{高中试卷}上海交大附中高二下学期期中考试(数学含答案)[仅供参考]

合集下载

上海交大附中2017-2018学年高二(下)期中数学试卷 Word版含解析

上海交大附中2017-2018学年高二(下)期中数学试卷 Word版含解析

2017-2018学年上海交大附中高二(下)期中数学试卷一、填空题(本大题满分56分)1.抛物线y2=x的准线方程为______.2.计算i+2i2+3i3+…+2016i2016=______.3.异面直线a,b成60°,直线c⊥a,则直线b与c所成的角的范围为______.4.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为______.5.已知△AOB内接于抛物线y2=4x,焦点F是△AOB的垂心,则点A,B的坐标______.6.在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN 是异面直线的图形有______.(填上所有正确答案的序号)7.已知复数z1,z2满足|z1|=|z2|=1,|z1﹣z2|=,则|z1+z2|等于______.8.三个平面能把空间分为______部分.(填上所有可能结果)9.已知复数Z1,Z2满足|Z1|=2,|Z2|=3,若它们所对应向量的夹角为60°,则=______.10.已知复数z1,z2满足|z1|=|z2|=1,,则复数|z1+z2|=______.11.二面角α﹣l﹣β的平面角为120°,在面α内,AB⊥l于B,AB=2在平面β内,CD⊥l 于D,CD=3,BD=1,M是棱l上的一个动点,则AM+CM的最小值为______.12.已知虚数z=(x﹣2)+yi(x,y∈R),若|z|=1,则的取值范围是______.13.已知F是抛物线C:y2=4x的焦点,A,B是C上的两个点,线段AB的中点为M(2,2),则△ABF的面积等于______.14.如图,直线y=x与抛物线y=x2﹣4交于A,B两点,线段AB的垂直平分线与直线y=﹣5交于Q点,当P为抛物线上位于线段AB下方(含A,B)的动点时,则△OPQ面积的最大值为______.二、选择题(本大题满分20分,共计4小题,每题5分)15.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交 B.异面 C.平行 D.垂直16.(1)两个共轭复数的差是纯虚数;(2)两个共轭复数的和不一定是实数;(3)若复数a+bi(a,b∈R)是某一元二次方程的根,则a﹣bi是也一定是这个方程的根;(4)若z为虚数,则z的平方根为虚数,其中正确的个数为()A.3 B.2 C.1 D.017.如图所示,在正方体ABCD﹣A1B1C1D1的侧面ABB1A1内有一动点P到直线A1B1和直线BC的距离相等,则动点P所在曲线形状为()A.B.C.D.18.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个,其中正确的是()①P∈a,P∈α⇒a⊂α②a∩b=P,b⊂β⇒a⊂β③a∥b,a⊂α,P∈b,P∈α⇒b⊂α④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④三、解答题(满分74分)19.已知复数z1=+(a2﹣3)i,z2=2+(3a+1)i(a∈R,i是虚数单位).(1)若复数z1﹣z2在复平面上对应点落在第一象限,求实数a的取值范围;(2)若虚数z1是实系数一元二次方程x2﹣6x+m=0的根,求实数m值.20.如图,已知直四棱柱ABCD﹣A1B1C1D1,DD1⊥底面ABCD,底面ABCD为平行四边形,∠DAB=45°,且AD,AB,AA1三条棱的长组成公比为的等比数列,(1)求异面直线AD1与BD所成角的大小;(2)求二面角B﹣AD1﹣D的大小.21.已知z为复数,ω=z+为实数,(1)当﹣2<ω<10,求点Z的轨迹方程;(2)当﹣4<ω<2时,若u=(α>0)为纯虚数,求:α的值和|u|的取值范围.22.动圆M与圆(x﹣1)2+y2=1相外切且与y轴相切,则动圆M的圆心的轨迹记C,(1)求轨迹C的方程;(2)定点A(3,0)到轨迹C上任意一点的距离|MA|的最小值;(3)经过定点B(﹣2,1)的直线m,试分析直线m与轨迹C的公共点个数,并指明相应的直线m的斜率k是否存在,若存在求k的取值或取值范围情况[要有解题过程,没解题方程只有结论的只得结论分].23.已知复数z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且.(1)若复数z1对应的点M(m,n)在曲线上运动,求复数z所对应的点P(x,y)的轨迹方程;(2)将(1)中的轨迹上每一点按向量方向平移个单位,得到新的轨迹C,求C的轨迹方程;(3)过轨迹C上任意一点A(异于顶点)作其切线,交y轴于点B,求证:以线段AB为直径的圆恒过一定点,并求出此定点的坐标.2015-2016学年上海交大附中高二(下)期中数学试卷参考答案与试题解析一、填空题(本大题满分56分)1.抛物线y2=x的准线方程为x=﹣.【考点】抛物线的简单性质.【分析】抛物线y2=x的焦点在x轴上,且开口向右,2p=1,由此可得抛物线y2=x的准线方程.【解答】解:抛物线y2=x的焦点在x轴上,且开口向右,2p=1∴∴抛物线y2=x的准线方程为x=﹣故答案为:x=﹣2.计算i+2i2+3i3+…+2016i2016=1008﹣1008i.【考点】复数代数形式的混合运算.【分析】利用复数单位的幂运算,化简求解即可.【解答】解:i+2i2+3i3+…+2016i2016=(i﹣2﹣3i+4)+(5i﹣6﹣7i+8)+…+2016=504(2﹣2i)=1008﹣1008i.故答案为:1008﹣1008i.3.异面直线a,b成60°,直线c⊥a,则直线b与c所成的角的范围为[30°,90°] .【考点】异面直线及其所成的角.【分析】作b的平行线b′,交a于O点,所有与a垂直的直线平移到O点组成一个与直线a垂直的平面α,O点是直线a与平面α的交点,在直线b′上取一点P,作垂线PP'⊥平面α,交平面α于P',∠POP'是b′与面α的线面夹角,在平面α所有与OP'垂直的线,由此能求出直线b与c所成的角的范围.【解答】解:如图作b的平行线b′,交a于O点,所有与a垂直的直线平移到O点组成一个与直线a垂直的平面α,O点是直线a与平面α的交点,在直线b′上取一点P,作垂线PP'⊥平面α,交平面α于P',∠POP'是b′与面α的线面夹角,∠POP'=30°.在平面α中,所有与OP'平行的线与b′的夹角都是30°.在平面α所有与OP'垂直的线∵PP'⊥平面α,∴该线⊥PP′,则该线⊥平面OPP',∴该线⊥b',与b'的夹角为90°,与OP'夹角大于0°,小于90°的线,与b'的夹角为锐角且大于30°.∴直线b与c所成的角的范围[30°,90°].故答案为:[30°,90°].4.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为.【考点】异面直线及其所成的角.【分析】先通过平移将两条异面直线平移到同一个起点B1,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【解答】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角设边长为1,则B1E=B1F=,EF=∴cos∠EB1F=,故答案为5.已知△AOB内接于抛物线y2=4x,焦点F是△AOB的垂心,则点A,B的坐标A(5,2),B(5,﹣2).【考点】抛物线的简单性质.【分析】根据垂心的性质可得A,B关于x轴对称,且AF⊥OB,设A(,y1)(y1>0),则B(,﹣y1).求出AF,OB的斜率,令k OB•k AF=﹣1解出y1即可得出A,B的坐标.【解答】解:抛物线焦点F(1,0),∵焦点F是△AOB的垂心,∴直线AB⊥x轴.∴A,B关于x轴对称.设A(,y1)(y1>0),则B(,﹣y1).∴k OB==﹣.k AF==.∵焦点F是△AOB的垂心,∴AF⊥OB.∴k OB•k AF=﹣1,即﹣•=﹣1,解得y1=2.∴A(5,2),B(5,﹣2).故答案为:A(5,2),B(5,﹣2).6.在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN 是异面直线的图形有(2)、(4).(填上所有正确答案的序号)【考点】异面直线的判定.【分析】图(1)中,直线GH∥MN,图(2)中M∉面GHN,图(3)中GM∥HN,图(4)中,H∉面GMN.【解答】解析:如题干图(1)中,直线GH∥MN;图(2)中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图(3)中,连接MG,GM∥HN,因此,GH与MN共面;图(4)中,G、M、N共面,但H∉面GMN,∴GH与MN异面.所以图(2)、(4)中GH与MN异面.故答案为:(2)、(4)7.已知复数z1,z2满足|z1|=|z2|=1,|z1﹣z2|=,则|z1+z2|等于1.【考点】复数求模;复数的代数表示法及其几何意义.【分析】复数z1,z2满足|z1|=|z2|=1,故可令z1=cosA+isinA,z2=cosB+isinB,代入,|z1﹣z2|=,及|z1+z2|,比较即可求得所求的答案【解答】解:∵复数z1,z2满足|z1|=1,|z2|=1,可令z1=cosA+isinA,z2=cosB+isinB∵|z1﹣z2|=,故有(cosA﹣cosB)2+(sinA﹣sinB)2=3,整理得2cosAcosB+2sinAsinB=﹣1又|z1+z2|2=(cosA+cosB)2+(sinA+sinB)2=2+2cosAcosB+2sinAsinB=1∴|z1+z2|=1故答案为:1.8.三个平面能把空间分为4,或6,或7,或8部分.(填上所有可能结果)【考点】平面的基本性质及推论.【分析】此类问题可以借助实物模型来研究,用房屋的结构来研究就行.【解答】解:若三个平面两两平行,则把空间分成4部分;若三个平面两两相交,且共线,则把空间分成6部分;若三个平面两两相交,且有三条交线,则把空间分成7部分;当两个平面相交,第三个平面同时与两个平面相交时,把空间分成8部分,故答案为:4,或6,或7,或8.9.已知复数Z1,Z2满足|Z1|=2,|Z2|=3,若它们所对应向量的夹角为60°,则=.【考点】余弦定理的应用;复数求模.【分析】由余弦定理可得Z1+Z2|=,|Z1﹣Z2|=,故==【解答】解:如图在三角形OBC中由余弦定理得|Z1+Z2|=|OB|==,同理可得|Z1﹣Z2|=|CA=|=,∴===10.已知复数z1,z2满足|z1|=|z2|=1,,则复数|z1+z2|=.【考点】复数求模.【分析】复数z1,z2满足|z1|=|z2|=1,,判断三角形是直接三角形,即可求得所求的答案.【解答】解:因为|z1|=|z2|=1,,所以复数z1,z2,构成的三角形是直角三角形,|z1+z2|是平行四边形的对角线,则|z1+z2|=.故答案为:.11.二面角α﹣l﹣β的平面角为120°,在面α内,AB⊥l于B,AB=2在平面β内,CD⊥l于D,CD=3,BD=1,M是棱l上的一个动点,则AM+CM的最小值为.【考点】点、线、面间的距离计算.【分析】要求出AM+CM的最小值,可将空间问题转化成平面问题,将二面角展开成平面中在BD上找一点使AM+CM即可,而当A、M、C在一条直线时AM+CM的最小值,从而求出对角线的长即可.【解答】解:将二面角α﹣l﹣β平摊开来,即为图形当A、M、C在一条直线时AM+CM的最小值,最小值即为对角线AC而AE=5,EC=1故AC=故答案为:12.已知虚数z=(x﹣2)+yi(x,y∈R),若|z|=1,则的取值范围是[﹣,].【考点】复数求模;复数的代数表示法及其几何意义.【分析】根据复数的模,利用模长公式得:(x﹣2)2+y2=1,根据表示动点(x,y)与原点(0,0)连线的斜率.根据直线与圆相切的性质得到结果.【解答】解:∵复数(x﹣2)+yi(x,y∈R)的模为1,∴(x﹣2)2+y2=1根据表示动点(x,y)到定点(0,0)的斜率知:的最大值是,同理求得最小值是﹣,如图示:∴的取值范围是[﹣,]故答案为:[﹣,].13.已知F是抛物线C:y2=4x的焦点,A,B是C上的两个点,线段AB的中点为M(2,2),则△ABF的面积等于2.【考点】抛物线的简单性质.【分析】设A(x1,y1),B(x2,y2),则,=4x2,两式相减可得:(y1+y2)(y1﹣y2)=4(x1﹣x2),利用中点坐标公式、斜率计算公式可得k AB,可得直线AB的方程为:y﹣2=x﹣2,化为y=x,与抛物线方程联立可得A,B的坐标,利用弦长公式可得|AB|,再利用点到直线的距离公式可得点F到直线AB的距离d,利用三角形面积公式求得答案.【解答】解:∵F是抛物线C:y2=4x的焦点,∴F(1,0).设A(x1,y1),B(x2,y2),则,=4x2,两式相减可得:(y1+y2)(y1﹣y2)=4(x1﹣x2),∵线段AB的中点为M(2,2),∴y1+y2=2×2=4,又=k AB,4k AB=4,解得k AB=1,∴直线AB的方程为:y﹣2=x﹣2,化为y=x,联立,解得,,∴|AB|==4.