12∠C 中能确定△ABC 为直角三角形的条件有( ). A. 2个B. 3个C. 4个D. 5个 【答案】C【解析】①是,因为根据三角形内角和定理可求出∠C=90°,所以是直角三角形;②是,因为根据三角形内角和定理可求出三个角分别为30°,60°,90°,所以是直角三角形;③是,因为由题意得∠C=90°,所以是直角三角形;④不是,因为根据三角形内角和定理可求出三个角分别是36°,72°,72°,所以不是直角三角形.⑤是,因为根据三角形内角各定理可求出∠C=90°,所以是直角三角形.故选C .10.如图,点C 在∠AOB 边OB 上,用直尺和圆规作∠BCN =∠AOC ,这个尺规作图的依据是( )A. SASB. SSSC. AASD. ASA【答案】B【解析】【分析】用尺规画一个角等于已知角的步骤:首先以C为圆心,OD为半径画弧交OB于点E,再以点E为圆心,DM 为半径画弧,记两弧交于点N,据此即可求解.【详解】解:连接NE,根据做法可知:CE=OD,EN=DM,CN=OM∴△CEN≌△ODM(SSS),∴∠ECN=∠DOM即∠BCN=∠AOC故选:B.【点睛】本题主要考查尺规作图,属于基础题型,解题的关键是熟练掌握用尺规画一个角等于已知角的步骤.11.五一小长假的某一天,亮亮全家上午8时自驾小汽车从家里出发,到某旅游景点游玩,该小汽车离家的距离(千米)与时间(时)之间的关系如图所示,根据图像提供的有关信息,判断下列说法错误的是()A. 景点离亮亮的家180千米B. 亮亮到家的时间为17时C. 小汽车返程的速度为60千米/时D. 10时至14时,小汽车匀速行驶【答案】D【解析】【分析】根据图像提供的信息判断即可.【详解】解:由图像可得,小明8时出发10时到达旅游景点,走过的路程为180千米,所以景点离亮亮的家180千米,A 选项正确;14时开始回家,回家的行驶速度为180120601514-=-千米/时,回家所用时间为180603÷=时,所以亮亮到家的时间为14317+=时,B 、C 选项正确;10时至14时,路程没有发生变化,说明是在景点游玩,小汽车静止不动,D 选项错误.故答案为D【点睛】本题考查了函数图像,此类题要理解每个数据及每段函数图像所表达的含义,正确从函数图像获取信息是解题的关键.12.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点1A ,1B ,1C ,使1A B AB =,1B C BC =,1C A CA =,顺次连接1A ,1B ,1C ,得到△111A B C .第二次操作:分别延长11A B ,11B C ,11C A 至点2A ,2B ,2C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接2A ,2B ,2C ,得到△222A B C ,…按此规律,要使得到的三角形的面积超过2020,最少经过多少次操作( )A. 4B. 5C. 6D. 7【答案】A【解析】【分析】 先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】解:连接A 1C ,如图,∵AB =A 1B ,∴△ABC 与△A 1BC 的面积相等,∵△ABC 面积为1,∴1A BC S △=1.∵BB 1=2BC ,∴1112A B B A BC S S △△==2,同理可得,11C B C S =2,11AA C S △=2,∴111111111A B C C B C AA C A B B ABC S S S S S +++△△△△△==2+2+2+1=7;同理可得:△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2020,最少经过4次操作.故选:A .【点睛】考查了三角形的中线的性质和三角形的面积,属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据规律求解.第II 卷(非选择题 共102分)二、填空题(本大题共6个小题,每小题4分,共24分.把正确答案填在题中横线上) 13.计算:()03.14π-=_____________________. 【答案】1【解析】【分析】根据0指数幂的意义解答即可.【详解】解:因为 3.140π-≠,所以()03.141π-=.故答案为:1.【点睛】本题考查了0指数幂的意义,属于应知应会题型,熟知任何非零数的0次幂等于1是解题的关键. 14.一个等腰三角形两边的长分别是13cm 和6cm ,则它的周长是 _____________cm .【答案】32【解析】【分析】先根据等腰三角形的定义和三角形的三边关系确定三角形的第三边,再计算周长即可.