内蒙古巴彦淖尔市中考数学冲刺模拟卷(2)

合集下载

内蒙巴彦淖尔市2024届中考押题数学预测卷含解析

内蒙巴彦淖尔市2024届中考押题数学预测卷含解析

内蒙巴彦淖尔市2024届中考押题数学预测卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t 的取值范围是( )A .t <B .t >C .t≤D .t≥2.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A .①②B .②③C .①③D .②④3.下列方程中是一元二次方程的是( )A .20ax bx c ++=B .2211x x +=C .(1)(2)1x x -+=D .223250x xy y --=4.如图,在正方形OABC 中,点A 的坐标是(﹣3,1),点B 的纵坐标是4,则B ,C 两点的坐标分别是( )A .(﹣2,4),(1,3)B .(﹣2,4),(2,3)C .(﹣3,4),(1,4)D .(﹣3,4),(1,3)5.如图,已知直线l 1:y =﹣2x +4与直线l 2:y =kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (﹣2,0),则k 的取值范围是( )A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<26.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定7.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°8.下列各数中负数是()A.﹣(﹣2)B.﹣|﹣2| C.(﹣2)2D.﹣(﹣2)39.如图,与∠1是内错角的是( )A.∠2 B.∠3C.∠4 D.∠510.下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a2二、填空题(共7小题,每小题3分,满分21分)11.有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).①如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;②如果方程M 有两根符号相同,那么方程N 的两根符号也相同;③如果方程M 和方程N 有一个相同的根,那么这个根必是x=1;④如果5是方程M 的一个根,那么15是方程N 的一个根. 12.在直角坐标平面内有一点A(3,4),点A 与原点O 的连线与x 轴的正半轴夹角为α,那么角α的余弦值是_____.13.如图,在ABC 中A 60∠=︒,BM AC ⊥于点M ,CN AB ⊥于点N ,P 为BC 边的中点,连接PM,PN ,则下列结论:①PM PN =,②MN AB BC AC ⋅=⋅,③PMN 为等边三角形,④当ABC 45∠=︒时,CN 2PM =.请将正确结论的序号填在横线上__.14.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边AB=5,则它的周长等于_____.15.计算12-3的结果是______.16.如图,PA ,PB 是⊙O 是切线,A ,B 为切点,AC 是⊙O 的直径,若∠P=46°,则∠BAC= ▲度.17.如图,在边长为3的菱形ABCD 中,点E 在边CD 上,点F 为BE 延长线与AD 延长线的交点.若DE=1,则DF 的长为________.三、解答题(共7小题,满分69分)18.(10分)化简求值:212(1)211x x x x -÷-+++,其中31x =-.19.(5分)已知抛物线y =ax 2+(3b +1)x +b ﹣3(a >0),若存在实数m ,使得点P (m ,m )在该抛物线上,我们称点P (m ,m )是这个抛物线上的一个“和谐点”.(1)当a =2,b =1时,求该抛物线的“和谐点”;(2)若对于任意实数b ,抛物线上恒有两个不同的“和谐点”A 、B .①求实数a 的取值范围;②若点A ,B 关于直线y =﹣x ﹣(21a +1)对称,求实数b 的最小值. 20.(8分)(问题发现)(1)如图(1)四边形ABCD 中,若AB =AD ,CB =CD ,则线段BD ,AC 的位置关系为 ;(拓展探究)(2)如图(2)在Rt △ABC 中,点F 为斜边BC 的中点,分别以AB ,AC 为底边,在Rt △ABC 外部作等腰三角形ABD 和等腰三角形ACE ,连接FD ,FE ,分别交AB ,AC 于点M ,N .试猜想四边形FMAN 的形状,并说明理由; (解决问题)(3)如图(3)在正方形ABCD 中,AB =22,以点A 为旋转中心将正方形ABCD 旋转60°,得到正方形AB 'C 'D ',请直接写出BD '平方的值.21.(10分)如图,反比例函数y=k x(x >0)的图象与一次函数y=2x 的图象相交于点A ,其横坐标为1. (1)求k 的值; (1)点B 为此反比例函数图象上一点,其纵坐标为2.过点B 作CB ∥OA ,交x 轴于点C ,求点C 的坐标.22.(10分)如图,已知抛物线21322y x x n =--(n >0)与x 轴交于A ,B 两点(A 点在B 点的左边),与y 轴交于点C 。