点F到直线AB的距离d=,∴S△ABF===2,故答案为:2.14.如图,直线y=x与抛物线y=x2﹣4交于A,B两点,线段AB的垂直平分线与直线y=﹣5交于Q点,当P为抛物线上位于线段AB下方(含A,B)的动点时,则△OPQ面积的最大值为30.【考点】二次函数的性质.【分析】把直线方程抛物线方程联立求得交点A,B的坐标,则AB中点M的坐标可得,利用AB的斜率推断出AB垂直平分线的斜率,进而求得AB垂直平分线的方程,把y=﹣5代入求得Q的坐标;设出P的坐标,利用P到直线0Q的距离求得三角形的高,利用两点间的距离公式求得QO的长,最后利用三角形面积公式表示出三角形OPQ,利用x的范围和二次函数的单调性求得三角形面积的最大值.【解答】解:直线y=x与抛物线y=x2﹣4联立,得到A(﹣4,﹣2),B(8,4),从而AB的中点为M(2,1),由k AB═,直线AB的垂直平分线方程y﹣1=﹣2(x﹣2).令y=﹣5,得x=5,∴Q(5,﹣5).∴直线OQ的方程为x+y=0,设P(x,x2﹣4).∵点P到直线OQ的距离d==|x2+8x﹣32|,|OQ|=5,∴S△OPQ=|OQ|d=|x2+8x﹣32|,|∵P为抛物线上位于线段AB下方的点,且P不在直线OQ上,∴﹣4≤x<4﹣4或4﹣4<x≤8.∵函数y=x2+8x﹣32在区间[﹣4,8]上单调递增,∴当x=8时,△OPQ的面积取到最大值30.故答案为:30.二、选择题(本大题满分20分,共计4小题,每题5分)15.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交 B.异面 C.平行 D.垂直【考点】空间中直线与直线之间的位置关系.【分析】直线AB与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交,可得结论.【解答】解:如图,在正方体AC1中:∵A1B∥D1C∴A1B与D1C可以确定平面A1BCD1,又∵EF⊂平面A1BCD1,且两直线不平行,∴直线A1B与直线EF的位置关系是相交,故选A.16.(1)两个共轭复数的差是纯虚数;(2)两个共轭复数的和不一定是实数;(3)若复数a+bi(a,b∈R)是某一元二次方程的根,则a﹣bi是也一定是这个方程的根;(4)若z为虚数,则z的平方根为虚数,其中正确的个数为()A.3 B.2 C.1 D.0【考点】的真假判断与应用;复数的基本概念.【分析】直接利用复数的基本概念频道的真假即可.【解答】解:(1)两个共轭复数的差是纯虚数;如果两个复数是实数,差值也是实数,所以(1)不正确;(2)两个共轭复数的和不一定是实数;不正确,和一定是实数;(3)若复数a+bi(a,b∈R)是某一元二次方程的根,则a﹣bi是也一定是这个方程的根;不正确,因为实系数方程的虚根是共轭复数,所以(3)不正确;(4)若z为虚数,则z的平方根为虚数,如果虚数为i,则设z=x+yi(x,y∈R),由z2=(x+yi)2=i,得x2﹣y2+2xyi=i,∴,解得:或.∴z=+i或z=﹣﹣i.所以正确.故选:C.17.如图所示,在正方体ABCD﹣A1B1C1D1的侧面ABB1A1内有一动点P到直线A1B1和直线BC的距离相等,则动点P所在曲线形状为()A.B.C.D.【考点】轨迹方程.【分析】点P到BC的距离就是当P点到B的距离,它等于到直线A1B1的距离,满足抛物线的定义,推断出P的轨迹是以B为焦点,以A1B1为准线的过A的抛物线的一部分.从而得出正确选项.【解答】解:依题意可知点P到BC的距离就是当P点B的距离,P到点B的距离等于到直线A1B1的距离,根据抛物线的定义可知,动点P的轨迹是以B为焦点,以A1B1为准线的过A的抛物线的一部分.A的图象为直线的图象,排除A.B项中B不是抛物线的焦点,排除B.D项不过A点,D排除.故选C.18.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个,其中正确的是()①P∈a,P∈α⇒a⊂α②a∩b=P,b⊂β⇒a⊂β③a∥b,a⊂α,P∈b,P∈α⇒b⊂α④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④【考点】空间中直线与平面之间的位置关系.【分析】根据公理1及直线在面内的定义,逐一对四个结论进行分析,即可求解.【解答】解:当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;当a∩β=P时,②错;如图∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确.故选D三、解答题(满分74分)19.已知复数z1=+(a2﹣3)i,z2=2+(3a+1)i(a∈R,i是虚数单位).(1)若复数z1﹣z2在复平面上对应点落在第一象限,求实数a的取值范围;(2)若虚数z1是实系数一元二次方程x2﹣6x+m=0的根,求实数m值.【考点】复数代数形式的混合运算;复数的基本概念;复数的代数表示法及其几何意义.【分析】(1)由题设条件,可先通过复数的运算求出的代数形式的表示,再由其几何意义得出实部与虚部的符号,转化出实数a所满足的不等式,解出其取值范围;(2)实系数一元二次方程x2﹣6x+m=0的两个根互为共轭复数,利用根与系数的关系求出a 的值,从而求出m的值.【解答】解:(1)由条件得,z1﹣z2=()+(a2﹣3a﹣4)i…因为z1﹣z2在复平面上对应点落在第一象限,故有…∴解得﹣2<a<﹣1…(2)因为虚数z1是实系数一元二次方程x2﹣6x+m=0的根所以z1+==6,即a=﹣1,…把a=﹣1代入,则z1=3﹣2i,=3+2i,…所以m=z1•=13…20.如图,已知直四棱柱ABCD﹣A1B1C1D1,DD1⊥底面ABCD,底面ABCD为平行四边形,∠DAB=45°,且AD,AB,AA1三条棱的长组成公比为的等比数列,(1)求异面直线AD1与BD所成角的大小;(2)求二面角B﹣AD1﹣D的大小.【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)不妨设AD=1,由AD,AB,AA1三条棱的长组成公比为的等比数列,可得AB=,AA1=2.在△ABD中,利用余弦定理可得:DB=1.利用勾股定理的逆定理可得∠ADB=90°.由DD1⊥底面ABCD,可得DD1⊥DB,可得DB⊥平面ADD1,即可得出异面直线AD1与BD所成角.(2)由(1)可得:DB⊥平面ADD1.在Rt△ADD1中,经过点D作DO⊥AD1,垂足为O,连接OB,可得OB⊥AD1.∠BOD即为二面角B﹣AD1﹣D的平面角.利用直角三角形的边角关系即可得出.【解答】解:(1)不妨设AD=1,∵AD,AB,AA1三条棱的长组成公比为的等比数列,∴AB=,AA1=2.在△ABD中,DB2==1,解得DB=1.∴AD2+DB2=AB2,∠ADB=90°.∴AD⊥DB.∵DD1⊥底面ABCD,DB⊂平面ABCD,∴DD1⊥DB,又AD∩DD1=D,∴DB⊥平面ADD1,∴DB⊥AD1,∴异面直线AD1与BD所成角为90°.(2)由(1)可得:DB⊥平面ADD1.在Rt△ADD1中,经过点D作DO⊥AD1,垂足为O,连接OB,则OB⊥AD1.∴∠BOD即为二面角B﹣AD1﹣D的平面角.在Rt△ADD1中,OD===.在Rt△ODB中,tan∠BOD===.∴∠BOD=arctan.21.已知z为复数,ω=z+为实数,(1)当﹣2<ω<10,求点Z的轨迹方程;(2)当﹣4<ω<2时,若u=(α>0)为纯虚数,求:α的值和|u|的取值范围.【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】(1)设z=x+yi,x,y∈R,则ω=+i为实数,可得y﹣=0,因此y=0,或x2+y2=9.通过分类讨论即可得出.(2)由(1)可得:①y=0时,ω=x+,由﹣4<ω<2,可得﹣4<<2,利用基本不等式的性质即可得出.②x2+y2=9时.ω=2x,由于﹣4<ω<2,即可得出x的取值范围.由u=(α>0)为纯虚数,化简可得α,再利用模的计算公式、函数的单调性即可得出.【解答】解:(1)设z=x+yi,x,y∈R,则ω=z+=x+yi+=x+yi+=+i为实数,∴y﹣=0,∴y=0,或x2+y2=9.①y=0时,ω=x+∵﹣2<ω<10,∴﹣2<<10,x>0时,解得1<x<9.x<0时,x∈∅.综上可得:y=0时,点Z的轨迹方程是.②x2+y2=9时.ω=2x,∵﹣2<ω<10,∴﹣2<2x<10,解得﹣1<x<5.因此x2+y2=9时.可得:点Z的轨迹方程是x2+y2=9(﹣1<x<5).(2)由(1)可得:①y=0时,ω=x+∵﹣4<ω<2,∴﹣4<<2,∵x<0时,≤﹣6;x>0时,≥6.综上可得:y=0时,x∈∅,点Z的轨迹无方程.②x2+y2=9时.ω=2x,∵﹣4<ω<2,∴﹣4<2x<2,解得﹣2<x<1.∵u=(α>0)为纯虚数,u==,∴α2﹣9=0,2yα≠0,解得α=3,y≠0.∴u==,∵x∈(﹣2,1),∴|u|===∈.∴α=3,|u|∈.22.动圆M与圆(x﹣1)2+y2=1相外切且与y轴相切,则动圆M的圆心的轨迹记C,(1)求轨迹C的方程;(2)定点A(3,0)到轨迹C上任意一点的距离|MA|的最小值;(3)经过定点B(﹣2,1)的直线m,试分析直线m与轨迹C的公共点个数,并指明相应的直线m的斜率k是否存在,若存在求k的取值或取值范围情况[要有解题过程,没解题方程只有结论的只得结论分].【考点】轨迹方程.【分析】(1)设出动圆圆心M的坐标,利用动圆M与y轴相切且与圆(x﹣1)2+y2=1外切建立方程,化简得答案;(2)设M的坐标,利用两点间的距离公式结合配方法求得定点A(3,0)到轨迹C上任意一点的距离|MA|的最小值;(3)写出过B斜率存在的直线方程,联立直线方程与抛物线方程,由判别式等于0求得k 值,再结合图形求得直线m与轨迹C的公共点个数,并分析对应的斜率情况.【解答】解:(1)设动圆圆心M的坐标为(x,y),则,∴(x﹣1)2+y2=x2+2|x|+1,当x<0时,y=0;当x≥0时,y2=4x;(2)如图,由图可知,M到轨迹C上的点与A的距离最小,则M在抛物线y2=4x上,设M(x,y),则|MA|===.∴当x=1,即M(1,±2)时,|MA|的最小值为;(3)设过B与抛物线y2=4x相切的直线方程为y﹣1=k(x+2),即y=kx+2k+1,联立,得k2x2+(4k2+2k﹣4)x+4k2+4k+1=0.由△=(4k2+2k﹣4)2﹣4k2(4k2+4k+1)=0,解得:k=﹣1或k=.∴当直线m的斜率k不存在时或斜率存在为0时或直线m的斜率k∈(,+∞)∪(﹣∞,﹣1)时,m与C有1个交点;当直线m的斜率为k=﹣1或k=或k∈[﹣,0)时,m与C有2个交点;当直线m的斜率k∈(0,)∪(﹣1,﹣)时,m与C有3个交点.23.已知复数z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且.(1)若复数z1对应的点M(m,n)在曲线上运动,求复数z所对应的点P(x,y)的轨迹方程;(2)将(1)中的轨迹上每一点按向量方向平移个单位,得到新的轨迹C,求C的轨迹方程;(3)过轨迹C上任意一点A(异于顶点)作其切线,交y轴于点B,求证:以线段AB为直径的圆恒过一定点,并求出此定点的坐标.【考点】抛物线的简单性质.【分析】(1)根据复数条件求出关系式,结合复数z1对应的点M(m,n)在曲线上运动即可得出复数z所对应的点P(x,y)的轨迹方程;(2)先按向量方向平移个单位得到即为向 x 方向移动 1×=个单位,向 y 方向移动 1×1=1 个单位,再进行函数式的变换即可得出C 的轨迹方程; (3)设A (x 0,y 0),斜率为k ,切线y ﹣y 0=k (x ﹣x 0) 代入(y +6)2=﹣2x ﹣3消去x 得到关于y 的一元二次方程,再结合根的判别式为0利用向量的数量即可求得定点,从而解决问题.【解答】解:(1)∵i ﹣z 2=(m ﹣ni )•i ﹣(2+4i )=(n ﹣2)+(m ﹣4)i ;∴⇒.∵复数z 1对应的点M (m ,n )在曲线上运动∴x +2=﹣(y +7)2﹣1⇒(y +7)2=﹣2(x +3).复数z 所对应的点P (x ,y )的轨迹方程:(y +7)2=﹣2(x +3).(2)∵按向量方向平移个单位,==1×.即为向 x 方向移动 1×=个单位,向 y 方向移动 1×1=1 个单位(y +7)2=﹣2(x +3)⇒y +7=±.得轨迹方程 y +7=±⇒(y +6)2=﹣2(x +)=﹣2x ﹣3.C 的轨迹方程为:(y +6)2=﹣2x ﹣3. (3)设A (x 0,y 0),斜率为k ,切线y ﹣y 0=k (x ﹣x 0) (k ≠0), 代入(y +6)2=﹣2x ﹣3整理得:(y +6)2=﹣2()﹣3,△=0⇒k=,设定点M (1,0),且.∴以线段AB 为直径的圆恒过一定点M ,M 点的坐标(1,0).2016年9月14日。