【详解】解:记第三边为c cm ,若c =13cm ,则该三角形的周长=13+13+6=32cm ;若c =6cm ,由于6+6<13,不能构成三角形,所以此种情况应舍去;所以该三角形的周长是32cm .故答案为:32.【点睛】本题考查了等腰三角形的定义和三角形的三边关系,属于基础题型,熟练掌握基本知识是解题关键.15.如图,在△ABC 中,AB =10,AC =8,AD 为中线,则ABD △与ACD 的周长之差=_____________________【答案】2.【解析】【分析】根据三角形的周长的计算方法得到ABD △的周长和ACD 的周长的差就是AB 与AC 的差.【详解】解:∵AD 是ABC 中BC 边上的中线,∴BD=DC=12BC , ∴ABD △与ACD 的周长之差()()AB BD AD AC DC AD =++-++=AB-AC =1082-= .则ABD △与ACD 的周长之差=2.故答案为:2.【点睛】本题考查三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线,同时考查了三角形周长的计算方法.16.已知a ∥b ,某学生将一直角三角板如图所示放置,如果∠1=30°,那么∠2的度数为______________________°.【答案】60°【解析】【分析】如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2.【详解】解:如图,∵∠1=30°,∴∠3=∠1=30°,∵a ∥b ,∴∠4=∠3=30°,∴∠5=180°-∠4-90°=60°,∴∠2=∠5=60°.故答案为:60°.【点睛】本题考查了对顶角相等、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题关键.17.已知3a b +=,7ab =-,则22a b +=_________________.【答案】23【解析】【分析】先把所求式子变形为()2222a b a b ab +=+-,再把已知的式子整体代入计算即可.【详解】解:()()2222232791423a b a b ab +=+-=-⨯-=+=.故答案为:23.【点睛】本题考查了完全平方公式变形与求值,属于基本题型,熟练掌握完全平方公式和整体代入的思想是解题关键.18.如图,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,连接CD ,若三角形△ABC 内有一点P ,则点P 落在△ADC 内(包括边界的阴影部分)的概率为__________.【答案】12【解析】【分析】 据已知条件证得△ABD ≌△AED ,根据全等三角形的性质得到BD =ED ,得出S △ABD =S △AED ,S △BCD =S △DCE ,推出S △ACD =12S △ABC ,根据概率公式可得的答案. 【详解】延长BD 交AC 于E ,∵AD 平分∠BAC ,∴∠BAD =∠EAD ,∵BD ⊥AD ,∴∠ADB =∠ADE =90°,在△ABD 和△AED 中,ADB ADE AD ADBAD EAD ∠=∠⎧⎪=⎨⎪∠∠⎩=, ∴△ABD ≌△AED (ASA ),∴BD =ED ,∴S △ABD =S △AED ,S △BCD =S △DCE ,,∴S △ACD =12S △ABC , 则点P 落在△ADC 内(包括边界)的概率为:12ACDABC S S=. 故答案为12. 【点睛】本题考查了概率公式的应用与全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.三、解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤)19.计算下列各式:(1)()()235743x x x --⋅ ; (2)()45344321234.2a b a b a b ab ⎛⎫-+÷ ⎪⎝⎭ 【答案】(1)1043x ;(2)33223468a b a b a b -+.【解析】【分析】(1)先计算积的乘方,再计算刘项式乘以单项式,最后合并同类项即可;(2)依据多项式除以单项式的运算法则进行计算即可.【详解】(1)()()235743x x x --⋅ =()03711627x xx --⋅ =100116+27x x=1043x ;(2)()453443212342a b a b a b ab ⎛⎫-+÷ ⎪⎝⎭=452342432111234222a b ab a b ab a b ab ⎛⎫⎛⎫⎛⎫÷-÷+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=33223468a b a b a b -+.