2024届内蒙古包头市、巴彦淖尔市中考数学全真模拟试卷含解析

2024届内蒙古包头市、巴彦淖尔市中考数学全真模拟试卷含解析

2024届内蒙古包头市、巴彦淖尔市中考数学全真模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.下列各式中计算正确的是A .()222x y x y +=+B .()236x x =C .()2236x x = D .224a a a += 2.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=,90C ∠=,45A ∠=,30D ∠=,则12∠+∠等于( )A .150B .180C .210D .2703.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( )A .26×105B .2.6×102C .2.6×106D .260×1044.如图,用一个半径为6cm 的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G 向下移动了3πcm ,则滑轮上的点F 旋转了( )A .60°B .90°C .120°D .45°5.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A.①②④B.①②⑤C.②③④D.③④⑤6.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A.B.C.D.7.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132×12D.x(x-1)=132×28.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为()A.5.46×108B.5.46×109C.5.46×1010D.5.46×10119.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<410.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A.50,50 B.50,30 C.80,50 D.30,50二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.12.甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是_____.13.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.14.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么AFAG的值为__________.15.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= .16.PA、PB分别切⊙O于点A、B,∠PAB=60°,点C在⊙O上,则∠ACB的度数为_____.三、解答题(共8题,共72分)17.(8分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.18.(8分)在△ABC 中,已知AB=AC ,∠BAC=90°,E 为边AC 上一点,连接BE .如图1,若∠ABE=15°,O 为BE 中点,连接AO ,且AO=1,求BC 的长;如图2,D 为AB 上一点,且满足AE=AD ,过点A 作AF ⊥BE 交BC 于点F ,过点F 作FG ⊥CD 交BE 的延长线于点G ,交AC 于点M ,求证:BG=AF+FG .19.(8分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B 、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ ,连接BP ,DQ .(1)依题意补全图 1;(2)①连接 DP ,若点 P ,Q ,D 恰好在同一条直线上,求证:DP 2+DQ 2=2AB 2;②若点 P ,Q ,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .20.(8分)如图,在平面直角坐标系中,点1O 的坐标为()4,0-,以点1O 为圆心,8为半径的圆与x 轴交于A ,B 两点,过A 作直线l 与x 轴负方向相交成60的角,且交y 轴于C 点,以点()213,5O 为圆心的圆与x 轴相切于点D .(1)求直线l 的解析式;(2)将2O 以每秒1个单位的速度沿x 轴向左平移,当2O 第一次与1O 外切时,求2O 平移的时间.21.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A 、B 、C 、D 、E 、F )六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.22.(10分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?23.(12分)先化简,再求值:13a -﹣219-a ÷126-a ,其中a =1. 24.如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE .求证:DE 是⊙O 的切线;若AE=6,∠D=30°,求图中阴影部分的面积.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】根据完全平方公式对A 进行判断;根据幂的乘方与积的乘方对B 、C 进行判断;根据合并同类项对D 进行判断.【题目详解】A. ()2222x y x xy y +=++,故错误.B. ()236x x =,正确.C. ()2239x x =,故错误.D. 2222a a a +=, 故错误.故选B.【题目点拨】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.2、C【解题分析】根据三角形的内角和定理和三角形外角性质进行解答即可.【题目详解】如图:1D DOA ∠∠∠=+,2E EPB ∠∠∠=+,DOA COP ∠∠=,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++=D E 180C ∠∠∠++-=309018090210++-=,故选C .【题目点拨】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.3、C【解题分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【题目详解】260万=2600000=62.610⨯.故选C .【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4、B【解题分析】由弧长的计算公式可得答案.【题目详解】 解:由圆弧长计算公式l=180n r π,将l=3π代入, 可得n =90o ,故选B.【题目点拨】 本题主要考查圆弧长计算公式l=180n r π,牢记并运用公式是解题的关键. 5、A【解题分析】由抛物线的开口方向判断a 与2的关系,由抛物线与y 轴的交点判断c 与2的关系,然后根据对称轴判定b 与2的关系以及2a+b=2;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >2.【题目详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <2,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <2,∴a ﹣(﹣2a )+c=3a+c <2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am 2+bm+c≤a+b+c ,所以a+b≥m (am+b )(m 为实数).故正确.⑤如图,当﹣1<x <3时,y 不只是大于2.故错误.故选A .【题目点拨】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a >2时,抛物线向上开口;当a <2时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >2),对称轴在y 轴左; 当a 与b 异号时(即ab <2),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(2,c ).6、C【解题分析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C .考点:中心对称图形的概念.7、B【解题分析】全组有x 名同学,则每名同学所赠的标本为:(x-1)件,那么x 名同学共赠:x (x-1)件,所以,x(x-1)=132,故选B.8、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【题目详解】解:将546亿用科学记数法表示为:5.46×1010,故本题选C.【题目点拨】本题考查的是科学计数法,熟练掌握它的定义是解题的关键.9、D【解题分析】不等式先展开再移项即可解答.【题目详解】解:不等式3x<2(x+2),展开得:3x<2x+4,移项得:3x-2x<4,解之得:x<4.故答案选D.【题目点拨】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.10、A【解题分析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A.点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解题分析】连接OC,由垂径定理知,点E是CD的中点,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可【题目详解】设AE为x,连接OC,∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,则AE是2,故答案为:2【题目点拨】此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.12、1 3【解题分析】列举出所有情况,看甲排在中间的情况占所有情况的多少即为所求的概率.根据题意,列出甲、乙、丙三个同学排成一排拍照的所有可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,只有2种甲在中间,所以甲排在中间的概率是26=13.故答案为13;点睛:本题主要考查了列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比,关键是列举出同等可能的所有情况.13、3【解题分析】分析:由已知条件易得:EF∥AB,且EF:AB=1:2,从而可得△CEF∽△CAB,且相似比为1:2,设S△CEF=x,根据相似三角形的性质可得方程:194xx=+,解此方程即可求得△EFC的面积.详解:∵在△ABC中,点E,F分别是AC,BC的中点,∴EF是△ABC的中位线,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,设S△CEF=x,∵S△CAB=S△CEF+S四边形ABFE,S四边形ABFE=9,∴1 94xx=+,解得:3x=,经检验:3x=是所列方程的解.故答案为:3.点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键.14、3 5【解题分析】由题中所给条件证明△ADF~△ACG,可求出AFAG的值.【题目详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF~△ACG∴35 AF ADAG AC==.故答案为3 5 .【题目点拨】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.15、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【解题分析】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.【题目详解】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.16、60°或120°.【解题分析】连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.【题目详解】解:连接OA、OB.∵PA,PB分别切⊙O于点A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=60°,∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,∴111206022ADB AOB∠=⨯∠=⨯︒=︒,即当C在D处时,∠ACB=60°.在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.于是∠ACB的度数为60°或120°,故答案为60°或120°.【题目点拨】本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题.三、解答题(共8题,共72分)17、△A′DE是等腰三角形;证明过程见解析.【解题分析】试题分析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.18、(1)(2)证明见解析【解题分析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.【题目详解】解:如图 1 中,在AB 上取一点M,使得BM=ME,连接ME.在Rt△ABE 中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴,∴x=(负根已经舍弃),∴AB=AC=(2+ )•,∴BC= AB= +1.作CQ⊥AC,交AF 的延长线于Q,∵ AD=AE ,AB=AC ,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【题目点拨】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.19、(1)详见解析;(1)①详见解析;②BP=AB.【解题分析】(1)根据要求画出图形即可;(1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【题目详解】(1)解:补全图形如图1:(1)①证明:连接BD,如图1,∵线段AP 绕点A 顺时针旋转90°得到线段AQ,∴AQ=AP,∠QAP=90°,∵四边形ABCD 是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP 中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在 Rt △BPD 中,DP1+BP1=BD1, 又∵DQ=BP ,BD 1=1AB 1, ∴DP 1+DQ 1=1AB 1. ②解:结论:BP=AB .理由:如图 3 中,连接 AC ,延长 CD 到 N ,使得 DN=CD ,连接 AN ,QN .∵△ADQ ≌△ABP ,△ANQ ≌△ACP , ∴DQ=PB ,∠AQN=∠APC=45°, ∵∠AQP=45°, ∴∠NQC=90°, ∵CD=DN ,∴DQ=CD=DN=AB , ∴PB=AB . 【题目点拨】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴20、(1)直线l 的解析式为:3123y x =--(2)2O 平移的时间为5秒.【解题分析】(1)求直线的解析式,可以先求出A 、C 两点的坐标,就可以根据待定系数法求出函数的解析式. (2)设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1. 在直角△O 1O 3D 1中,根据勾股定理,就可以求出O 1D 1,进而求出D 1D 的长,得到平移的时间. 【题目详解】(1)由题意得OA 4812=-+=, ∴A 点坐标为()12,0-.∵在Rt ΔAOC 中,OAC 60∠=︒,OC OAtan OAC 12tan60123∠==⨯︒=,∴C 点的坐标为()0,123-. 设直线l 的解析式为y kx b =+, 由l 过A 、C 两点,得123012b k b ⎧-=⎪⎨=-+⎪⎩,解得1233b k ⎧=-⎪⎨=-⎪⎩,∴直线l 的解析式为:y 3x 123=--. (2)如图,设2O 平移t 秒后到3O 处与1O 第一次外切于点P ,3O 与x 轴相切于1D 点,连接13O O ,31O D .则1313O O O P PO 8513=+=+=, ∵31O D x ⊥轴,∴31O D 5=,在131Rt ΔO O D 中,2225111331O D O O O D 13512=-=-=. ∵11O D O O OD 41317=+=+=, ∴1111D D O D O D 17125=-=-=, ∴5t 51==(秒), ∴2O 平移的时间为5秒.【题目点拨】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.21、(1)50人;(2)补图见解析;(3)1 10.【解题分析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为21= 2010.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式求事件A或B的概率.22、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解题分析】(1)设年平均增长率为x,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【题目详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.23、-1【解题分析】原式第二项利用除法法则变形,约分后通分,并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.【题目详解】解:原式=13a-﹣1(3)(3)a a+-•2(a﹣3)=13a-﹣23a+=23269a aa+-+-=299aa--,当a=1时,原式=9119--=﹣1.【题目点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24、(1)证明见解析;(2)阴影部分的面积为83π.【解题分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【题目详解】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=22228443-=-=DO OC∴S△OCD=43422⋅⨯=CD OC=83,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=16×π×OC2=83π,∵S阴影=S△COD﹣S扇形OBC ∴S阴影=83﹣83π,∴阴影部分的面积为83﹣83π.。