【解析】上海市宝山区交大附中2018-2019学年高二下学期期中考试数学试题

【解析】上海市宝山区交大附中2018-2019学年高二下学期期中考试数学试题

上海交通大学附属中学2018-2019学年度第二学期高二数学期中考试试卷一、填空题:本大题共12个小题,满分54分. 将答案填在答题纸上1.如果一条直线与两条平行直线都相交,那么这三条直线共可确定_________个平面.【答案】1【分析】两条平行直线确定1个平面,根据两点在平面上可知直线也在平面上,从而得到结果. 【详解】两条平行直线可确定1个平面Q 直线与两条平行直线交于不同的两点 ∴该直线也位于该平面上∴这三条直线可确定1个平面本题正确结果:1【点睛】本题考查空间中直线与平面的关系,属于基础题.2.已知球的体积为36π,则该球主视图的面积等于________【答案】9π由球的体积公式,可得34363r ππ=,则3r =,所以主视图的面积为239S ππ=⨯=. 3.若正三棱柱的所有棱长均为a ,且其体积为a = .【答案】4试题分析:2V a =⨯=4a =. 考点:棱柱的体积.【名师点睛】1.解答与几何体的体积有关的问题时,根据相应的体积公式,从落实公式中的有关变量入手去解决问题,例如对于正棱锥,主要研究高、斜高和边心距组成的直角三角形以及高、侧棱和外接圆的半径组成的直角三角形;对于正棱台,主要研究高、斜高和边心距组成的直角梯形.2.求几何体的体积时,若给定的几何体是规则的柱体、锥体或台体,可直接利用公式求解;若给定的几何体不能直接利用公式得出,常用转换法、分割法、补形法等求解.4.如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB u u u u r 的坐标为(4,3,2),则1AC u u u u v 的坐标为________【答案】(4,3,2)-如图所示,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在直线为坐标轴,建立空间直角坐标系,因为1DB u u u u r 的坐标为(4,3,2),所以(4,0,0),(0,3,2)A C ,所以1(4,3,2)AC =-u u u u v.5.若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示). 【答案】1arccos 3.设圆锥的底面半径为r ,母线长为l ,由题意23rl r ππ=,即3l r =,母线与底面夹角为θ,则1cos 3r l θ==为,1arccos 3θ=. 【考点】圆锥的性质,圆锥的母线与底面所成的角,反三角函数.6.已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,,A B 是下底面圆周上两个不同的点,BC 是母线,如图,若直线OA 与OB 所成角的大小为6π,则1r=__________【答案】试题分析:如图,过A 作与BC 平行的母线AD ,连接OD ,则∠OAD 为直线OA 与BC 所成的角,大小为,在直角三角形ODA 中,因为∠OAD=,所以,故答案为。