【点睛】此题主要考查了整式的混合运算,注意运算顺序以及符号的处理.20.先化简,再求值:()()()()()222222a b a b a b a b a b --+-+-+,其中2,1a b =-=-. 【答案】226a ab b --+,﹣15.【解析】【分析】先根据完全平方公式、平方差公式和多项式的乘法法则计算各项,再合并同类项,然后把a 、b 的值代入化简后的式子计算即可.【详解】解:原式=()()22222244422a ab b a b a ab b -+--+--=222222444224a ab b a b a ab b -+-++--=226a ab b --+当2,1a b =-=-时,原式=()()()()2226211---⨯-⨯-+-=﹣15.【点睛】本题考查了整式乘法的混合运算和代数式求值,属于基础题型,熟练掌握整式乘法的运算法则是解题关键.21.已知:如图,已知∠B =45°,∠BDC =45°,∠A =∠1. 求证:∠2=∠BDE .【答案】见解析【解析】【分析】根据平行线的判定得出AB ∥DC ,根据平行线的性质得出∠A =∠C ,求出∠C =∠1,根据平行线的判定得出AC ∥DE ,根据平行线的性质得出即可.【详解】∵∠B =45°,∠BDC =45°,∴∠B =∠BDC ,∴AB ∥DC ,∴∠A =∠C ,∵∠A =∠1,∴∠C =∠1,∴AC ∥DE ,∴∠2=∠BDE .【点睛】本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键. 22.在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有4个白球,从中任意摸出一个球,求摸出的是白球的概率;(2)如果任意摸出一个球是绿球的概率是15,求袋内有几个白球?【答案】(1)13;(2)袋内有7个白球.【解析】【分析】(1)用白球的个数除以袋中球的总个数即可;(2)设袋内有x个白球,根据概率公式可得关于x的方程,解方程即可求出结果.【详解】解:(1)41 3543=++.答:从中任意摸出一个球,摸出的是白球的概率是13;(2)设袋内有x个白球,根据题意,得:31355x=++,解得:x=7.答:袋内有7个白球.【点睛】本题考查了简单事件的概率,属于基础题型,正确理解题意、熟练掌握概率公式是解题的关键.23.如图,线段AD、BE相交与点C,且△ABC≌△DEC,点M、N分别为线段AC、CD的中点.求证:(1)ME=BN;(2)ME∥BN.【答案】(1)证明见解析;(2)证明见解析.【解析】【详解】(1)∵△ABC≌△DEC,∴AC=DC,BC=CE.∵点M、N分别为线段AC、CD的中点,∴CM=CN.在△BCN和△ECM中∵AC=DC,∠BCN=∠ECM,BC=CE∴△BCN≌△ECM(SAS)∴ME=BN.(2)∵△BCN≌△ECM,∴∠CBN=∠CEM,∴ME∥BN.24.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ;(4)运用你所得到的公式,计算下列各题:① 20.2×19.8 ;②()()22m n p m n p +--+.【答案】(1)a 2−b 2;(2)a−b ,a +b ,(a +b )(a−b );(3)(a +b )(a−b )=a 2−b 2;(4)①99.96;②4m 2−n 2+2np−p 2.【解析】【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【详解】(1)利用正方形的面积公式可知:阴影部分的面积=a 2−b 2;故答案为:a 2−b 2;(2)由图可知矩形的宽是a−b ,长是a +b ,所以面积是(a +b )(a−b );故答案为:a−b ,a +b ,(a +b )(a−b );(3)(a +b )(a−b )=a 2−b 2(等式两边交换位置也可);故答案为:(a +b )(a−b )=a 2−b 2;(4)①解:原式=(10+0.2)×(10−0.2),=102−0.22,=100−0.04,=99.96;②解:原式=[2m +(n−p )]•[2m−(n−p )],=(2m )2−(n−p )2,=4m 2−n 2+2n p−p 2.【点睛】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.25.下表是小颖往表姐家打长途电话的收费记录:(1)上表的两个变量中, 是自变量, 是因变量;(2)写出y 与x 之间的关系式;(3)若小颖的通话时间是15分钟,则需要付多少电话费?(4)若小颖有24元钱,则她最多能打多少分钟电话?