内蒙古巴彦淖尔市乌拉特前旗重点中学2024届中考数学仿真试卷含解析

内蒙古巴彦淖尔市乌拉特前旗重点中学2024届中考数学仿真试卷含解析

内蒙古巴彦淖尔市乌拉特前旗重点中学2024届中考数学仿真试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-2.下列运算正确的( ) A .(b 2)3=b 5B .x 3÷x 3=xC .5y 3•3y 2=15y 5D .a+a 2=a 33.如图是反比例函数ky x=(k 为常数,k≠0)的图象,则一次函数y kx k =-的图象大致是( )A .B .C .D .4.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A.(1,4) B.(7,4) C.(6,4) D.(8,3)5.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm26.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为() A.70.1810⨯B.51.810⨯C.61.810⨯D.51810⨯7.如图,点P(x,y)(x>0)是反比例函数y=kx(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变8.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.39.计算111x x x ---结果是( ) A .0B .1C .﹣1D .x10.如图,已知△ABC 中,∠C=90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )A .90°B .135°C .270°D .315°11.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表: 文化程度 高中 大专 本科 硕士 博士 人数9172095关于这组文化程度的人数数据,以下说法正确的是:( ) A .众数是20B .中位数是17C .平均数是12D .方差是2612.如图,矩形ABOC 的顶点A 的坐标为(﹣4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43) B .(0,53) C .(0,2) D .(0,103) 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG ,若AD =5,DE =6,则AG 的长是________.14. 如图,已知AB BC =,要使ABD CBD ∆≅∆,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)15.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是_____.16.已知关于x的方程x2-2x-k=0有两个相等的实数根,则k的值为__________.17.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).18.函数13xyx-=-自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)2000tan604tan60422sin45-+-.20.(6分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.21.(6分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).(1)求抛物线的表达式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.22.(8分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知83x=乙,2465s=乙.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.23.(8分)如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.24.(10分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元;(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.25.(10分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题: (1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°.(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.(3)若从对校园安全知识达到“了解”程度的3个女生A 、B 、C 和2个男生M 、N 中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A 的概率.26.(12分)如图,在平面直角坐标系xOy 中,一次函数y =x 与反比例函数()0ky k x=≠的图象相交于点()3,A a .(1)求a 、k 的值;(2)直线x =b (0b >)分别与一次函数y =x 、反比例函数ky x=的图象相交于点M 、N ,当MN =2时,画出示意图并直接写出b 的值.27.(12分)先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =1. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、A 【解题分析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABCA 121111SAB y a b h ah bh k k 42222=⋅=-=-=-=,即可求出12k k 8-=. 【题目详解】AB//x 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABCA 121111SAB y a b h ah bh k k 42222=⋅=-=-=-=, 12k k 8∴-=,故选A .【题目点拨】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键. 2、C 【解题分析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则. 详解:A 、(b 2)3=b 6,故此选项错误; B 、x 3÷x 3=1,故此选项错误; C 、5y 3•3y 2=15y 5,正确;D 、a+a 2,无法计算,故此选项错误. 故选C .点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键. 3、B 【解题分析】根据图示知,反比例函数ky x=的图象位于第一、三象限, ∴k >0,∴一次函数y =kx −k 的图象与y 轴的交点在y 轴的负半轴,且该一次函数在定义域内是增函数, ∴一次函数y =kx −k 的图象经过第一、三、四象限;故选:B.4、B【解题分析】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选C.5、C【解题分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【题目详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE 等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【题目点拨】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S △PBC =S △PBE +S △PCE S △ABC .6、C 【解题分析】分析:一个绝对值大于10的数可以表示为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,整数位数减去1即可.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1800000这个数用科学记数法可以表示为61.810⨯, 故选C .点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 7、D 【解题分析】作PB ⊥OA 于B ,如图,根据垂径定理得到OB =AB ,则S △POB =S △PAB ,再根据反比例函数k 的几何意义得到S △POB =12|k |,所以S =2k ,为定值. 【题目详解】作PB ⊥OA 于B ,如图,则OB =AB ,∴S △POB =S △PAB . ∵S △POB =12|k |,∴S =2k ,∴S 的值为定值. 故选D .【题目点拨】本题考查了反比例函数系数k 的几何意义:在反比例函数y =kx图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |. 8、D 【解题分析】设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论. 解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数6yx=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=1.∴S△OAC﹣S△BAD=12a2﹣12b2=12(a2﹣b2)=12×1=2.故选D.点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.9、C【解题分析】试题解析:11(1)1 1111x x xx x x x----===-----.故选C.考点:分式的加减法.10、C【解题分析】根据四边形的内角和与直角三角形中两个锐角关系即可求解.【题目详解】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.【题目点拨】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.11、C【解题分析】根据众数、中位数、平均数以及方差的概念求解.【题目详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=91720955++++=12,故本选项正确;D、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=1565,故本选项错误.故选C.【题目点拨】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.12、B【解题分析】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小.∵四边形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中点,∴D(﹣2,0).设直线DA′的解析式为y=kx+b,∴5402k bk b=+⎧⎨=-+⎩,∴5653kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线DA′的解析式为5563y x=+.当x=0时,y=53,∴E(0,53).故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解题分析】试题解析:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=12DE=1.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠1,∴∠1=∠1,∴AD=DG.∵AG⊥DE,∴OA=12 AG.在Rt△AOD中,,∴AG=2AO=2.故答案为2.14、可添∠ABD=∠CBD或AD=CD.【解题分析】由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.【题目详解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵AB BCABD CBD BD BD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵AB BC AD CD BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CBD(SSS),故答案为∠ABD=∠CBD或AD=CD.【题目点拨】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.15、k<1【解题分析】根据一元二次方程根的判别式结合题意进行分析解答即可.【题目详解】∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△=,解得:.故答案为:.【题目点拨】熟知“在一元二次方程中,若方程有两个不相等的实数根,则△=”是解答本题的关键.16、-3【解题分析】试题解析:根据题意得:△=(2)2-4×1×(-k)=0,即12+4k=0,解得:k=-3,17、A【解题分析】试题分析:由题意得:S A>S B>S C,故落在A区域的可能性大考点: 几何概率18、x≥1且x≠1【解题分析】根据分式成立的条件,二次根式成立的条件列不等式组,从而求解.【题目详解】解:根据题意得:10{30 xx-≥-≠,解得x≥1,且x≠1,即:自变量x取值范围是x≥1且x≠1.故答案为x≥1且x≠1.【题目点拨】本题考查函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、5﹣43.【解题分析】根据特殊角的三角函数值进行计算即可.【题目详解】原式=22(3)434222-⨯+-⨯=3﹣43+4﹣2=5﹣43.【题目点拨】本题考查了特殊角的三角函数值,是基础题目比较简单.20、(1)见解析;(2)1【解题分析】(1)连接AD,如图,利用圆周角定理得∠ADB=90°,利用切线的性质得OD⊥DF,则根据等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后证明∠COD=∠OAD得到∠CAB=2∠BDF;(2)连接BC交OD于H,如图,利用垂径定理得到OD⊥BC,则CH=BH,于是可判断OH为△ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1.【题目详解】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵EF为切线,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中点,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:连接BC交OD于H,如图,∵D是弧BC的中点,∴OD⊥BC,∴CH=BH,∴OH为△ABC的中位线,∴113 1.522OH AC==⨯=,∴HD=2.5-1.5=1,∵AB为⊙O的直径,∴∠ACB=90°,∴四边形DHCE为矩形,∴CE=DH=1.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理.21、(1)抛物线的解析式为:;(2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②存在.R点的坐标是(3,﹣);(3)M的坐标为(1,﹣).【解题分析】试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.试题解析:(1)设抛物线的解析式是y=ax2+bx+c,∵正方形的边长2,∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,解得a=,b=﹣,c=﹣2,∴抛物线的解析式为:,答:抛物线的解析式为:;(2)①由图象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.∵S=5t2﹣8t+4(0≤t≤1),∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,解得t=,t=(不合题意,舍去),此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,则R的横坐标为3,R的纵坐标为﹣,即R(3,﹣),代入,左右两边相等,∴这时存在R(3,﹣)满足题意;(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,则R(1,﹣)代入,,左右不相等,∴R不在抛物线上.(1分)综上所述,存点一点R(3,﹣)满足题意.答:存在,R点的坐标是(3,﹣);(3)如图,M′B=M′A,∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M, 理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距离之差为|DB|时,差值最大,设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,解得:k=,b=﹣,∴y=x﹣,抛物线的对称轴是x=1,把x=1代入得:y=﹣∴M 的坐标为(1,﹣);答:M 的坐标为(1,﹣).考点:二次函数综合题.22、(1)83,81;(2)26=甲s ,推荐甲去参加比赛.【解题分析】(1)根据中位数和众数分别求解可得;(2)先计算出甲的平均数和方差,再根据方差的意义判别即可得.【题目详解】(1)甲成绩的中位数是83分,乙成绩的众数是81分,故答案为:83分、81分;(2)()17982838586835=⨯++++=甲x , ∴()()22222214312065⎡⎤=⨯-++-++=⎣⎦甲s . ∵x x =甲乙,22s s <甲乙,∴推荐甲去参加比赛.【题目点拨】此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.23、见解析【解题分析】由BE =CF 可得BC =EF ,即可判定()ABC DEF SAS ∆∆≌,再利用全等三角形的性质证明即可.【题目详解】∵BE =CF ,∴BE EC EC CF ++=,即BC =EF ,又∵AB =DE ,∠B =∠DEF ,∴在ABC ∆与DEF ∆中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ∆∆≌,∴AC =DF .【题目点拨】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.24、 (1) A 种树每棵2元,B 种树每棵80元;(2) 当购买A 种树木1棵,B 种树木25棵时,所需费用最少,最少为8550元.【解题分析】(1)设A 种树每棵x 元,B 种树每棵y 元,根据“购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元”列出方程组并解答;(2)设购买A 种树木为x 棵,则购买B 种树木为(2-x )棵,根据“购买A 种树木的数量不少于B 种树木数量的3倍”列出不等式并求得x 的取值范围,结合实际付款总金额=0.9(A 种树的金额+B 种树的金额)进行解答.【题目详解】解:(1)设A 种树木每棵x 元,B 种树木每棵y 元,根据题意,得256003380x y x y +=⎧⎨+=⎩ ,解得10080x y =⎧⎨=⎩ , 答:A 种树木每棵2元,B 种树木每棵80元.(2)设购买A 种树木x 棵,则B 种树木(2-x )棵,则x≥3(2-x ).解得x≥1.又2-x≥0,解得x≤2.∴1≤x≤2.设实际付款总额是y 元,则y =0.9[2x +80(2-x )].即y =18x +7 3.∵18>0,y 随x 增大而增大,∴当x =1时,y 最小为18×1+7 3=8 550(元).答:当购买A 种树木1棵,B 种树木25棵时,所需费用最少,为8 550元.25、(1)60,30;;(2)300;(3)13【解题分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)利用样本估计总体的方法,即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A 的情况,再利用概率公式求解即可求得答案.【题目详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∵了解部分的人数为60﹣(15+30+10)=5,∴扇形统计图中“了解”部分所对应扇形的圆心角为:560×360°=30°; 故答案为60,30;(2)根据题意得:900×15+560=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,故答案为300;(3)画树状图如下:所有等可能的情况有6种,其中抽到女生A 的情况有2种,所以P (抽到女生A )=26=13. 【题目点拨】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.26、(1)3a =k =2;(2)b =2或1. 【解题分析】 (1)依据直线y =x 与双曲线k y x =(k ≠0)相交于点)3A a ,,即可得到a 、k 的值; (2)分两种情况:当直线x =b 在点A 的左侧时,由3x -x =2,可得x =1,即b =1;当直线x =b 在点A 的右侧时,由x 3x -=2,可得x =2,即b =2.【题目详解】(1)∵直线y=x与双曲线kyx=(k≠0)相交于点()3A a,,∴3a=,∴()33A,,∴33k=,解得:k=2;(2)如图所示:当直线x=b在点A的左侧时,由3x-x=2,可得:x=1,x=﹣2(舍去),即b=1;当直线x=b在点A的右侧时,由x3x-=2,可得x=2,x=﹣1(舍去),即b=2;综上所述:b=2或1.【题目点拨】本题考查了利用待定系数法求函数解析式以及函数的图象与解析式的关系,解题时注意:点在图象上,就一定满足函数的解析式.27、(x﹣y)2;2.【解题分析】首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.【题目详解】原式= x2﹣4y2+4xy(5y2-2xy)÷4xy=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2028,y=2时,原式=(2028﹣2)2=(﹣2)2=2.【题目点拨】本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.。