2023年上海交通大学附属中学高二下期中数学试卷及答案

2023年上海交通大学附属中学高二下期中数学试卷及答案

上海市交通大学附属中学2022-2023学年高二下期中数学试卷一、填空题(1-6每题4分,7-12每题5分,共54分)1.已知集合{}2|680A x x x =-+≤,{||1|2,Z}B x x x =-<∈,则A B = ___________.2.已知(1,0)a = ,(3,4)b = ,则向量a 在向量b 方向上的数量投影为___________.3.已知直线1:10l mx y -+=,直线2:420l x my -+=,若12//l l ,则m =_____________.4.已知复数z 满足i 34i z =+(i 是虚数单位),则z =___________.5.函数2y =的最小值是______.6.母线长为10的圆锥的侧面展开图的圆心角等于8π5,则该圆锥的体积为___________.7.直线l 过点(2,3)P ,当原点到直线l 的距离最大时,直线l 的方程为___________.8.设常数a使方程sin x x a +=在闭区间[]0,2π上恰有三个不同的解123,,x x x ,则实数a 的取值为___________.9.设随机变量()12,X B p ~,若()8E X ≤,则()D X 的最大值为___________.10.研究人员开展甲、乙两种药物的临床抗药性研究实验,事件A 为“对药物甲产生抗药性”,事件B 为“对药物乙产生抗药性”,事件C 为“对甲、乙两种药物均不产生抗药性”.若()415P A =,()215P B =,()710P C =,则()P B A =______.11.已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.12.如图,探测机器人从O 点出发,准备探测道路OA 和OB 所围的三角危险区域.已知机器人在道路OA 和OB 上探测速度可达每分钟2米,60AOB ∠=︒,在AOB ∠内为危险区域,探测速度为每分钟1米.假设机器人可随时从道路进入危险区域且可在危险区域各方向自由行动(不考虑转向耗时),则理论上,5分钟内机器人可达到探测的所有危险区域内的点组成的区域面积为___________.二、选择题(13、14每题4分,15、16每题5分,共18分)13.已知222:O x y r += ,直线223l x y r +=:,若l 与⊙O 相离,则()A.点(2,3)P 在l 上B.点(2,3)P 在O 上C.点(2,3)P 在O 内D.点(2,3)P 在O 外14.某教学软件在刚发布时有100名教师用户,发布5天后有1000名教师用户.如果教师用户人数()R t 与天数t 之间满足关系式:()0e ktR t R =,其中k 为常数,0R 是刚发布时的教师用户人数,则教师用户超过20000名至少经过的天数为()(参考数据:lg20.3010≈)A.9B.10C.11D.1215.给定下列四个命题:①图像不经过点(1,1)-的幂函数一定不是偶函数;②若一条直线垂直于平面内的无穷多条直线,则这条直线垂直于这个平面;③有两个相邻的侧面是矩形的棱柱是直棱柱;④设数列{}n a 的前n 项和为n S ,若{}n a 是递增数列,则数列{}n S 也是递增数列;以上命题是真命题的序号是()A.①②B.②③C.③④D.①③16.等轴双曲线Γ的焦点(,0)c ±,圆222:()C x c y r -+=(0,0)r c >>,则()A.对于任意r ,存在c ,使圆C 与双曲线Γ右支恰有两个公共点B.对于任意r ,存在c ,使圆C 与双曲线Γ右支恰有三个公共点C.存在c ,使对于任意r ,圆C 与双曲线Γ右支至少有一个公共点D.存在c ,使对于任意r ,圆C 与双曲线Γ右支至多有两个公共点三、解答题(本大题共5道小题,共78分)17.某校学生利用解三角形有关知识进行数学实践活动.A 处有一栋大楼,某学生选(与A 在同一水平面的)B 、C 两处作为测量点,测得BC 的距离为50m ,=45ABC ∠︒,105BCA ∠=︒,在C 处测得大楼楼顶D 的仰角α为75︒.(1)求,A C 两点间的距离;(2)求大楼的高度.(第(2)问不计测量仪的高度,计算结果精确到1m )18.已知双曲线22:1C x y -=,及直线:1l y kx =-.(1)若l 与C 有且只有一个公共点,求实数k 的值;(2)若l 与C 的左右两支分别交于A 、B 两点,且OAB ,求实数k 的值.19.设a 为实数,函数2()||1,f x x x a x R =+-+∈.(1)讨论函数()f x 的奇偶性并说明理由;(2)求()f x 的最小值.20.直线l 与抛物线24y x =交于A 、B 两点,O 为坐标原点,直线OA 、OB 的斜率之积为1-,以线段AB 为半径的圆与直线l 交于P 、Q 两点.(1)求证:直线l 过定点;(2)求AB 中点的轨迹方程;(3)设()6,0M ,求22MP MQ +的最小值.21.已知ABC 的三个顶点都在椭圆22:143x y Γ+=上.(1)设它的三条线段AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在线的斜率分别为123,,k k k ,且123,,k k k 均不为0.点O 为坐标原点,若直线OD ,OE ,OM 的斜率之和1.求证:123111k k k ++为定值;(2)当O 是ABC 的重心时,求证:ABC 的面积是定值;(3)如图,设ABC 的边AB 所在直线与x 轴垂直,垂足为椭圆右焦点F ,过点F 分别作直线12,l l 与椭圆交于,,,C D E G (不同于A ,B 两点),连接,CG DE 与AB 分别交于,M N ,求证:FM FN =.上海市交通大学附属中学2022-2023学年高二下期中数学试卷一、填空题(1-6每题4分,7-12每题5分,共54分)1.已知集合{}2|680A x x x =-+≤,{||1|2,Z}B x x x =-<∈,则A B = ___________.【答案】{}2【解析】【分析】解一元二次不等式化简集合A ,再解含绝对值符号的不等式化简集合B ,再利用交集的定义求解作答.【详解】解不等式2680x x -+≤,得(2)(4)0x x --≤,解得24x ≤≤,即{|24}A x x =≤≤,解不等式|1|2x -<,得212x -<-<,解得13x -<<,即{0,1,2}B =,所以{2}A B = .故答案为:{}22.已知(1,0)a = ,(3,4)b = ,则向量a在向量b 方向上的数量投影为___________.【答案】35##0.6【解析】【分析】利用向量的数量积转化求解向量a ,b在方向上的数量投影即可.【详解】解:设向量a 与b 的夹角是θ,则向量a 在b方向上的数量投影为:3||cos 5||a b a b θ⋅==.故答案为:353.已知直线1:10l mx y -+=,直线2:420l x my -+=,若12//l l ,则m =_____________.【答案】2-【解析】【分析】根据两直线平行的充要条件求解.【详解】因为12//l l ,所以2424m m ⎧-=-⎨≠⎩,解得2m =-.故答案为:2-4.已知复数z 满足i 34i z =+(i 是虚数单位),则z =___________.【答案】5【解析】【分析】根据复数的除法运算和共轭复数、模长的定义求解即可.【详解】由i 34i z =+可得()2i 34i 34i 43i i iz ++===-,所以43i z =+,5z ==,故答案为:55.函数2y =的最小值是______.【答案】2【解析】【分析】将函数化为y =++,注意运用基本不等式和二次函数的最值,同时注意最小值取得时,x 的取值要一致,即可得到所求最小值.【详解】解:函数22y ====++= .当且仅当=0x =,取得等号.则函数的最小值为2.故答案为:2.【点睛】本题考查基本不等式的运用:求最值,注意求最值的条件:一正二定三等,属于中档题和易错题.6.母线长为10的圆锥的侧面展开图的圆心角等于8π5,则该圆锥的体积为___________.【答案】128π【解析】【分析】求出侧面展开图的弧长和底面圆半径,再求出圆锥的高,由此计算圆锥的体积.【详解】因为母线长为10的圆锥的侧面展开图的圆心角等于8π5,所以侧面展开图的弧长为:810π16π5⨯=.设该圆锥的底面圆的半径为r ,所以2π16πr =,解得8r =,所以该圆锥的高6h ==,所以该圆锥的体积2211ππ86128π33V r h ==⨯⨯=.故答案为:128π.7.直线l 过点(2,3)P ,当原点到直线l 的距离最大时,直线l 的方程为___________.【答案】23130x y +-=【解析】【分析】作图分析可知,当原点到直线l 的距离最大时,OP l ⊥,求出l 的斜率,根据点斜式即可求出直线l 的方程.【详解】由题意知,OP l ⊥,32OP k =,所以直线l 的斜率23k =-,所以直线l 的方程为:()2323y x -=--,即23130x y +-=.故答案为:23130x y +-=.8.设常数a 使方程sin x x a +=在闭区间[]0,2π上恰有三个不同的解123,,x x x ,则实数a 的取值为___________.【解析】【分析】利用辅助角公式得到方程的解的个数即为在[]0,2π上直线y a =与三角函数π2sin3y x ⎛⎫=+ ⎪⎝⎭图象的交点的个数,画出图象,数形结合得到当且仅当a =与三角函数图象恰有三个交点,得到答案.【详解】∵13πsin 2sin 2sin 223x x x x x a ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,∴方程的解即为在[]0,2π上直线y a =与三角函数π2sin 3y x ⎛⎫=+⎪⎝⎭图象的交点的横坐标,∵[]0,2πx ∈,∴ππ7π,333x ⎡⎤+∈⎢⎥⎣⎦,令π3z x =+,画出函数2sin y z =在π7π,33z ⎡⎤∈⎢⎥⎣⎦上的图象,如下:由图象可知当且仅当a =.9.设随机变量()12,X B p ~,若()8E X ≤,则()D X 的最大值为___________.【答案】3【解析】【分析】根据二项分布的数学期望得p 的范围,再根据方差运算公式结合基本不等式求得()D X 的最大值.【详解】随机变量()12,X B p ~,由()8E X ≤可得0128p <≤,所以203p <≤又()()211211232p p D X p p +-⎛⎫=-≤⨯= ⎪⎝⎭当且仅当12p =时,“”=成立,故()D X 的最大值为3.故答案为:3.10.研究人员开展甲、乙两种药物的临床抗药性研究实验,事件A 为“对药物甲产生抗药性”,事件B 为“对药物乙产生抗药性”,事件C 为“对甲、乙两种药物均不产生抗药性”.若()415P A =,()215P B =,()710P C =,则()P B A =______.【答案】38##0.375【解析】【分析】求出()P A B ,结合()()()()P A B P A P B P AB =+- 求出()P AB ,进而利用求条件概率公式求出答案.【详解】由题意可知()()710P C P A B =⋂=,则()()73111010P A B P A B ⋃=-⋂=-=.又()()()()P A B P A P B P AB =+- ,所以()()()()423115151010P AB P A P B P A B =+-⋃=+-=,则()()()13104815P AB P B A P A ===.故答案为:3811.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.【答案】13【解析】【分析】利用离心率得到椭圆的方程为222222213412043x y x y c c c+=+-=,即,根据离心率得到直线2AF 的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,利用弦长公式求得138c =,得1324a c ==,根据对称性将ADE V 的周长转化为2F DE △的周长,利用椭圆的定义得到周长为413a =.【详解】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为33,直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c ∆=+⨯⨯=⨯⨯,∴12226461313cDE y =-=⨯=⨯⨯⨯=,∴138c =,得1324a c ==,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.12.如图,探测机器人从O 点出发,准备探测道路OA 和OB 所围的三角危险区域.已知机器人在道路OA 和OB 上探测速度可达每分钟2米,60AOB ∠=︒,在AOB ∠内为危险区域,探测速度为每分钟1米.假设机器人可随时从道路进入危险区域且可在危险区域各方向自由行动(不考虑转向耗时),则理论上,5分钟内机器人可达到探测的所有危险区域内的点组成的区域面积为___________.【答案】5033【解析】【分析】讨论机器人探测的路线,结合直线与圆的关系计算三角形面积即可.【详解】如图所示,机器人只在道路上前进可到达AB 点,则OA =OB =10米,作AOB ∠的角平分线OC ,过A 作AD ⊥OB ,垂足为D 点,交OC 于C 点,设机器人先在道路OA 上前进t 分钟到达P 点,此时2OP t =,AP=102t -,后进入危险区域,其能探测到达的点组成以P 为圆心,以()5t -为半径的圆弧 QR,由题意可知:1sin 2r OAD AP ==∠,即AD 与该圆弧相切,设切点为E ,故随P 点从O 移动到A ,机器人可探测的区域为OAD △,结合对称性,机器人5分钟能到达的点围成区域有OAD △与OBF ,即图中阴影部分,其面积为2OAC S ,易知OAC 为含120°的等腰三角形,所以区域面积为:215032sin12023OA ⨯⨯⨯=.故答案为:5033【点睛】本题关键在于对题意的理解,然后结合直线与圆的位置关系,利用角的对称性得出区域形状,再解三角形求区域面积,极容易出错,需要仔细审题.二、选择题(13、14每题4分,15、16每题5分,共18分)13.已知222:O x y r += ,直线223l x y r +=:,若l 与⊙O 相离,则()A.点(2,3)P 在l 上B.点(2,3)P 在O 上C.点(2,3)P 在O 内D.点(2,3)P 在O 外【答案】C 【解析】【分析】根据l 与O2r >,即可推出||r OP >,即可得答案.【详解】由已知l 与O 相离,可知圆心到直线的距离大于半径,不妨设r 为222:O x y r +=22r =>,故r >,由于(2,3)P,则OP =||r OP >,则点(2,3)P 在O 内,故选:C .14.某教学软件在刚发布时有100名教师用户,发布5天后有1000名教师用户.如果教师用户人数()R t 与天数t 之间满足关系式:()0e ktR t R =,其中k 为常数,0R 是刚发布时的教师用户人数,则教师用户超过20000名至少经过的天数为()(参考数据:lg20.3010≈)A.9 B.10 C.11D.12【答案】D 【解析】【分析】根据已知条件求得()ln105e 100t R t =,结合()20000R t >及指对数关系、对数运算性质求解集,即可得结果.【详解】由题设0050(0)e 100(5)e 1000kR R R R ⎧==⎨==⎩,可得0100ln105R k =⎧⎪⎨=⎪⎩,所以()ln105e100R t =,则ln105e10020000t >,故5ln 2005lg 2005(lg 22)11.50511ln10t ===⨯+≈>,所以教师用户超过20000名至少经过12天.故选:D15.给定下列四个命题:①图像不经过点(1,1)-的幂函数一定不是偶函数;②若一条直线垂直于平面内的无穷多条直线,则这条直线垂直于这个平面;③有两个相邻的侧面是矩形的棱柱是直棱柱;④设数列{}n a 的前n 项和为n S ,若{}n a 是递增数列,则数列{}n S 也是递增数列;以上命题是真命题的序号是()A.①②B.②③C.③④D.①③【答案】D 【解析】【分析】对①利用幂函数和偶函数特点即可判断,对②和④举反例即可,对③利用线面垂直的判定结合直棱柱的定义即可判断.