【答案】(1)通话时间;电话费; (2)()()3030.6 1.23x y x x ⎧≤≤⎪=⎨+⎪⎩>;(3)小颖通话15分钟,则需付话费10.2元;;(4)小颖有24元钱,则她最多能打38多少分钟电话.【解析】【分析】(1)根据函数的定义解答即可;(2)根据表格可知,当通话时间不超过3分钟,通话费用为3元,当通话时间大于3分钟,通话每增加1分钟,电话费增加0.6元,可得电话费y (元)与通话时间x (分钟)之间的关系式;(3)把15x =代入(2)的结论即可;(4)把24y =代入(2)的结论即可【详解】解:(1)自变量是通话时间,因变量是电话费.故答案为:通话时间;电话费;(2)由图表信息知:当3,x ≤≤0 3,y =当3x >时,设y kx b =+,4 3.65 4.2k b k b +=⎧∴⎨+=⎩, 解得:0.6,1.2k b =⎧⎨=⎩ 0.6 1.2,y x ∴=+经检验:当6,7x x ==符合题意,()()303.0.6 1.23x y x x ⎧≤≤⎪∴=⎨+⎪⎩> (3)当15x =时,0.615 1.210.2y =⨯+=,所以小颖通话15分钟,则需付话费10.2元;(4)把24y =代入0.6 1.2y x =+中得: 0.6 1.224,x +=∴38x =.所以小颖有24元钱,则她最多能打38多少分钟电话.【点睛】本题主要考查了函数的定义,列一次函数解析式,理清题意,得出电话费y (元)与通话时间x (分钟)之间的关系式是解答本题的关键.26.(1)如图1,AB ∥CD ,点P 在AB 、CD 外部,若∠B =60°,∠D =30°,则∠BPD = °; (2)如图2,AB ∥CD ,点P 在AB 、CD 内部,则∠B ,∠BPD ,∠D 之间有何数量关系?证明你的结论; (3)在图2中,将直线AB 绕点B 按逆时针方向旋转一定角度交直线CD 于点M ,如图3,若∠BPD =86°,∠BMD =40°,求∠B +∠D 的度数.图1 图2 图3【答案】(1)30°;(2)∠BPD =∠B +∠D ,证明见解析;(3)46°.【解析】【分析】(1)根据平行线的性质可求得∠BOD 的度数,由三角形外角的性质即可求得结果;(2)过点P 作PE ∥AB ,如图4,由平行公理的推论可得AB ∥PE ∥CD ,然后根据平行线的性质和角的和差即可得出结论;(3)延长BP交CD于点E,如图5,根据三角形外角的性质可得∠BPD=∠BMD+∠B+∠D,进一步即可求出结果.【详解】解:(1)∵AB∥CD,∠B=60°,∴∠BOD=∠B=60°,∴∠BPD=∠BOD﹣∠D=60°﹣30°=30°.故答案为:30°;(2)∠BPD=∠B+∠D.证明:过点P作PE∥AB,如图4,∵AB∥CD,∴AB∥PE∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(3)延长BP交CD于点E,如图5,∵∠1=∠BMD+∠B,∠BPD=∠1+∠D,∴∠BPD=∠BMD+∠B+∠D,∵∠BPD=86°,∠BMD=40°,∴∠B+∠D=∠BPD﹣∠BMD=86°﹣40°=46°.【点睛】此题考查了平行线的性质与三角形外角的性质,属于常考题型,正确作出辅助线、熟练掌握平行线的性质和三角形的外角性质是解题的关键.27.CD是经过∠BCA定点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CF A=∠β.(1)若直线CD经过∠BCA内部,且E、F在射线CD上,①若∠BCA=90°,∠β=90°,例如左边图,则BE CF,EF|BE - AF|(填“>”,“<”,“=”);②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如中间图,①中的两个结论还成立吗?并说明理由;(2)如右边图,若直线CD经过∠BCA外部,且∠β=∠BCA,请直接写出线段EF、BE、AF的数量关系(不需要证明).【答案】(1)①=,= ②两结论依然成立,证明见解析(2)EF=BE+AF【解析】【分析】(1)①本题考查全等三角形的判定,可利用AAS定理进行解答;②本题考查全等三角形判定,可通过三角形内角和定理运用AAS解答.(2)本题考查全等三角形的判定,运用三角形内角和以及平角定义,通过AAS解答.