2024届内蒙古巴彦淖尔市杭锦全旗中考数学适应性模拟试题含解析

2024届内蒙古巴彦淖尔市杭锦全旗中考数学适应性模拟试题含解析

2024届内蒙古巴彦淖尔市杭锦全旗中考数学适应性模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.215B.8 C.210D.213.明明的速度小于亮亮的速度(忽略掉头等时间).明明从A 2.明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼.图中的折线段表示从开始到第二次相遇止,两人之间的距离y(米)与行走时间x(分)的地出发,同时亮亮从B地出发函数关系的图象,则()A.明明的速度是80米/分B.第二次相遇时距离B地800米C.出发25分时两人第一次相遇D.出发35分时两人相距2000米3.如图,⊙O的半径为1,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则弦BC的长为()A.3B.23C.33D.1.534.已知一次函数y=kx+b 的大致图象如图所示,则关于x 的一元二次方程x2﹣2x+kb+1=0 的根的情况是( )A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个根是05.下图是某几何体的三视图,则这个几何体是()A.棱柱B.圆柱C.棱锥D.圆锥6.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A.25:24 B.16:15 C.5:4 D.4:37.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.4.50.51y xy x=+⎧⎨=-⎩B.4.521y xy x=+⎧⎨=-⎩C.4.50.51y xy x=-⎧⎨=+⎩D.4.521y xy x=-⎧⎨=-⎩8.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A.极差是3.5 B.众数是1.5 C.中位数是3 D.平均数是39.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补10.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°11.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.7212.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是()A.2k-2 B.k-1 C.k D.k+1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:2x3﹣4x2+2x=_____.14.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.15.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.16.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.17.在Rt △ABC 中,∠C =90°,AB =2,BC =3,则sin 2A =_____. 18.如图,已知正方形ABCD 中,∠MAN=45°,连接BD 与AM ,AN 分别交于E ,F 点,则下列结论正确的有_____. ①MN=BM+DN②△CMN 的周长等于正方形ABCD 的边长的两倍;③EF 1=BE 1+DF 1;④点A 到MN 的距离等于正方形的边长⑤△AEN 、△AFM 都为等腰直角三角形.⑥S △AMN =1S △AEF⑦S 正方形ABCD :S △AMN =1AB :MN⑧设AB=a ,MN=b ,则b a≥12﹣1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x 米.若苗圃园的面积为72平方米,求x ;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;20.(6分)如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.21.(6分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)指出条形统计图中存在的错误,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A、B、C、D四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少?22.(8分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=42,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.23.(8分)已知,如图1,直线y=34x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为94,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.(1)求抛物线的函数关系式;(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.24.(10分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.25.(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.26.(12分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.27.(12分)先化简22144(1)11x xx x-+-÷--,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.设⊙O的半径为r,则OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.连接BE,∵AE是⊙O的直径,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴2222BE AE AB1086=-=-=.在Rt△BCE中,∵BE=6,BC=1,∴2222CE BE BC64213=+=+=D.2、B【解题分析】C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;A、当x35=时,出现拐点,显然此时亮亮到达A地,利用速度=路程÷时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;B、根据第二次相遇时距离B地的距离=明明的速度⨯第二次相遇的时间A-、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离=明明的速度⨯出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误.【题目详解】解:第一次相遇两人共走了2800米,第二次相遇两人共走了32800⨯米,且二者速度不变,c60320∴=÷=,∴出发20分时两人第一次相遇,C选项错误;亮亮的速度为28003580(÷=米/分),两人的速度和为280020140(÷=米/分),明明的速度为1408060(-=米/分),A选项错误;第二次相遇时距离B地距离为60602800800(⨯-=米),B选项正确;出发35分钟时两人间的距离为60352100(⨯=米),D选项错误.故选:B.【题目点拨】本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键.3、A【解题分析】分析:作OH⊥BC于H,首先证明∠BOC=120,在Rt△BOH中,BH=OB•sin60°=1×32,即可推出BC=2BH=3,详解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,∴故选A.点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线.4、A【解题分析】判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.【题目详解】∵一次函数y=kx+b的图像经过第一、三、四象限∴k>0,b<0∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.【题目点拨】根的判别式5、D【解题分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【题目详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选D.【题目点拨】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.6、A【解题分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【题目详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH 的其它内角都是90°,∴四边形EFGH 是矩形,∴EH=FG (矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt △AHE ≌Rt △CFG ,∴AH=CF=FN ,又∵HD=HN ,∴AD=HF ,在Rt △HEF 中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM ,∴EM=125, 又∵AE=EM=EB (折叠后A 、B 都落在M 点上),∴AB=2EM=245, ∴AD :AB=5:245=2524=25:1. 故选A【题目点拨】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.7、A【解题分析】根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.【题目详解】由题意可得,4.50.51y x y x =+⎧⎨=-⎩, 故选A .【题目点拨】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8、C【解题分析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【题目详解】A.极差为5﹣1.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为12×(2.5+3)=2.75,此选项错误;D.平均数为:18×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【题目点拨】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.9、C【解题分析】分清截线和被截线,根据平行线的性质进行解答即可.【题目详解】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【题目点拨】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10、C【解题分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【题目详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.【题目点拨】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.11、D【解题分析】设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.12、A【解题分析】先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【题目详解】∵0<k<1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y 最小=1(k-1)+1=1k-1. 故选A . 【题目点拨】本题考查的是一次函数的性质,熟知一次函数y=kx+b (k≠0)中,当k <0,b >0时函数图象经过一、二、四象限是解答此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、2x (x-1)2 【解题分析】2x 3﹣4x 2+2x=222(21)2(1)x x x x x -+=- 14、﹣1【解题分析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【题目详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,整理得k 2+1k=0,解得k 1=0,k 2=﹣1, 因为k≠0, 所以k 的值为﹣1. 