【详解】对①, 幂函数的图象都过(1,1),偶函数的图象关于y 轴对称,∴图象不经过点(1,1)-的莫函数一定不是偶函数,故①正确;对②,若平面内的无数条直线互相平行,则这条直线可以不垂直这个平面,故②错误;对③,若有两个相邻的侧面是矩形,则两侧面的交线即一条侧棱垂直于底面两相交的直线,则这条侧棱垂直于底面,根据棱柱侧棱互相平行,则所有侧棱均垂直于底面,则棱柱为直棱柱,故③正确;对④,当7n a n =-时,满足数列{}n a 是递增数列,116S a ==-,2126511S a a =+=--=-,则12S S >,不满足数列{}n S 是递增数列,故④不正确;故选:D.16.等轴双曲线Γ的焦点(,0)c ±,圆222:()C x c y r -+=(0,0)r c >>,则()A.对于任意r ,存在c ,使圆C 与双曲线Γ右支恰有两个公共点B.对于任意r ,存在c ,使圆C 与双曲线Γ右支恰有三个公共点C.存在c ,使对于任意r ,圆C 与双曲线Γ右支至少有一个公共点D.存在c ,使对于任意r ,圆C 与双曲线Γ右支至多有两个公共点【答案】AD 【解析】【分析】联立方程可得2224420x cx c r -+-=,构建()222442f x x cx c r =-+-,根据二次函数讨论()f x 在[],c r c r -+上的零点分布,并结合对称性分析C 与Γ右支的交点个数.【详解】设双曲线方程为:2222c x y -=,联立方程()2222222c x y x c y r ⎧-=⎪⎨⎪-+=⎩,消去y 得2224420x cx c r -+-=,由圆222:()C x c y r -+=可知:x 的取值范围为[],c r c r -+,构建()222442f x x cx c r =-+-,[],x c r c r ∈-+,则()f x 的对称轴2cx c c r =<<+,且()()()222222,20,2402c f c r r c c f r f c r r cr c ⎛⎫-=--=-<+=++>⎪⎝⎭,当()02f c r c c r ⎧-<⎪⎨-≥⎪⎩即2122c c r ⎛-<≤ ⎝⎭时()f x 有且只有一个零点()0,x c r c r ∈-+,当()02f c r c c r ⎧-=⎪⎨-≥⎪⎩即212r c ⎛⎫=- ⎪ ⎪⎝⎭时()f x 有且只有一个零点0212x c ⎛⎫=- ⎪ ⎪⎝⎭.当()02f c r c c r ⎧->⎪⎨-≥⎪⎩即2012r c ⎛⎫<<- ⎪ ⎪⎝⎭时()f x 无零点.当()02f c r c c r ⎧->⎪⎨-<⎪⎩即212r c ⎛⎫>+ ⎪ ⎪⎝⎭时()f x 有且只有两个零点()01,,x x c r c r ∈-+.当()02f c r c c r ⎧-=⎪⎨-<⎪⎩即12r c ⎛⎫=+ ⎪ ⎪⎝⎭时()f x有且只有两个零点()011,,2x c x c r c r ⎛⎫=+∈-+ ⎪ ⎪⎝⎭.当()02f c r c c r ⎧-<⎪⎨-<⎪⎩即2122c r c ⎛⎫<<+ ⎪ ⎪⎝⎭时有且只有一个零点()0,x c r c r ∈-+.注意到当212r c ⎛⎫=- ⎪ ⎪⎝⎭,C 与Γ的交点坐标为21,02c ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,当212r c ⎛⎫=+ ⎪ ⎪⎝⎭时,C 与Γ的交点坐标有21,02c ⎛⎫⎛⎫+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即会出现交点在对称轴上,结合C 与Γ的对称性可得:当012r c ⎛⎫<<- ⎪ ⎪⎝⎭时,使C 与Γ没有公共点,即C 与Γ的右支没有公共点;当212r c ⎛⎫=-⎪ ⎪⎝⎭时,使C 与Γ有且仅有一个公共点,即C 与Γ的右支有且仅有一个公共点;当221122c r c ⎛⎫⎛⎫-<<+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭时,使C 与Γ有两个公共点,此时C 与Γ有且仅有两个公共点;当12r c ⎛⎫=+ ⎪ ⎪⎝⎭时,使C 与Γ有三个公共点,此时C 与Γ有且仅有两个公共点;当212r c ⎛⎫>+ ⎪ ⎪⎝⎭时,使C 与Γ有四个公共点,此时C 与Γ有且仅有两个公共点.对A :对于任意r ,存在c ,使得212r c ⎛⎫>-⎪ ⎪⎝⎭,此时圆C 与双曲线Γ右支恰有两个公共点,A 正确;对B :对于任意r ,存在c ,使得12r c ⎛⎫>-⎪ ⎪⎝⎭,此时圆C 与双曲线Γ右支至多有两个公共点,B 错误;对C :存在c ,使对于任意r ,使得212r c ⎛⎫<- ⎪ ⎪⎝⎭,此时圆C 与双曲线Γ右支没有公共点,C 错误;对D :存在c ,使对于任意r ,使得12r c ⎛⎫>- ⎪ ⎪⎝⎭,此时圆C 与双曲线Γ右支至多有两个公共点,D 正确.故选:AD.三、解答题(本大题共5道小题,共78分)17.某校学生利用解三角形有关知识进行数学实践活动.A 处有一栋大楼,某学生选(与A 在同一水平面的)B 、C 两处作为测量点,测得BC 的距离为50m ,=45ABC ∠︒,105BCA ∠=︒,在C 处测得大楼楼顶D 的仰角α为75︒.(1)求,A C 两点间的距离;(2)求大楼的高度.(第(2)问不计测量仪的高度,计算结果精确到1m )【答案】(1)m (2)264m 【解析】【分析】(1)根据题意,先求出BAC ∠,然后利用正弦定理计算即可求解;(2)根据题意结合(1)的结果可直接求出AD = ,然后利用两角和的正切公式计算即可.【小问1详解】由已知得1801054530BAC ∠=︒-︒-︒=︒,在ABC 中,因为sin sin BC ACBAC ABC=∠∠,即50sin30sin45AC︒︒=,所以AC =,所以,A C两点间的距离为m.【小问2详解】在DCA △中,因为90,tan ADDAC AC∠α==,所以tan75AD AC == ,又因为()tan75tan 4530=+31tan45tan30321tan45tan3033++==+-所以2AD =+=141.4122.45263.85264≈+=≈,答:楼高约为264m .18.已知双曲线22:1C x y -=,及直线:1l y kx =-.(1)若l 与C 有且只有一个公共点,求实数k 的值;(2)若l 与C 的左右两支分别交于A 、B 两点,且OAB,求实数k 的值.【答案】(1)1k =±或k =(2)0k =【解析】【分析】(1)联立方程组,消元后得到()221220k xkx -+-=,分210k -=、210k -≠两种情况求解即可;(2)先由题意可得11k -<<,令直线l 与y 轴交于点(0,1)D -,从而得到1212111222=+=+=-= OAB OAD OBD S S S x x x x .【小问1详解】由2211x y y kx ⎧-=⎨=-⎩,消去y ,得()221220k x kx -+-=①,当210k -=,即1k =±时,方程①有一解,l 与C 仅有一个交点(与渐近线平行时).当()22210,Δ4810k k k ⎧-≠⎪⎨=+-=⎪⎩,得22,==k k l 与C 也只有一个交点(与双曲线相切时),综上得k 的取值是1k =±或k =【小问2详解】设交点()()1122,,,A x y B x y ,由2211x y y kx ⎧-=⎨=-⎩,消去y ,得()221220k x kx -+-=,首先由()22210,Δ4810k k k ⎧-≠⎪⎨=+->⎪⎩,得k <<且1k ≠±,并且12122222,11--+==--k x x x x k k ,又因为l 与C 的左右两支分别交于A 、B 两点,所以120x x <,即22020,11k k-<->-,解得11k -<<,故11k -<<.因为直线l 与y 轴交于点(0,1)D -,所以1212111222=+=+=-= OAB OAD OBD S S S x x x x ,故22121212222248,4811--⎛⎫⎛⎫-=∴+-=-= ⎪ ⎪--⎝⎭⎝⎭k x x x x x x k k .解得0k =或62k =±.因为11k -<<,所以0k =.19.设a 为实数,函数2()||1,f x x x a x R =+-+∈.(1)讨论函数()f x 的奇偶性并说明理由;(2)求()f x 的最小值.【答案】(1)当0a =时,函数是偶函数,当0a ≠时,函数是非奇非偶函数;(2)当12a 时,min 3()4f x a =-;当1122a -<<时,2min ()1f x a =+;当12a 时,min 3()4f x a =+.【解析】【分析】(1)考查函数的奇偶性,用特殊值法判断函数及不是奇函数又不是偶函数;(2)先判断函数的单调性再求最值.【详解】解:(1)当0a =时,函数2()()||1()f x x x f x -=-+-+=此时,()f x 为偶函数当0a ≠时,()21f a a =+,2()2||1f a a a -=++,()()f a f a ≠-,()()f a f a ≠--此时()f x 既不是奇函数,也不是偶函数(2)①当x a时,2213()1(24f x x x a x a =-++=-++当12a ,则函数()f x 在(-∞,]a 上单调递减,从而函数()f x 在(-∞,]a 上的最小值为()21f a a =+.若12a >,则函数()f x 在(-∞,]a 上的最小值为13(24f a =+,且1(()2f f a.②当x a时,函数2213()1()24f x x x a x a =+-+=+-+若12-a ,则函数()f x 在[a ,)∞+上的最小值为13()24f a -=-;若12a >-,则函数()f x 在[a ,)∞+上单调递增,从而函数()f x 在[a ,)∞+上的最小值为()21f a a =+.综上,当12-a 时,函数()f x 的最小值为34a -当1122a -< 时,函数()f x 的最小值为21a +当12a >时,函数()f x 的最小值为34a +.【点睛】本题为函数的最值和奇偶性的考查;是高考常考的知识点之一;而求最值时需要注意的是先判断函数的单调性.20.直线l 与抛物线24y x =交于A 、B 两点,O 为坐标原点,直线OA 、OB 的斜率之积为1-,以线段AB 为半径的圆与直线l 交于P 、Q 两点.(1)求证:直线l 过定点;(2)求AB 中点的轨迹方程;(3)设()6,0M ,求22MP MQ +的最小值.【答案】(1)证明见解析;(2)2142x y =+;(3)10.【解析】【分析】(1)设直线l 的方程为x my t =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,分析可知0OA OB ⋅=,利用平面向量的数量积的坐标运算并结合韦达定理求出t 的值,即可证得结论成立;(2)设线段AB 的中点为(),N x y ,可得出2242x m y m⎧=+⎨=⎩,消去m 可得出线段AB 的中点的轨迹方程;(3)利用平面向量的数量积推导出()222224MP MQMO PQ '+=+,结合两点间的距离公式以及二次函数的基本性质可求得22MP MQ +的最小值.【详解】(1)设直线AB 的方程为x my t =+,设点()11,A x y 、()22,B x y ,由24y x x my t⎧=⎨=+⎩得2440y my t --=,所以()()22141606t m t m∆++==>,所以124y ym +=,124y y t =-,所以()21212242x x m y y t m t +=++=+,222121216y y x x t ⋅==,因为直线OA 、OB 的斜率之积为1-,所以0OA OB ⋅=,所以2121240x x y y t t +=-=,所以4t =,所以直线AB 的方程为4x my =+,过定点()4,0;(2)21248x x m +=+ ,直线l 中点为圆心()224,2O m m +',设线段AB 的中点为(),N x y ,可得2242x m y m⎧=+⎨=⎩,消去m 得228y x =-,因此,线段AB 的中点的轨迹方程为2142x y =+;(3)如下图所示,易知圆心O '为线段PQ 的中点,()()111222MO MP PO MP PQ MP MQ MP MQ MP ''=+=+=+-=+ ,所以,2MO MP MQ '=+ ,所以,()()222222422MO PQ MQ MP MQ MP MQ MP '+=++-=+ ,即()(222222244MP MQMO PQ MO ''+=+=+()()2222422144148161816202m m m m m ⎛⎫⎡⎤=-++=-++=-+ ⎪⎢⎥⎣⎦⎝⎭,所以222218102MP MQ m ⎛⎫+=-+ ⎪⎝⎭,所以当22m =±时,22MP MQ +的最小值为10.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.21.已知ABC 的三个顶点都在椭圆22:143x y Γ+=上.(1)设它的三条线段AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在线的斜率分别为123,,k k k ,且123,,k k k 均不为0.点O 为坐标原点,若直线OD ,OE ,OM 的斜率之和1.求证:123111k k k ++为定值;(2)当O 是ABC 的重心时,求证:ABC 的面积是定值;(3)如图,设ABC 的边AB 所在直线与x 轴垂直,垂足为椭圆右焦点F ,过点F 分别作直线12,l l 与椭圆交于,,,C D E G (不同于A ,B 两点),连接,CG DE 与AB 分别交于,M N ,求证:FM FN =.【答案】(1)证明见解析(2)证明见解析(3)证明见解析【解析】【分析】(1)设出点的坐标,代入椭圆方程,利用点差法得出斜率与中点坐标的关系即可得证;(2)点的坐标代入椭圆方程,化简得1212346x x y y +=-,再由椭圆的参数方程化简可得cos()αβ-,再由重心可得3ABC AOB S S = 求证即可;(3)根据直线CD 、EG 的方程及点在椭圆上可得曲线系()()2211221043x y y k x k y k x k λ+-+-+-+=,取1x =,可由方程根的关系得证.【小问1详解】设()()()()()()112233112233,,,,,,,,,,,A x y B x y C x y D s t E s t M s t ,因为,A B 在椭圆上,所以222211221,14343x y x y +=+=,两式相减得:121211*********y y x x s k x x y y t -+==-⨯=-⨯-+,即111413t k s =-,同理可得3222334411,33t t k s k s =-=-,则31212312311143t t t k k k s s s ⎛⎫++=-++ ⎪⎝⎭因为直线OD OE OM 、、的斜率之和为1,所以12311144133k k k ++=-⨯=-,即123111k k k ++为定值.【小问2详解】设()()()112233,,,,,A x y B x y C x y 因为ABC 的重心为O ,故1231230x x x y y y ++=++=又A B C 、、都在椭圆22143x y +=上,故()()222222121211221,1,1434343x x y y x y x y +++=+=+=化简得1212346x x y y +=-,设11222cos ,,2cos ,x y x y ααββ====,代入上式可得:2cos cos 2sin sin 1αβαβ+=-,即()1cos 2αβ-=-,()122139322ABC AOB S S x y x y αβ==-=-=△△,即ABC 的面积为定值92.【小问3详解】设直线CD 方程为:()11y k x =-,直线EG 的方程为:()21y k x =-,直线CD 与直线EG 上所有点对应的曲线方程为:()()11220y k x k y k x k -+-+=,又C D E G 、、、都在椭圆上,则同时过C D E G 、、、的二次曲线系可设为:()()2211221043x y y k x k y k x k λ+-+-+-+=,取1x =,得213034y λ⎛⎫+-= ⎪⎝⎭,易知该方程的两根分别为,M N y y ,由韦达定理可知,0M N y y +=,则FM FN =.【点睛】关键点点睛:根据点在椭圆上,结合重心化简得1212346x x y y +=-,利用椭圆的参数方程,结合重心的性质找出3ABC AOB S S = ,并且能应用三角函数求出AOB S 的大小,是研究三角形面积为定值的关键,本题困难,不易解答.。