【详解】(1)①∵∠BCA=90°,∠β=90°∴∠FCA+∠BCF=90°,∠FCA+∠CAF=90°∴∠BCF=∠CAF又∵∠BEC=∠CFA,CA=CB∴△BEC≅△CFA(AAS)∴BE=CF,CE=AF=-=-∴EF CF CE BE AF②在△FCA中,∠CFA+∠FCA+∠CAF=180°又∵∠BEC=∠CFA=∠β,∠β+∠BCA=180°∴∠FCA+∠CAF=∠BCA∵∠BCA=∠BCE+∠FCA∴∠CAF=∠BCE∵CA=CB∴△BEC≅△CFA(AAS)∴BE=CF,CE=AF∴EF CF CE BE AF =-=-(2)在△BEC 中,∠B+∠BEC+∠BCE=180°又∵∠BEC=∠CFA=∠β,∠BCE+∠BCA+∠ACF=180°,∠β=∠BCA∴∠B=∠ACF∵CA=CB∴△BEC ≅△CFA(AAS)∴BE=CF ,CE=AFEF=EC+CF=AF+BE【点睛】本题考查全等三角形证明以及性质的应用,并结合一定的探究思路,按照题目指引利用AAS 判别定理解答即可.附加题(本大题共3个题,每小题5分,共20分, 得分不计入总分.)28.已知2241210340x y x y +--+=,则2x y += __________________.【答案】8【解析】【分析】化简方程,再根据非负数的性质列出算式,求出x y 、的值,再进行计算即可.【详解】解:由题可得:22224121034(23)(5)0x y x y x y +--+=+-=-,即230x -=,50y -=,解得:32x =,5y =. ∴322582x y +=⨯+=. 【点睛】本题主要考查的是非负数的性质,解题的关键是掌握几个非负数的和为0时,这几个非负数都为0. 29.已知()()222019202130x x -+-=,则()22020x -=_____________. 【答案】14【解析】【分析】设2020x a -=,则20191x a -=+,20211x a -=-,于是原式可变形为关于a 2的等式,求出a 2即为所求的式子的值.【详解】解:设2020x a -=,则20191x a -=+,20211x a -=-,因为()()222019202130x x -+-=,所以()()221130a a ++-=,整理,得:22230a +=,所以214a =,即()22020x -=14.故答案为:14.【点睛】本题考查了整式乘法的完全平方公式及其变形,设2020x a -=、灵活利用整体代入的数学思想是解题的关键.30.如图,MN //EF , 点C 为两直线之间一点,若∠CAM 的平分线与∠CBF 的平分线所在的直线相交于点 D ,则∠ACB 与 ∠ADB 之间的数量关系是 .【答案】∠ACB =180°﹣2∠ADB【解析】【分析】如图,过点C 作CG ∥MN ,过点D 作DH ∥MN ,根据平行公理的推论可得MN ∥CG ∥DH ∥EF ,根据平行线的性质、角平分线的定义和角的和差可得:∠ACB =180°﹣2(∠1-∠2),∠ADB =∠1-∠2,进一步即可推出结论.【详解】解:如图,过点C 作CG ∥MN ,过点D 作DH ∥MN ,∵MN ∥EF ,∴MN ∥CG ∥DH ∥EF ,∴∠1=∠ADH ,∠2=∠BDH ,∠6=∠4,∠FBC =∠5,∴∠ACB =∠4+∠5=∠6+∠FBC ,∵∠MAC 与∠FBC 的平分线相交于点D ,∴∠MAC =2∠1,∠CBF =2∠3=2∠2,∴∠ACB =∠6+∠FBC=180°﹣∠MAC +2∠2=180°﹣2∠1+2∠2=180°﹣2(∠1-∠2),∵∠ADB=∠ADH-∠BDH=∠1-∠2,∴∠ACB=180°﹣2∠ADB.故答案为:∠ACB=180°﹣2∠ADB.【点睛】本题考查了平行线的性质和角平分线的定义等知识,正确的作出辅助线、熟练掌握平行线的性质是解题的关键.31.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数是_________________.【答案】360°【解析】【分析】如图,根据三角形的外角性质和四边形的内角和是360°解答即可.【详解】解:如图,∵∠CGF=∠1+∠A=∠B+∠E+∠A,∠CGF +∠F+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.【点睛】本题考查了三角形的外角性质和四边形的内角和,属于基础题型,熟练掌握三角形的外角性质和四边形的内角和是360°是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七下数学期中综合复习卷二(第一章-第四章)一.选择题(共10小题,满分40分,每小题4分)
1.(4分)下列运算中,正确的是()
A.(a2)3=a6B.a2•a3=a6
C.a6÷a3=a2D.(a﹣2)(﹣2﹣a)=a2﹣4 2.(4分)下列各式能用完全平方公式计算的是()
A.(3a+2b)(3a﹣2b)B.(3a+2b)(2b﹣3a)
C.(3a﹣2b)(2b﹣3a)D.(3a﹣2b)(﹣3a﹣2b)
3.(4分)圆的周长公式为C=2πr,下列说法正确的是()