故答案为:﹣1.【题目点拨】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 15、8.03×106 【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.803万=68.0310⨯. 16、41400【解题分析】观察已知数列得到一般性规律,写出第20个数即可. 【题目详解】解:观察数列得:第n 个数为221n n +,则第20个数是41400.故答案为41400. 【题目点拨】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键. 17、12【解题分析】根据∠A 的正弦求出∠A =60°,再根据30°的正弦值求解即可. 【题目详解】解:∵sin BC A AB ==∴∠A =60°,∴1sin sin 3022A ︒==. 故答案为12.【题目点拨】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键. 18、①②③④⑤⑥⑦. 【解题分析】将△ABM 绕点A 逆时针旋转,使AB 与AD 重合,得到△ADH .证明△MAN ≌△HAN ,得到MN=NH ,根据三角形周长公式计算判断①;判断出BM=DN 时,MN 最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF 绕点A 顺时针性质90°得到△ABH ,连接HE .证明△EAH ≌△EAF ,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A 到MN 的距离等于正方形ABCD 的边长、三角形的面积公式计算,判断⑦. 【题目详解】将△ABM 绕点A 逆时针旋转,使AB 与AD 重合,得到△ADH . 则∠DAH=∠BAM , ∵四边形ABCD 是正方形, ∴∠BAD=90°, ∵∠MAN=45°, ∴∠BAN+∠DAN=45°, ∴∠NAH=45°, 在△MAN 和△HAN 中,AM AH MAN HAN AN AN ⎧⎪∠∠⎨⎪⎩===, ∴△MAN ≌△HAN ,∴MN=NH=BM+DN ,①正确;∵(当且仅当BM=DN 时,取等号) ∴BM=DN 时,MN 最小,∴BM=12b , ∵DH=BM=12b ,∴DH=DN , ∵AD ⊥HN , ∴∠DAH=12∠HAN=11.5°, 在DA 上取一点G ,使DG=DH=12b , ∴∠DGH=45°,b , ∵∠DGH=45°,∠DAH=11.5°, ∴∠AHG=∠HAD , ∴AG=HG=2b , ∴AB=AD=AG+DG=2b+12b=12b=a ,∴2ba ==,∴2ba≥, 当点M 和点B 重合时,点N 和点C 重合,此时,MN 最大=AB ,即:1ba=,∴2≤ba≤1,⑧错误;∵MN=NH=BM+DN∴△CMN 的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD ,∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;∵△MAN≌△HAN,∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③结论正确;∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四点共圆,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤结论正确;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴,,如图3,过点M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=12AN•MP=12AM•AN•sin45°,S△AEF=12AE•AF•sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正确;∵点A到MN的距离等于正方形ABCD的边长,∴S正方形ABCD:S△AMN=212ABMN AB=1AB:MN,⑦结论正确.即:正确的有①②③④⑤⑥⑦,故答案为①②③④⑤⑥⑦.【题目点拨】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)2(2)当x=4时,y最小=88平方米【解题分析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可.解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S=x(31-2x)=-2(x-152)2+2252(6≤x≤4).①当x=152时,S有最大值,S最大=2252;②当x=4时,S有最小值,S最小=4×(31-22)=88“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.20、(1)证明见解析;(2)BH=.【解题分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【题目详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【题目点拨】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.21、(1)见解析;(2)140人;(1)1 4 .【解题分析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;(2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率.【题目详解】(1)由统计图可得:(1分)(2分)(4分)(5分)甲(人)0 1 7 6 4乙(人) 2 2 5 8 4全体(%) 5 12.5 10 15 17.5乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,2÷5%=40,(1+2)÷12.5%=40,(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,故乙组得5分的人数统计有误,正确人数应为:40×17.5%﹣4=1.(2)800×(5%+12.5%)=140(人);(1)如图得:∵共有16种等可能的结果,所选两人正好分在一组的有4种情况, ∴所选两人正好分在一组的概率是:41=164. 【题目点拨】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件.22、(1)2142y x =-+;(2)2<m <22(1)m =6或m 17﹣1.【解题分析】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (20)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题; (1)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题. 【题目详解】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (20)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解得2<m <22,∴满足条件的m 的取值范围为2<m <22.(1)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m 17﹣117﹣1(舍弃),∴m 17﹣1时,四边形PMP ′N 是正方形. 情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃), ∴m =6时,四边形PMP ′N 是正方形.综上所述:m=6或m171时,四边形PMP′N是正方形.23、(1)y=﹣13x2﹣712x+3;(2)点P的坐标为(﹣83,1);(3)当AM+CN的值最大时,点D的坐标为(93738-,373-+).【解题分析】(1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,由点B所在的位置结合点B的横坐标可得出点B的坐标,根据点A、B、C的坐标,利用待定系数法即可求出抛物线的函数关系式;(2)过点P作PE⊥x轴,垂足为点E,则△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性质即可求出AE、PE的长度,进而可得出点P的坐标;(3)连接AC交OD于点F,由点到直线垂线段最短可找出当AC⊥OD时AM+CN取最大值,过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,根据相似三角形的性质可设点D的坐标为(﹣3t,4t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其负值即可得出t值,再将其代入点D的坐标即可得出结论.【题目详解】(1)∵直线y=34x+3与x轴、y轴分别交于A、C两点,∴点A的坐标为(﹣4,0),点C的坐标为(0,3).∵点B在x轴上,点B的横坐标为94,∴点B的坐标为(94,0),设抛物线的函数关系式为y=ax2+bx+c(a≠0),将A(﹣4,0)、B(94,0)、C(0,3)代入y=ax2+bx+c,得:164081901643a b c a b c c -+=⎧⎪⎪++=⎨⎪=⎪⎩,解得:137123a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, ∴抛物线的函数关系式为y=﹣13x 2﹣712x+3; (2)如图1,过点P 作PE ⊥x 轴,垂足为点E ,∵△PCD 、△PAD 有相同的高,且S △PCD =2S △PAD ,∴CP=2AP ,∵PE ⊥x 轴,CO ⊥x 轴,∴△APE ∽△ACO , ∴13AE PE AP AO CO AC ===, ∴AE=13AO=43,PE=13CO=1, ∴OE=OA ﹣AE=83, ∴点P 的坐标为(﹣83,1); (3)如图2,连接AC 交OD 于点F ,∵AM ⊥OD ,CN ⊥OD ,∴AF≥AM ,CF≥CN ,∴当点M 、N 、F 重合时,AM+CN 取最大值,过点D 作DQ ⊥x 轴,垂足为点Q ,则△DQO ∽△AOC ,∴34OQ CO DQ AO ==, ∴设点D 的坐标为(﹣3t ,4t ).∵点D 在抛物线y=﹣13x 2﹣712x+3上, ∴4t=﹣3t 2+74t+3, 解得:t 1=373+(不合题意,舍去),t 2373-+, ∴点D 9373-373-+),故当AM+CN的值最大时,点D的坐标为(93738-,3732-+).【题目点拨】本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(﹣3t,4t).24、(1)见解析;(2)25【解题分析】分析:(1)如下图,连接OD,由OA=OD可得∠DAO=∠ADO,结合∠CAD=∠DAB,可得∠CAD=∠ADO,从而可得OD∥AC,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD是⊙O的切线;(2)如下图,连接BD,由AB是⊙O的直径可得∠ADB=90°=∠C,结合∠CAD=∠DAB可得△ACD∽△ADB,由此可得AD ABCD BD=,在Rt△ABD中由AD=6,AB=9易得BD=35,由此即可解得CD的长了.详解:(1)如下图,连接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切线.(2)如下图,连接BD ,∵AB 是⊙O 的直径,∴∠ADB=90°,∵AB=9,AD=6,∴BD=2296-=45=35,∵∠CAD=∠BAD ,∠C=∠ADB=90°,∴△ACD ∽△ADB ,∴AD AB CD BD=, ∴6935CD =, ∴CD=185=259.点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.25、(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【解题分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【题目详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【题目点拨】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.26、(1)50,360;(2)23 . 【解题分析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)。