上海市交大附中高二下学期数学期中试卷及答案

上海市交大附中高二下学期数学期中试卷及答案

交大附中高二期中数学试卷2022.04一. 填空题1.已知集合{||1|2,}M x x x =-≤∈R ,1{|0,}2x P x x x -=≥∈+R ,则集合M P 中整数 的个数为个2.设向量(1,2)a = ,(0,3)b = ,则a 在b 方向上的数量投影为3.某校有学生1200人,其中高三学生400人,为了解学生的身体素质情况,采用按年级分层随机抽样的方法,从该校学生中抽取一个120人的样本,则样本中高三学生的人数为4.抛掷一枚均匀的骰子两次,得到的数字依次记作a 、b ,则实数a 是方程20x b -=的解的概率为5.已知圆锥的母线10l =,母线与圆锥的轴的夹角30α︒=,则圆锥的表面积为6.极坐标方程10sin()3πρθ=-所表示的曲线围成的图形面积为7.抛物线2:y x Γ=上一点M 到焦点的距离为1,抛物线Γ在点M 处的切线的斜率为8.已知无穷数列{}n a 满足112n n a a +=(*n ∈N ),且21a =,则1i i a +∞==∑9.在参数方程221112x t y t ⎧=+⎪⎨=-⎪⎩(t 为参数,t ∈R )所表示的曲线上任取一点(,)P a b ,则22a b +的最小值为10.若函数2224(e e )x x y x x a --=-++有且只有一个零点,那么实数a =11.虚数z 满足51z =,若存在正整数a 、b 、c 使得a 、b互质,且2(Im )z =,那么a b c ++=12.已知1144,2n n a ta t n a k -=+-≥⎧⎨=⎩是数列{}n a 的一个递推公式,其中0t ≠且1t ≠,若 {|144,}i a x x x ∈≤≤∈Z (1,2,3,4i =),则满足条件的实数k 的所有可能值的和为二. 选择题13. 已知空间两条直线m 、n ,两个平面 β、 α,给出下面四个命题:① m ∥n ,m ⊥ ⇒ αn ⊥ β∥ α ②; α,m α ⊂,n ⇒ β ⊂m ∥n ;③ m ∥n ,m ∥ ⇒ αn ∥ β∥ α ④; α,m ∥n ,m ⊥ ⇒ αn ⊥ β.其中真命题的序号是()A.②③ B.①④ C.①②④ D.①③④14.一个公司有8名员工,其中6位员工的月工资分别为5200、5300、5500、6100、6500、6600,另两位员工数据不清楚,那么8位员工月工资的中位数不可能是()A.5800B.6000C.6200D.640015.函数()y f x =的定义域为(2,2)-,解析式42()41f x x x =-+. 则下列结论中正确的是()A.函数()y f x =既有最小值也有最大值B.函数()y f x =有最小值但没有最大值C.函数()y f x =恰有一个极小值点D.函数()y f x =恰有两个极大值点16. 己知样本空间为Ω,x 为一个基本事件. 对于任意事件A ,定义0,()1,x A f A x A ∉⎧=⎨∈⎩,给出下列结论:① ()1f Ω=,()0f ∅=;② 对任意事件A ,0()1f A ≤≤; ③如果A B =∅ ,那么()()()f A B f A f B =+ ;④ ()()1f A f A +=.其中,正确结论的个数是()A.1个 B.2个 C.3个 D.4个三.解答题17.如图,在正四棱锥P - ABCD 中,PA =AB =a ,E 是棱PC 的中点.(1)求证:PC ⊥BD ;(2)求异面直线BE 与PA 所成角的余弦值.18.已知22()cos ()4f x x x π=+--(x ∈R ). (1)求函数()y f x =在区间[0,2π上的最大值;(2)在△ABC 中,若A B <,且1()()2f A f B ==,求BC AB的值.19.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a 元(35a ≤≤)的管理费,预计当每件产品的售价为x 元(911x ≤≤)时,一年的销售量为2(12)x -万件.(1)求分公司一年的利润L (万元)与每件产品的售价x 的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值()Q a .20.如图双曲线22:13x y Γ-=的左、右焦点分别为1F 、2F ,过2F 作直线l 交y 轴于点Q . (1)当直线l 平行于Γ的一条渐近线时,求点1F 到直线l 的距离;(2)当直线l 的斜率为1时,在Γ的右支上是否存在点P ,满足110F P F Q ⋅= ?若存在,求出P 点的坐标;若不存在,说明理由;(3)若直线l 与Γ交于不同两点A 、B ,且Γ上存在一点M ,满足40OA OB OM ++= (其中O 为坐标原点),求直线l 的方程.21.若两个函数()y f x =与()y g x =在0x x =处有相同的切线,则称这两个函数相切,切点 为00(,())x f x .(1)判断函数sin y x =与y x =是否相切;(2)设反比例函数1y x =与二次函数2y ax bx =+(0a ≠)相切,切点为1(,)t t . 求证:函数1y x=与2y ax bx =+恰有两个公共点;(3)若01a <<,指数函数x y a =与对数函数log a y x =相切,求实数a 的值;(4)(思考题,本小题不计分)设(3)的结果为0a ,求证:当00a a <<时,指数函数x y a =与对数函数log a y x =的图像有三个公共点.。

上海市交通大学附属中学高二下学期期中数学试题

上海市交通大学附属中学高二下学期期中数学试题
A. B. C. D.
【答案】C
三、解答题
17.已知 集合 , .
(1)当 时,求 ;
(2)设 ; ,若 是 的充分不必要条件,求实数 的取值范围.
【答案】(1) ;(2) .
18.直三棱柱 中,底面 为等腰直角三角形, , , , 是侧棱 上一点,设 .
(1)若 ,求 的值;
(2)若 ,求直线 与平面 所成角的正弦值.
【答案】8
5.某三位数密码,每位数字可在0﹣9这10个数字中任选一个,则该三位数密码中,恰有两位数字相同的概率是________.
【答案】
6.在长方体 中, , ,则直线 与 所成的角的余弦值等于______.
【答案】
7.已知集合 , , , ,则 ______.
【答案】
8.已知 ,则 的值为__________.
(3)如图3所示,某地有南北街道5条,东西街道6条(注意有一段 不通),一邮电员从该地东北角的邮 局出发,送信到西南角的 地,要求所走的路程最短,共有多少种不同的走法?
(4)如图4所示,某地有南北街道5条,东西街道6条,已知 地(十字路口)在修路,无法通行,且有一段路程 无法通行,一邮递员该地东北角的邮局 出发,送信到西南角的 地,要求所走的路程最短,有多少种不同的走法?
【答案】(1)13;(2)0;(3) .
附加题
22.在 的展开式中,把 , , ,…, 叫做三项式的 次系数列.
(1)写出三项式的2次系数列和3次系数列;
(2)列出杨辉三角形类似 表( , ),用三项式的 次系数表示 , , ;
(3)用二项式系数表示 .
【答案】(1) , , , , , , , , , , , ;(2) , , ;(3) .