A. 常量是2
B. 变量是C、π、r
C. 变量是C、r
D. 常量是2、r 4.(4分)在下图中,正确画出AC边上高的是().
A B C D
5.(4分)全等图形是指两个图形()
A. 能够重合
B. 形状相同
C. 大小相同
D. 相等
6.(4分)若三角形的三边长分别为3,x,5,则x的值可以是()A.2B.5C.8D.11 7.(4分)如图,在下列给出的条件中,不能推出AB∥DC的条件是()A.∠B=∠DCE
B.∠BAD+∠D=180°
C.∠1=∠2
D.∠3=∠4
8.(4分)如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O.若AB=AC,∠A=40°,则∠BOE的度数是()
A.60°B.55°C.50°D.40°
9.(4分)如图,将长方形纸片ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠GHC=110°,则∠AGE等于()
A.55°B.45°C.40°D.25°
10.(4分)在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(h)后,与乙港的距离为y(km),y与x的函数关系如图所示,则下列说法正确的是()
A.甲港与丙港的距离是90km B.船在中途休息了0.5小时
C.船的行驶速度是45km/h D.从乙港到达丙港共花了1.5小时
第8题第9题第10题
二.填空题(共6小题,满分24分,每小题4分)
11.(4分)如果一盒圆珠笔有12支,售价24元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是.
12.(4分)已知x2+(m﹣1)x+25是完全平方式,则m的值为.
13.(4分)计算:=.
14.(4分)如图,△ABC中,DE∥BC,将△ADE沿DE翻折,使得点A落在平面内的A′处,若∠B=40°,则∠BDA′的度数是.
15.(4分)如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,
则甲的速度____乙的速度(用“>”“=”或“<”填空).
16.(4分)已知x2+3x﹣1=0,则x3+5x2+5x+18=__________________.
三.解答题(共9小题,满分86分)
17.(10分)(1)计算:(x﹣3)0+()﹣1;(2)化简:x(2x﹣y)+(3x3y+x2y2)÷(xy).
18.(8分)如图,已知点E、C在线段BF上,在BC上方作射线BN,使∠CBN=∠1,交CM 的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);
19.(8分)先化简,再求值:x(x﹣4y)+(2x+y)(2x﹣y)﹣(2x﹣y)2,
其中x=﹣2,y=﹣1.
20.(8分)已知:|3﹣xy|+(x+y-2)2=0,求x2+y2+4xy的值
20.(8分)如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠EGF=35°,求∠EFG的度数.
21.(8分)如图,已知∠A=∠F,∠C=∠D,按图在括号内填写理由.
解:∵∠A=∠F(已知)
∴ AC∥DF ( )
∴ = ( )
又∵∠C=∠D (已知)
∴ = ()
∴ BD∥CE ( )
22.(10分)某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图所示是小明从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.
(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;
(2)小明修车用了多长时间?
(3)小明修车以前和修车后的平均速度分别是多少?
24.(12分)对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的等式.例如:计算左图的面积可以得到等式(a+b)(a+2b)=a2+3ab+2b2.请解答下列问题:
(1)观察如图,写出所表示的等式:=;
(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7x﹣5,b=﹣4x+2,c=﹣3x+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值
25.(14分)小明和小亮在研究一个数学问题:已知AB∥CD,AB和CD都不经过点P,探索∠P 与∠A,∠C的数量关系.
(1)如图1,小明是这样证明的:过点P作PQ∥AB
∴∠APQ=∠A()
∵PQ∥AB,AB∥CD.
∴PQ∥CD()
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是这样证明的:过点作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
请在上面证明过程的过程的横线上,填写依据;两人的证明过程中,完全正确的是.
(2)应用:在图2中,若∠A=120°,∠C=140°,则∠APC的度数为;
(3)拓展:在图3中,探索∠APC与∠A,∠C的数量关系,并说明理由.。