内蒙古巴彦淖尔市中考二模数学考试试卷

内蒙古巴彦淖尔市中考二模数学考试试卷

内蒙古巴彦淖尔市中考二模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在,﹣2,π,这四个数中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)下列运算正确的是()A .B .C .D .3. (2分)已知地球上海洋面积约为316 000 000km2 , 316 000 000这个数用科学记数法可表示为()A . 3.61×106B . 3.61×107C . 3.61×108D . 3.61×1094. (2分)(2020·云南模拟) 为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为()A . 25.5厘米,26厘米B . 26厘米,25.5厘米C . 25.5厘米,25.5厘米D . 26厘米,26厘米5. (2分)一个几何体如图,画它的俯视图时长、宽各是()A . 3cm, 0.7cmB . 3cm, 1.4cmC . 1.4cm ,0.7cmD . 1.5cm, 0.7cm6. (2分)满足不等式2x<﹣1最大整数解的x值是()A . -2B . -1C . 0D . 17. (2分) (2017八上·义乌期中) 用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A . 有一个内角大于60°B . 有一个内角小于60°C . 每一个内角都大于60°D . 每一个内角都小于60°8. (2分) (2017九下·泉港期中) 某工厂现在平均每天比原计算多生产30台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同,设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A . =B . =C . =D . =9. (2分)(2012·北海) 如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为()A . 10πB .C . πD . π10. (2分)将矩形纸片ABCD对折, 使点B与点D重合,折痕为EF,连结BE,则与线段BE相等的线段条数(不包括BE,不添加辅助线)有()A . 1B . 2C . 3D . 4二、填空题 (共6题;共7分)11. (1分)(2017·黄石模拟) 分解因式:mx2﹣2mx+m=________.12. (1分)(2017·黄冈模拟) 从﹣3,﹣2,﹣1,0,1,3,4这七个数中随机抽取一个数记为a,a的值既是不等式组的解,又在函数y= 的自变量取值范围内的概率是________.13. (1分)已知x+y=5,xy=2,则 + =________.14. (1分)如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC=________度.15. (2分) (2019九上·义乌月考) 在平面直角坐标系中,将函数的图象绕坐标原点O顺时针旋转45°后,得到新曲线l.(1)如图①,已知点A(-1,a),B(b,10)在函数的图象上,若 A', B'是A,B旋转后的对应点,连结OA', OB',则S△OA'B '=________;(2)如图②,曲线l与直线相交于点M、N,则S△OMN为________.16. (1分)如图,已知点、在双曲线上,轴于点,轴于点,与交于点,是的中点,若的面积为,则的值等于________.三、解答题 (共8题;共88分)17. (10分)(2016·扬州) 计算:(1)(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.18. (15分)(2019·青海模拟) 小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在△ABC中,AD是BC边上的中线,若AD=BD=CD,求证:∠BAC=90°.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD,如果在矩形外存在一点E,使得AE⊥CE,求证:BE⊥DE,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果△AED恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB与BC 的数量关系.19. (6分) (2017九上·高台期末) 一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是________;(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)20. (10分)在海洋上有一近似于四边形的岛屿,其平面如图甲,小明据此构造处该岛的一个数学模型(如图乙四边形ABCD),AC是四边形岛屿上的一条小溪流,其中∠B=90°,AB=BC=15千米,CD=3 千米,AD=12 千米.(1)求小溪流AC的长.(2)求四边形ABCD的面积.(结果保留根号)21. (10分) (2016九上·姜堰期末) 如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果保留根号)22. (12分)(2016·景德镇模拟) 定义{a,b,c}为函数y=ax2+bx+c的“特征数”.(1)“特征数”为{﹣1,2,3}的函数解析式为________,将“特征数”为{0,1,1}的函数向下平移两个单位以后得到的函数解析式为________;(2)我们把横、纵坐标均为整数的点称为“整点”,试问:在上述两空填写的函数图象围成的封闭图形(包含边界)内共有多少个整点?请给出详细的运算过程;(3)定义“特征数”的运算:①{a1,b1,c1}+{a2,b2,c2}={a1+a2,b1+b2,c1+c2};②λ•{a1,b1,c1}={λa1,λb1,λc1}(其中λ为任意常数).试问:“特征数”为{﹣1,2,3}+λ•{0,1,﹣1}的函数是否过定点?如果过定点,请计算出该定点坐标;如果不存在,请说明你的理由.23. (15分) (2017八上·济南期末) 一次函数y=﹣ x+1的图象与x轴、y轴分别交于点A、B,以AB 为边在第一象限内做等边△ABC(1)求△ABC的面积和点C的坐标;(2)如果在第二象限内有一点P(a,),试用含a的代数式表示四边形ABPO的面积.(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.24. (10分)小亮在广场上乘凉,如图所示的线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请在图中画出小亮在照明灯P照射下的影子;(2)如果灯杆长PO=12 m,小亮身高AB=1.6 m,小亮与灯杆的距离BO=13 m,请求出小亮影子的长度.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、15-2、16-1、三、解答题 (共8题;共88分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、。

内蒙古巴彦淖尔市中考数学预测卷2

内蒙古巴彦淖尔市中考数学预测卷2

内蒙古巴彦淖尔市中考数学预测卷2姓名:________ 班级:________ 成绩:________一、选择题(每题3分,共30分) (共10题;共30分)1. (3分)下列计算错误的是()A . (﹣4xy2)3=﹣12x3y6B . 2a3+a3=3a3C . m4•m2=m6D . 2﹣2=2. (3分)国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为()A . 平方米B . 平方米C . 平方米D . 平方米3. (3分)如图,点D、E分别为△ABC的边AB、AC上的中点,则四边形BCED的面积与△ADE的面积的比为()A . 2:1B . 3:1C . 4:1D . 1:14. (3分) (2019九下·黄石月考) -2的相反数是()A . -2B . -C . 2D .5. (3分) (2018九上·台州期中) 随着台州市打造“和合圣地”的推进,某企业推出以“和合文化”为载体的产品,2017年盈利50万元,计划到2019年盈利84.5万元,则该产品的年平均增长率为()A . 20%B . 30%C . 34.5%D . 69%6. (3分)下列各式一定成立的是()A . 3(x+8)=3x+8B . ﹣(x﹣6)=﹣x﹣6C . ﹣a+b﹣c+d=﹣a+(b+c﹣d)D . ﹣(a﹣b+c)+d=﹣a+b﹣c+d7. (3分)不等式的解集是()A .B .C .D .8. (3分)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF 的长为()A .B .C .D .9. (3分) (2016九上·阳新期中) 设二次函数y=ax2+bx+c(a≠0),当x=2时,函数值y=0,则方程ax2+bx+c=0的判别式△=b2﹣4ac必定是()A . △=0B . △<0C . △>0D . △≥010. (3分)如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里,那么该船继续航行多少海里可使渔船到达离灯塔距离最近的位置()A . 50B . 40C . 30D . 20二、填空题(每题4分,共240分) (共6题;共24分)11. (4分)在某次体育考试中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下:44,45,42,48,46,47,45.则这组数据的极差为________.12. (4分) (2020九下·广陵月考) 已知一个直角三角形的两条直角边分别是6和8,则此直角三解形的内切圆半径r=________.13. (4分) (2018九上·宁江期末) 从1,2,3这三个数字中任意抽取两个,其和是偶数的概率是________.14. (4分) (2018七上·海南期中) 已知|a|=4,|b|=2,且ab<0,则a-b=________.15. (4分)如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=________.16. (4分)(2017·桥西模拟) 如图,直线l经过平面直角坐标系的原点O,且与x轴正方向的夹角是30°,点A的坐标是(0,1),点B在直线l上,且AB∥x轴,则点B的坐标是________,现将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线l上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线l上,顺次旋转下去…,则点A6的横坐标是________.三、解答题(7小题,共66分) (共7题;共66分)17. (6分)(2018·天桥模拟) 我区实施课堂教学改革后,学生的自主学习、合作交流能力有很大提高,为了解学生自主学习、合作交流的具体情况,张老师对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了几名同学;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一男一女的概率.18. (10分)已知一次函数y=kx+b 的图象与x轴交于点A,与y轴交于点B(0,2),且与正比例函数y= x的图象交于点C(m,4)(1)求m的值;(2)求k、b的值;(3)求这两个函数图象与x轴所围成的△AOC的面积.19. (10分) (2017九上·天长期末) 如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.(1)求证:△EDH∽△FBH;(2)若BD=6,求DH的长.20. (10.0分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包和水性笔x支(x≥4).(1)用含x的式子分别表示两种优惠方法购买所需的费用;(2)求购买多少支水笔时,用两种优惠方法购买所需的费用一样多;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.21. (10分) (2017九上·镇雄期末) 如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE.(1)求证:∠DAE=∠DCE;(2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论.22. (10.0分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.23. (10分)(2017·雁江模拟) 如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.参考答案一、选择题(每题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每题4分,共240分) (共6题;共24分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(7小题,共66分) (共7题;共66分)17-1、17-2、17-3、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。