上海交大附中2023-2024学年高二下学期期中考试数学试题

上海交大附中2023-2024学年高二下学期期中考试数学试题

上海交通大学附属中学2023-2024学年度第二学期高二数学期中考试卷(本试卷共4页,满分150分,120分钟完成.答案一律写在答题纸上)一、填空题(本大题共有12题,满分54分,第16题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.设函数()()sin 12f x x =+,则()f x ′=__________.2.4对双胞胎站成一排,要求每对双胞胎都相邻,则不同的站法种数是__________.(结果用数字作答)3.设事件A B 、是互斥事件,且()()14P A P B ==,则()P A B ∪=__________. 4.已知函数()2ln f x ax x =+的导函数()f x ′满足()13f ′=,则a 的值为__________. 5.若从正方体的6个面的12条面对角线中,随机选取两条,则它们成异面直线的概率是__________. 6.为了弘扬我国古代的“六艺文化”,某学校欲利用每周的社团活动课开设“礼”“乐”“射”“御”“书”“数”六门课程,每周开设一门,每门课都要开,连续开设六周,若课程“射”不排在第二周,课程“乐”不排在第五周,则所有可能的排法种数为__________.7.一家药物公司试验一种新药,在500个病人中试验,其中307人有明显疗效,120人有疗效但疗效一般,剩余的人无疗效,则没有明显疗效的频率是__________.8.某篮球运动员的罚球命中率为80%,假设每次罚球的结果是独立的,则他在3次罚球中至少进1球的概率是__________.9.设()f x 是定义在R 上的偶函数,()f x ′为其导函数,()20240f =,当0x >时,有()()xf x f x ′>恒成立,则不等式()0xf x >的解集为__________.10.小张一次买了三电冰糖葫芦,其中一串有两颗冰糖葫芦,一串有三颗冰糖葫芦,一串有五颗冰糖葫芦.若小张每次随机从其中一串中吃一颗,每一电只能从上往下吃,那么不同的吃完的顺序有__________种.(结果用数字作答)11.为庆祝70周年校庆,学校开设A B C 、、三门校史课程培训,现有甲、乙、丙、丁、戊、已六位同学题名参加学习,每位同学仅报一门,每门课至少有一位同学报名,则不同报名方法有__________种.12.设点P 在曲线()Γ:ln 22x y x =+上,点Q 在直线:1l y x =−上,平面上一点M 满足13QM MP = ,则M 到坐标原点O 的距离的最小值为__________.二、题题题(本大题共有4题,第13、14题每题4分,第15、16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑.13.抛一枚硬币的试验中,下列对“伯努利大数定律”的理解正确的是( )A.大量的试验中,出现正面的频率为0.5.B.不管试验多少次,出现正面的概率始终为0.5C.试验次数增大,出现正面的经验概率为0.5D.试验次数每增加一次,下一次出现正面的频率一定比它前一次更接近于0.514.某城市新修建的一条道路上有12个路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的4盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有( )A.47CB.48CC.49CD.48P15.抛一枚骰子,记事件A 表示事件“出现奇数点”,事件B 表示事件“出现4点或5点”,事件C 表示事件“点数不超过3”,事件D 表示事件“点数大于4”,有下列四个结论:①事件A 与B 是独立事件;②事件B 与C 是互斥事件;③事件C 与D 是对立事件;③D A B ⊆∩;其中正确的结论是( )A.①②B.②③C.③④D.①④16.对于函数()y f x =和()y g x =,及区间D ,若存在实数k b 、,使得()()f x kx b g x ≥+≥对任意x D ∈恒成立,则称()y f x =在区间D 上“优于”()y g x =.有以下两个结论:①()2log f x x =在区间[]1,2D =上优于()2(1)g x x =−; ②()32f x x =+在区间[]1,1D −上优于()e x g x =.那么( )A.①、②均正确B.①正确,②错误C.①错误,②正确D.①、②均错误三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,在直三棱柱111ABC A B C −中,D 是AC 的中点.(1)证明:1AB ∥平面1BC D .(2)若1,90,45AB BC ABC B AB ∠∠===,求二面角11B C D B −−的余弦值.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数()()22ln f x a x x ax =−+−. (1)当3a =时,求函数()y f x =的单调区间;(2)若函数()y f x =在区间[]1,e 上恰有一个零点,求a 的取值范围.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某次数学考试中只有两道题目,甲同学答对每题的概率均为p ,乙同学答对每题的概率均为()q p q >,且每人各题答题结果互不影响.已知每题甲、乙同题答题的概率为12,恰有一人答对的概率为512. (1)求p 和q 的值; (2)设事件i A =“甲同学答对了i 道题”,事件i B =“乙同学答对了i 道题”,其中0,1,2i =,试求甲答对的题数比乙多的概率.20.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设12,F F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,P 是椭圆C 短轴的一个顶点,已知12PF F1213F PF ∠=.如图,,,M NG 是椭圆上不重合的三个点,原点O 是MNG 的重心.(1)求椭圆C 的方程;(2)求点M 到直线NG 的距离的最大值;(3)判断MNG 的面积是否为定值,并说明理由.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数()e 2e x x f x a −=++.(1)若直线3y x =+是曲线()y f x =的切线,求实数a 的值;(2)若()21f x x x ≥−+对任意实数x 恒成立,求a 的取值范围; (3)若12e e 3x x +=,且()()()12123f x f x x x k ⋅≥++,求实数k 的最大值.。

上海市交大附中高二期中数学学科考试试卷(含答案)(2019.04)

上海市交大附中高二期中数学学科考试试卷(含答案)(2019.04)

交大附中高二期中数学试卷2019.04一. 填空题1. 如果一条直线与两条平行直线都相交,那么这三条直线可确定 个平面2. 已知球的体积为36π,则该主视图的面积等于3. 若正三棱柱的所有棱长均为a ,且其体积为163,则a =4. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线均为坐标轴,建立空间直角坐标系,若1DB uuu u r 的坐标为(4,3,2),则1AC u u u u r 的坐标是5. 若圆锥的侧面积是底面积的3倍,则其母线与底面所成的角的大小为 (结果用反三角函数值表示)6. 已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图,若直线OA 与BC 所成角的大小为6π,则l r= 7. 已知△ABC 三个顶点到平面α的距离分别是3、3、6,则其重心到平面α的距离为 (写出所有可能值)8. 正方体1111ABCD A B C D -的棱长为1,若动点P 在线段上1BD 运动,则DC AP ⋅u u u r u u u r 的取值范围是9. 如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O ,剪去△AOB ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以()A B 、C 、D 、O 为顶点的四面体的体积为10. 某三棱锥的三视图如图所示,且这个三角形均为直线三角形,则34x y +的最大值为11. 已知A 、B 、C 、P 为半径R 的球面上的四点,其中AB 、AC 、BC 间的球面距离分别为3R π、2R π、2R π,若OP xOA yOB zOC =++u u u r u u u r u u u r u u u r ,其中O 为球心,则x y z ++的最大 值是12. 如图,在四面体ABCD 中,E 、F 分别为AB 、CD 的中点,过EF 任作一个平面α分别与直线BC 、AD 相交于点G 、H ,则下列结论正确的是① 对于任意的平面α,都有直线GF 、EH 、BD 相交于同一点;② 存在一个平面α,使得点G 在线段BC 上,点H 在线段AD 的延长线上;③ 对于任意的平面α,都有EFG EFH S S =V V ;④ 对于任意的平面α,当G 、H 在线段BC 、AD 上时,几何体AC EFGH -的体积是一个定值.二. 选择题13. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在直线旋转一周而形成的曲面所围成的几何体的体积为( ) A. 23π B. 423π C. 22π D. 42π 14. 如图,在大小为45°的二面角A EF D --中,四边形ABFE 与CDEF 都是边长为1的正方形,则B 、D 点间的距离是( )A. 3B. 2C. 1D. 32-15. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有 系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也,又以高乘之,三十六成 一,该术相当于给出了由圆锥的底面周长L 与高h ,计算器体积V 的近似公式2136V L h ≈, 它实际上是将圆锥体积公式的圆周率π近似取3,那么近似公式2272V L h ≈相当于将圆锥体 积公式中的π近似取为( )A. 227B. 258C. 15750D. 35511316. 在正方形ABCD A B C D ''''-中,若点P (异于点B )是棱上一点,则满足BP 和AC '所成角为45°的点P 有( )A. 6个B. 4个C. 3个D. 2个三. 解答题17. 现有四个正四棱柱形容器,1号容器的底面边长是a ,高是b ;2号容器的底面边长是b ,高是a ;3号容器的底面边长是a ,高是a ;4号容器的底面边长是b ,高是b ,假设a b ≠,问是否存在一种必胜的4选2的方案(与a 、b 的大小无关),使选中的两个容器的容积之和大于余下的两个容器之和?无论是否存在必胜的方案,都要说明理由.18. 如图,已知圆锥底面半径20r cm =,点Q 为半圆弧AC 的中点,点P 为母线SA 的中点,PQ 与SO 所成角为arctan2,求:(1)圆锥的侧面积;(2)P 、Q 两点在圆锥侧面上的最短距离.19. 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,DAB ∠为直角,AB ∥CD ,222AD CD AB PA ====,E 、F 分别为PC 、CD 的中点.(1)求证:CD ⊥平面BEF ;(2)求BC 与平面BEF 所成角的大小;(3)求三棱锥P DBE -的体积.20. 如图,P ABC -是底面边长为1的正三棱锥,D 、E 、F 分别为棱长PA 、PB 、PC 上的点,截面DEF ∥底面ABC ,且棱台DEF ABC -与棱锥P ABC -的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)证明:P ABC -为正四面体;(2)若12PD PA =,求二面角D BC A --的大小(结果用反三角函数值表示); (3)设棱台DEF ABC -的体积为V ,是否存在体积为V 且各棱长均相等的直平行六面体,使得它与棱台DEF ABC -有相同的棱长和?若存在,请具体构造这样的一个直平行六面体,并给出证明;若不存在,请说明理由.(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥P ABC -的体积减去棱锥P DEF -的体积)21. 火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳构筑物,建在水源不十分充足的地区的电厂,为了节约用水,需建造一个循环冷却水系统,以使得冷却容器中排出的热水在其冷却后可重复使用,大型电厂采用的冷却构筑物多为双曲线冷却塔,此类冷却塔多用于内陆缺水电站,其高度一般为75~150米,底边直径65~120米,双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它比机力通风冷却塔维护简便,节约电能;但形体高大,施工复杂,造价较高.(以上知识来自百度,下面题设条件只是为了适合高中知识水平,其中不符合实际请忽略)(1)右下图为一座高100米的双曲线冷却塔外壳的简化三视图(忽略壁厚),其底面直径 大于上底直径,已知其外壳主视图与左视图中的曲线均为双曲线,高度为100m ,俯视图为 三个同心圆,其半径分别为40m 、60147m 、30m ,试根据上述尺寸计算主视图中该双 曲线的标准方程(m 为长度单位米).(2)试利用课本中推导球体积的方法,利用圆柱和一个倒放的圆锥,计算封闭曲线: 22221x y a b -=,0y =,y h =,绕y 轴旋转形成的旋转体的体积为________(用a 、b 、h 表 示)(用积分计算不得分)现已知双曲线冷却塔是一个薄壳结构,为计算方便设其内壁所在曲线也为双曲线,其壁最厚为0.4m (底部),最薄处厚度为0.3m (喉部,即左右顶点处),试计算该冷却塔内壳所在的双曲线标准方程是________________,并计算本题中的双曲线冷却塔的建筑体积(内外壳之间)大约是_________3m (计算时π取3.14159,保留到个位即可)(3)冷却塔体型巨大,造价相应高昂,本题只考虑地面以上部分的施工费用(建筑人工和辅助机械)的计算,钢筋土石等建筑材料费用和其他设备等施工费用不在本题计算范围内,超高建筑的施工(含人工辅助机械等)费用随着高度的增加而增加,现已知:距离地面高度30米(含30米)内的建筑,每立方米的施工费用平均为:400元/立方米;30米到40米(含40米)每立方米的施工费用为800元/立方米;40米以上,平均高度每增加1米,每立方米的施工费用增加100元,试计算建造本题中冷却塔的施工费用(精确到万元).参考答案一. 填空题1. 12. 9π3. 44. (4,3,2)-5. 1arccos 3 6. 7. 0,2,4 8. [0,1]9. 3 10. 11. 3 12. ③④二. 选择题13. B 14. D 15. B 16. C三. 解答题17. 3322a b a b b a +>+,必胜方案为选择3号、4号容器18.(1)600π;(2)19.(1)略;(2)1arctan 2;(3)1320.(1)略;(2)arcsin 3;(3)存在21.(1)2219006300x y -=;(2)23223a h a h b ππ+,221882.096300x y +=,6728;(3)1516。