内蒙古巴彦淖尔市中考数学模拟考试试卷

内蒙古巴彦淖尔市中考数学模拟考试试卷

内蒙古巴彦淖尔市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)在实数,, 0.101001,中,无理数的个数是()A . 0个B . 1个C . 2个D . 3个2. (2分) (2017九上·云南期中) 2017年毕节市参加中考的学生约为115000人,将115000用科学记数法表示为()A . 1.15×106B . 0.115×106C . 11.5×104D . 1.15×1053. (2分)(2018·德阳) 如图,直线,,是截线且交于点,若,,则()A .B .C .D .4. (2分) (2017七下·江东期中) 下列运算正确的是()A . a3•a4=a12B . (a3)4=a7C . (a2b)3=a6b3D . a3÷a4=a5. (2分) (2017八上·揭西期中) 点P 在轴上,则的值为()A . 1B . 2C . -1D . 06. (2分)(2017·环翠模拟) 图中三视图对应的正三棱柱是()A .B .C .D .7. (2分) (2018八下·柳州期末) 已知一组数据:15,16,14,16,17,16,15,则这组数据的中位数是()A . 17B . 16C . 15D . 148. (2分) (2017七下·永春期中) 已知8元刚好买到1支百合和2朵玫瑰花,17元刚好买到4支百合和3朵玫瑰花,则买1支百合和1朵玫瑰花需要()A . 4元B . 5元C . 6元D . 7元9. (2分) (2017八上·安定期末) 为满足学生业余时间读书,学校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书,已知科普书的单价比文学书的单价高出一半,所以购进的文学书比科普书多4本.若设这种文学书的单价为x元,下列所列方程正确的是()A .B .C .D .10. (2分)如图,⊙O是△ABC的外接圆,已知∠ABO=30°,则∠ACB的大小为()A . 60°B . 30°C . 45°D . 50°11. (2分) (2018七上·大庆期末) 已知下列一组数:1,,…;用代数式表示第n个数,则第n个数是()A .B .C .D .12. (2分)(2016·包头) 如图,直线y= x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A . (﹣3,0)B . (﹣6,0)C . (﹣,0)D . (﹣,0)13. (2分)二次函数y=kx2-6x+3的图象与x轴有两个交点,则k的取值范围是()A . k<3B . k<0且k≠0C . k≤3D . k≤3且k≠014. (2分)(2011·绍兴) 李老师从“淋浴龙头”受到启发.编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m= 时,求n的值.你解答这个题目得到的n值为()A . 4﹣2B . 2 ﹣4C .D .二、填空题 (共5题;共5分)15. (1分)(2018·江油模拟) 分解因式:a3﹣9a=________.16. (1分) (2019八上·港南期中) 若分式值为0,则 ________.17. (1分)(2018·福田模拟) 如图,在菱形纸片ABCD中,,将菱形纸片翻折,使点A 落在CD的中点E处,折痕为FG,点分别在边上,则的值为________ .18. (1分)(2017·自贡) 在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为________.19. (1分)(2018·港南模拟) 如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为________.三、计算题 (共1题;共5分)20. (5分)()(1)计算:;(2)先化简,再求值:,其中, .四、综合题 (共6题;共39分)21. (2分)(2018·肇源模拟) 某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数a6576八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:(1) a=________,b=________.(2)该校八年级学生共有600人,则该年级参加足球活动的人数约________人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.22. (5分)(2016·宿迁) 如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P 在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)23. (10分) (2016九上·洪山期中) 如图,二次函数y= x2(0≤x≤2)的图象记为曲线C1 ,将C1绕坐标原点O逆时针旋转90°,得曲线C2 .(1)请画出C2;(2)写出旋转后A(2,5)的对应点A1的坐标________;(3)直接写出C1旋转至C2过程中扫过的面积________.24. (10分)某厂按用户的月需求量x (件)完成一种产品的生产,其中x>0.每件的售价为18万元,每件的成本为y (万元),y与x的关系式为(a,b为常数).经市场调研发现,月需求量x与月份n (n为整数,1≤n≤12)的关系式为x=n2-13n+72,且得到了下表中的数据.月份n(月)12成本y(万元/件)1112(1)请直接写出a,b的值;(2)设第n个月的利润为w(万元),请求出W与n的函数关系式,并求出这一年的12个月中,哪个月份的利润为84万元?(3)在这一年的前8个月中,哪个月的利润最大?最大利润是多少?25. (10分) (2019九上·海淀期中) 如图,在等腰△ABC中,AB=AC,,将点C关于直线AB对称得到点D,作射线BD与CA的延长线交于点E,在CB的延长线上取点F,使得BF=DE,连接AF.备用图(1)依题意补全图形;(2)求证:AF=AE;(3)作BA的延长线与FD的延长线交于点P,写出一个∠ACB的值,使得AP=AF成立,并证明.26. (2分)(2016·无锡) 已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB= ,求这个二次函数的关系式.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共5题;共5分)15-1、16-1、17-1、18-1、19-1、三、计算题 (共1题;共5分)20-1、20-2、四、综合题 (共6题;共39分)21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。

内蒙古巴彦淖尔市中考数学模拟试卷(二)

内蒙古巴彦淖尔市中考数学模拟试卷(二)

内蒙古巴彦淖尔市中考数学模拟试卷(二)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·柯桥月考) 下列各个运算中,结果为负数的是()A .B .C .D .2. (2分)下列几何体的主视图、俯视图和左视图都是长方形的是()A .B .C .D .3. (2分) (2019七下·马山月考) 若a,b满足,则等于(),A . 4B . -4C . 2D .4. (2分) (2017七下·濮阳期中) 如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为()A . 2个B . 3个C . 4个D . 5个5. (2分) (2018九上·渝中期末) 在函数 y=中,自变量x的取值范围是()A . x>2B . x≤2且x≠0C . x<2D . x>2且x≠06. (2分) (2017八下·越秀期末) 在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A . 方差B . 平均数C . 中位数D . 众数7. (2分)已知关于x的方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,那么m的值为()A . 2B . -2C . ±2D . ±8. (2分)(2019·道外模拟) 如图,,,、分别交于点、,则下列结论错误的是()A .B .C .D .9. (2分)某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.。

图描述了他上学的情景,下列说法中错误的是()A . 修车时间为15分钟B . 学校离家的距离为2000米C . 到达学校时共用时间20分钟D . 自行车发生故障时离家距离为1000米10. (2分)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD 的周长为3r,连接OA,OP,则的值是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)(2017·市中区模拟) 计算﹣(﹣1)2=________.12. (1分)(2020·南通模拟) 抛物线y=2(x﹣3)2+5的顶点坐标为________.13. (1分)(2016·江汉模拟) 有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为________.14. (1分)(2018·滨湖模拟) 若圆锥底面圆的直径和母线长均为4cm,则它的侧面展开图的面积等于________ cm2 .15. (1分) (2018九上·江干期末) 如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠,使AB落在AD 边上,折痕为AE,再将△AEB以BE为折痕向右折叠,AE与DC交于点F,则的值是________.三、解答题 (共8题;共75分)16. (5分)(2018·河南模拟) 先化简(﹣x)÷(1+x﹣),再选一个你喜欢的整数值,代入求值.17. (11分)(2017·磴口模拟) 某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A,B,C,D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了________名学生,扇形统计图中m=________.(2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?18. (6分)如图,在⊙O中,D、E分别是半径OA、OB的中点,C是⊙O上一点,CD=CE.(1)求证:(2)若∠AOB=120°,CD=2,求半径OA的长.19. (6分)观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图),则sinB=, sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即=.同理有:=,=,所以==即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC中,∠B=450 ,∠C=750 , BC=60,则∠A=;AC= ;(2)如图,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A的距离AB.20. (15分)若方程组的解中,x是正数,y是非正数.(1)求k的正整数解;(2)在(1)的条件下求一次函数y= 与坐标轴围成的面积.21. (6分)(2018·沧州模拟) “创卫工作人人参与,环境卫生人人受益”,我区创卫工作已进入攻坚阶段.某校拟整修学校食堂,现需购买A、B两种型号的防滑地砖共60块,已知A型号地砖每块40元,B型号地砖每块20元.(1)若采购地砖的费用不超过1600元,那么,最多能购买A型号地砖多少块?(2)某地砖供应商为了支持创卫工作,现将A、B两种型号的地砖单价都降低a%,这样,该校花费了1280元就购得所需地砖,其中A型号地砖a块,求a的值.22. (11分) (2020七上·苍南期末) 点O在直线PQ上,过点O作射线OC,使∠POC=130°,将一直角三角板的直角顶点放在点O处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古巴彦淖尔市中考数学冲刺模拟卷(2)
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分) -7的相反数是()
A .
B .
C .
D .
2. (2分)(2017·成都) 总投资647亿元的西域高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()
A . 647×108
B . 6.47×109
C . 6.47×1010
D . 6.47×1011
3. (2分)(2015·衢州) 一个几何体零件如图所示,则它的俯视图是()
A .
B .
C .
D .
4. (2分)(2019·云霄模拟) 如图,在方格纸中,以AB为一边作△ABP ,使之与△ABC全等,从P1 , P2 ,P3 , P4四个点中找出符合条件的点P的概率是()
A .
B .
C .
D . 1
5. (2分) (2017八下·容县期末) 对某校八年级学生随机抽取若干名进行体能测试,成绩记为1分、2分、3分、4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是()
A . 2.25
B . 2.5
C . 2.95
D . 3
6. (2分) (2019八下·汕头月考) 如图:一架5米长的子AB斜赢在一竖直直的墙壁AO上,此时AO为4米。

如过梯子的顶塔A沿墙壁下滑1米,那么梯子底端B应向外移动()米。

A . 3
B . 2
C . 1
D . 无法确定
7. (2分)(2017·于洪模拟) 某汽车从A开往360km外的B,全程的前一部分为高速公路,后一部分为普通公路.若汽车在高速公路和普通公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()
A . 汽车在高速公路上的行驶速度为100km/h
B . 普通公路总长为90km
C . 汽车在普通公路上的行驶速度为60km/h
D . 汽车出发后4h到B地
8. (2分) (2018九上·沙洋期中) 在探究“尺规三等分角”这个数学名题中,利用了如图,该图中,四边形ABCD是矩形,线段AC绕点A逆时针旋转得到线段AF,CF、BA的延长线交于点E,若∠E=∠FAE,∠ACB=21°,则∠ECD的度数是()
A . 7°
B . 21°
C . 23°
D . 34°
9. (2分) (2019九上·建华期中) 小明从如图所示的二次函数的图象中,观察得出了下面四条信息:① ;② ;③ ;④ ;你认为其中正确信息的个数是()
A . 4
B . 3
C . 2
D . l
10. (2分)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=25°,则∠2的度数为()
A . 25°
B . 65°
C . 55°
D . 40°
二、填空题 (共6题;共6分)
11. (1分) (2015八下·深圳期中) 分解因式:xy2﹣9x=________.
12. (1分) (2019九上·滨湖期末) 如图,⊙O的半径是3,点A、B、C在⊙O上,若∠ACB=40°,则弧AB 的长为________.
13. (1分) (2020九上·覃塘期末) 如图,已知中,,顶点分别在反比例函数与的图象上,则的值为________.
14. (1分) (2017九上·江门月考) 如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限内作正方形ABCD,点D在双曲线y= (k≠0)上,将正方形沿x轴负方向平移a 个单位长度后,点C恰好落在该双曲线上,则a的值是________.
15. (1分) (2019九上·哈尔滨月考) 如图,△ABC为等边三角形,点D、E分别在AC、AB上,且AD=BE ,连接BD、CE交于点P ,在△ABC外部作∠ABF=∠ABD ,过点A作AF⊥BF于点F ,若∠ADB=∠ABF+90°,BF ﹣AF=3,则BP=________.
16. (1分)(2017·哈尔滨模拟) 如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点灯A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则点C′到BC的距离为________.
三、解答题 (共8题;共87分)
17. (5分) (2019九上·哈尔滨月考) 先化简,再求值:()÷ ,其中a=2sin60°﹣2tan45°.
18. (10分)某地电话拨号入网有两种收费方式,用户可任选其一:
(A)计时制,0.05元/分;
(B)包月制,50元/月(只限一部宅电上网).
此外,每种上网方式都得加收通讯费0.02元/分.
(1)某用户平均每月上网x小时,请你帮他计算一下应该选择哪种收费方式合算.
(2)若x=20时,则你帮他选用的收费方式应缴多少钱?
19. (12分)央视新闻报道从5月23日起,在《朝闻天下》、《新闻直播间》、《新闻联播》和《东方时空》等多个栏目播放《湟鱼洄游季探秘青海湖》新闻节目,广受全国观众关注,青海电视台到我市某中学进行宣传调查活动,随机调查了部分学生对湟鱼洄游的了解程度,以下是根据调查结果做出的统计图的一部分:
(1)根据图中信息,本次调查共随机抽查了________ 名学生,其中“不了解”在扇形统计图中对应的圆心角的度数是________ ,并补全条形统计图;
(2)该校共有3000名学生,试估计该校所有学生中“非常了解”的有多少名?
(3)青海电视台要从随机调查“非常了解”的学生中,随机抽取两人做为“随行小记者”参与“湟鱼洄游”的宣传报道工作,请你用树状图或列表法求出同时选到一男一女的概率是多少?并列出所有等可能的结果.
20. (5分) (2020九上·昭平期末) 如图,在锐角三角形ABC中,AB=4,BC= ,∠B=60°,求△ABC的面积
21. (15分)(2016·成都) 某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.
(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;
(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?
22. (15分) (2017九上·浙江月考) 如图(1)正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE=6
.将正方形AEFG绕点A逆时针旋转α(0°≤α≤45°)
(1)如图(2)正方形AEFG旋转到此位置,求证:BE=DG;
(2)在旋转的过程中,当∠BEA=120°时,试求BE的长;
(3) BE的延长线交直线DG于点Q,当正方形AEFG由图(1)绕点A逆时针旋转45°,请直接写出旋转过程中点Q运动的路线长;
(4)在旋转的过程中,是否存在某时刻BF=BC?若存在,试求出DQ的长;若不存在,请说明理由.(点Q即(3)中的点)
23. (10分) (2019·株洲模拟) 如图,已知AB是⊙O的直径,AC是弦(不是直径),OD⊥AC垂足为G交⊙O 于D , E为⊙O上一点(异于A、B),连接ED交AC于点F ,过点E的直线交BA、CA的延长线分别于点P、M ,且ME=MF .
(1)求证:PE是⊙O的切线.
(2)若DF=2,EF=8,求AD的长.
(3)若PE=6 ,sin∠P=,求AE的长.
24. (15分)(2018·遂宁) 如图,已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.
(1)求抛物线的解析式和A、B两点的坐标;
(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;
(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共8题;共87分)
17-1、18-1、
18-2、19-1、19-2、
19-3、
20-1、21-1、
21-2、22-1、
22-2、22-3、
22-4、
23-1、23-2、
23-3、24-1、
24-2、
24-3、。

相关文档
最新文档