上海交通大学附属中学2019-2020学年下学期高二年级期中考试数学试题 含答案

上海交通大学附属中学2019-2020学年下学期高二年级期中考试数学试题 含答案

所成角的取值范围是( )
3
A.
12
,
5 12
B.
12
,
7 12
C.
12
,
2
D.
6
,
2
15.如图, N 、 S 是球 O 直径的两个端点,圆 C1 是经过 N 和 S 点的大圆,圆 C2 和圆 C3 分别是所在平面与
NS 垂直的大圆和小圆,圆 C1 和 C2 交于点 A 、 B ,圆 C1 和 C3 交于点 C 、 D ,设 a 、b 、c 分别表示圆C1
的最小值为______.
8.如右图所示的几何体 ABCDEF 中,ABCD 是平行四边形且 AB CF ,六个顶点任意两点连线能组成异
面直线的对数是______.
9.直线 l 在平面 上,直线 m 平行于平面 ,并与直线 l 异面,动点 P 在平面 上,且到直线 l 、m 距离相
等,则点 P 的轨迹为______(如:直线、圆、椭圆、双曲线、抛物线) 10.如图,已知正方体 ABCD − A1B1C1D1 棱长为 4,点 H 在棱 AA1 上,且 HA1 = 1,在侧面 BCC1B1 内作边 长为 1 的正方形 EFGC1 , P 是侧面 BCC1B1 内一动点,且点 P 到平面 CDD1C1 距离等于线段 PF 的长,则 当点 P 运动时, HP 2 的范围是______.
2.给出下列命题: ①三条平行直线最多可以确定三个平面; ②任意三点确定一个平面; ③不同的两条直线均垂直于同一个平面,则这两条直线平行; ④一个平面中的两条直线与另一个平面都平行,则这两个平面平行. 其中,说法正确的有_____(填序号).
3.若异面直线 a , b 所成的角为 70 ,则过空间上任一点 P 可 CND 的弧长、圆 C2 上半圆弧 AB 的弧长、圆 C3 上半圆弧 CD 的弧长,则 a 、 b 、 c 的大小关系为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX年高中测试






科目:
年级:
考点:
监考老师:
日期:
上海交通大学附属中学20XX-20XX 学年度第二学期
高二数学期中试卷
本试卷共有21道试题,满分100分,考试时间90分钟。

请考生用钢笔或圆珠笔将答案写在答题卷上
命题:宋向平 审核:杨逸峰
一、填空题(本大题满分36分)本大题共有12题,只要求直接填写结果,每个空格填对
得3分,否则一律得零分。

1. 在4(1+
的展开式中,x 的系数为 (用数字作答).
2. 直线12:10:20l x my l x y ++=-+=与垂直,则m =____________.
3. 已知点A (3,2),B (-2,7),若直线y=kx-3与线段AB 相交,则k 的取值范围为
_____________
4. 直线经过点A (2,1),B (1,m 2
)两点(m ∈R ),那么直线l 的倾斜角取值范围是 . 5. 已知椭圆中心在原点,一个焦点为(3,0),且长轴长是短轴长的2倍,则该椭圆的
标准方程是.
6. 由直线1y x =+上的点向圆22
(3)(2)1x y -++=引切线,则直线1y x =+上的点与切
点之间的线段长的最小值为 .
7. 已知两圆0822:,024102:222221=-+++=-+-+y x y x C y x y x C ,则以两圆公共弦为直
径的圆的方程是.
8. 椭圆(1-m )x 2
-my 2
=1的长轴长是.
9. 已知三角形ABC 三个顶点为(1,1),(1(1A B C --
,则角A 的内角平分线所在的直线方程为 . 10. 曲线()142
≤--=x x
y 的长度是 .
11. 我们可以运用下面的原
理解决一些相关图形的面积问题:如果与一固定直线平行的直线被甲、乙两个封闭图形所截得线段的比为定值k ,那么甲的面积是乙的面积的k
倍,你可以从给出的简单图形①(甲:大矩形ABCD 、乙:小矩形EFCB )、②(甲:大直角三角形ABC 乙:小直角三角形DBC )中体会这个原理,现在图③中的曲线分
别是22221(0)x y a b a b +=>>与222
x y a +=,运用上面的原理,图③中椭圆的面积为.
12. 已知AB 是椭圆)0(122
22>>=+b a b
y a x 的长轴,若把该长轴20XX 等分,过每个等分点
作AB 的垂线,依次交椭圆的上半部分于点122009P ,P ,
P ,设左焦点为1F ,则
(
)
1
11121200911
F A F P F P F P F B 2010+++++=
二、选择题(本大题满分12分)本大题共有4题,每题都给出代号为(A)、(B)、(C)、(D)
的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在对应的空格内,选对得3分,不选、选错或者选出的代号超过一个(不论是否都写在空格内),一律得零分。

13. (1)n
ax by ++展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对
值的和为32,则,,a b n 的值可能为 ( ) A .2,1,5a b n ==-=B .2,1,6a b n =-=-= C .1,2,6a b n =-==D .1,2,5a b n ===14. 已知两条直线2121//,08)5(2:,0534)3(:l l y m x l m y x m l =-++=-+++,则直
线l 1的一个方向向量是 ( )
A .(1,-1
2

B .(-1,-1)
C .(1,-1)
D .(-1,-1
2

15. 已知椭圆
22
1102
x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于( ) A .4. B .5. C .7. D .8.
16. 定义:平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度
相同)称为平面斜坐标系;在平面斜坐标系xOy 中,若12=+OP xe ye (其中12,e e 分别是斜坐标系x 轴、y 轴正方向上的单位向量,x 、y ∈R,O 为坐标系原点),则有序数对(x,y)称为点P 的斜坐标.在平面斜坐标系xOy 中,若xOy ∠=120°,点M 的斜坐标为(1,2),则以点M 为圆心,1为半径的圆在斜坐标系xOy 中的方程是
( ) A.0232
2
=+--+y xy y x B.04422
2=+--+y x y x
C.0232
2
=-+-+y xy y x
D.04422
2
=-+-+y x y x
三、解答题(本大题满分52分,8+8+12+12+12)本大题共有5小题,解答下列各题必须写出必要的步骤。

17. 求过两直线l 1:x +y +1=0与l 2:5x -y -1=0的交点,且与直线3x +2y +1=0的夹角为45o

直线的方程.
18. 已知:以点C (t ,2
t
)(t ∈R ,t≠ 0)为圆心的圆与x 轴交于点O , A ,与y 轴交于点O , B ,
其中O 为原点.
(1)求证:△OAB 的面积为定值;
(2)设直线y = –2x +4与圆C 交于点M , N ,若OM = ON ,求圆C 的方程.
19. 已知动点(x, y) 在曲线C 上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得
到的点满足方程2
2
8x y +=;定点M(2,1),平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A 、B 两个不同点.
(1)求曲线C 的方程; (2)求m 的取值范围. 20. 我国计划发射火星探测器,该探
测器的运行轨道是以火星(其半径34=R 百公里)的中心F 为一
个焦点的椭圆. 如图,已知探测器的近火星点(轨道上离火星表面最近的点)A 到火星表面的距离为8百公里,远火星点(轨道上离火星表面最远的点)B 到火星表面的距离为800百公里. 假定探测器由近火星点A 第一次逆时针运行到与轨道中心O 的距离为
ab 百公里时进行变轨,其中a 、b 分别为椭圆的长半轴、短半轴的长,求此时探测器
与火星表面的距离(精确到1百公里).
21. 已知半椭圆()22
2210x y x a b
+=≥与半椭圆
()22
2210y x x b c
+=≤组成的曲线称为“果圆”,其中2
2
2
,0,0a b c a b c =+>>>,012,,F F F 是对应的焦点。

A 1,A 2和B 1,B 2是“果圆”与x ,y 轴的交点,M 是线段A 1A 2的中点.
(1) 若三角形012F F F 是底边F 1F 2长为6,腰长为5的等腰三角形,求“果圆”的方程;
(2)若“果圆”方程为:)0(13
422≥=+x y x ,)0(1322
≤=+x y x 过F 0的直线l 交“果圆”
于y 轴右边的Q ,N 点,求△OQN 的面积S △OQN 的取值范围
(3) 若P 是“果圆”上任意一点,求PM 取得最小值时点P 的横坐标.。

相关文档
最新文档