周期信号的频域分析

合集下载

离散周期信号的频域表示

离散周期信号的频域表示

相位频谱
2.离散周期信号的频谱
周期单位脉冲序列 求如图所示周期为3的周期单位脉冲序列的频谱。
解:
X[m]
2
x[k]e
j2 3
mk
j2 m0
1e 3
1
k 0
x[k]
1
X[m]
1
0 12
k
0 12
m
2.离散周期信号的频谱
例:求周期为3的序列 x[k]={,0,1,1,}的频谱。
解:
X[m]
4 X2[m]
1
1
m
2π N
m
m 0,1,, N 1
时域信号不同,虚指数序列 前面的加权系数X[m] 不同。
012
k
012
m
1. 离散周期信号的频域表示
IDFS
x[k] 1 N1 X [m]e jmk
N m0
2π m
mN
m 0,1,, N 1
DFS
X[m] N1 x[k]ejmk
k 0
解:
X[m]
3
x[k]e
j2πmk 4
10 X[m]
k0
X[0] x[0] x[1] x[2] x[3] 10
X[1]
x[0]
x[1]e
j2π 4
11
x[2]e
j2π 4
12
x[3]e
j
2π 4
13
2
2j
2 2 22 2


0 123
m
X[2]
x[0]
x[1]e
j2π21 4
x[2]e
j2π22 4
解:
1
X[m] 3 x[k]ejmk

信号与系统连续周期信号的频域分析

信号与系统连续周期信号的频域分析

信号与系统连续周期信号的频域分析频域分析是信号与系统中一种重要的分析方法,用于研究信号的频谱特性。

连续周期信号是一种在时间域上具有周期性的信号,其频域分析包括傅里叶级数展开和频谱图表示。

傅里叶级数展开是一种将连续周期信号分解为若干个频率成分的方法。

对于周期为T的连续周期信号x(t),其傅里叶级数展开可以表示为:x(t) = ∑[Cn * exp( j *2πn/T * t )]其中,Cn为信号中频率为n/T的分量的振幅,j为虚数单位。

通过计算信号的傅里叶系数Cn,可以得到信号的频率成分和其对应的振幅。

在频域分析中,经常使用的一个重要工具是频谱图。

频谱图是一种将信号在频域上进行可视化展示的方法,通过绘制信号的频谱,可以直观地观察到信号的频率信息。

频谱图中的横轴表示频率,纵轴表示振幅。

对于连续周期信号,其频谱图是离散的,只有在频率为基频及其倍数的位置上有分量值。

基频是连续周期信号的最低频率成分,其他频率成分都是基频的整数倍。

频谱图中的峰值代表了信号在不同频率上的能量分布情况,而峰值的高度代表了对应频率上的振幅大小。

通过分析频谱图,可以获得信号中各个频率成分的相对强度,从而对信号进行进一步的特征提取和处理。

在实际应用中,频域分析经常用于信号处理、系统建模和通信等领域。

例如,在音频处理中,通过频域分析可以实现音频信号的降噪、音乐特征提取和音频编码等任务。

在通信系统中,频域分析可用于频率选择性衰落信道的估计和均衡、多载波调制技术等。

总结起来,频域分析是信号与系统中对连续周期信号进行分析的重要方法。

通过傅里叶级数展开和频谱图表示,可以揭示信号的频率成分及其振幅特性,为信号处理和系统设计提供依据。

信号与系统第4章 周期信号的频域分析(3学时)

信号与系统第4章 周期信号的频域分析(3学时)


T0 /2
0
x(t )sin(n 0t )dt
四、信号对称性与傅里叶系数的关系
3、半波重迭信号
~ x (t ) ~ x (t T0 / 2)
~ x (t )
A t
T0
T0 / 2 0
T0 / 2
T0
特点: 只含有正弦与余弦的偶次谐波分量,而无奇次谐波分量。
四、信号对称性与傅里叶系数的关系
~ x (t )
2 1 -4 -3 -2 -1 1 2 3 4
~ x (t ) ~ x1 (t ) ~ x2 (t )
nπ nπt t~ x (t ) 1.5 Sa ( ) cos( ) 2 2 n 1

~ x1 (t )
2
x 1(t ) 2
1 2 3 4
-4 -3 -2 -1
三、周期信号的功率谱
一、周期信号频谱的概念
连续时间周期信号可以表示为虚指数信号之和,其 中Cn 为傅里叶系数 。
~ x (t )
n =
Cn e

jn0t
1 Cn T0

T0 t 0
t0
~ x (t )e jn 0t dt
问题1:不同信号的傅里叶级数形式是否相同? 相同 问题2:不同信号的傅里叶级数不同表现在哪里? 系数
例3 课本P129
例4 已知连续周期信号的频谱如图,试写出信号的 Fourier级数表示式。 Cn
3 2 1 1 3 4 3 2
9
6
0
3
6
9
n
解: 由图可知 C0 4
C 1 3
C2 1
C 3 2
~ x (t )

第四章 周期信号的频域分析

第四章 周期信号的频域分析

c n = c n e − jϕ n 令: &
∞ 1 ∞ jnω t & & ∴ f (t ) = ∑ cn e = ∑ Fn e jnω t 2 n = −∞ n = −∞
& = 1 c 称为复傅里叶系数。 &n Fn 2
表明任意周期信号可以表示成 e jnω t 的线性组合, & 加权因子为 Fn 。
a− k e
− jkω0t

+ ak e
jkω0t
k 次谐波
例4-1:已知连续时间信号 f (t ) = 1 + cos ω0t + 2sin ( 3ω0t ) 求其傅立叶级数表示式及傅氏系数 ak ∞ 1 f (t ) = ∑ ak e jkω t 解: ak = ∫ f (t )e − jkω0t dt
不满足狄里赫利条件的周期信号
f (t )
狄里赫利条件 1 信号 f (t) 在任意一 个周期 T 内绝对可积
−2
f (t ) =
1 , 0 < t ≤1 t2
不满足条件 1
1
−1
0
1
2
t
2 信号 f (t) 在任意一
f (t )
个周期 T 内,只有有 限个极大和极小值点
3 信号 f (t) 在任意一
0
T1 T / 2
T
t
−T
−T1
0
T1
T
N =5
t
取 N =1, 5, 21, 81,用有限项傅氏级 数逼近连续时间周期脉冲信号 f (t)
ˆ f (t )
吉布斯(Gibbs)现象
信号的跳变点附近出现纹波 随项数增加,波纹峰值大小不 变,但被挤向信号的间断点处 信号连续点处傅氏级数收敛于信 号本身 信号跳变点处,傅氏级数收敛于 该处左极限和右极限的平均值

周期信号的频域分析

周期信号的频域分析

周期信号的频域分析周期信号是指在一定时间间隔内,信号的波形和幅度重复的一种信号。

频域分析是指将一个信号从时域(时间域)转换到频域(频率域),以便更好地理解信号的频率特性和频谱分布。

f(t) = a0 + ∑(an*cos(nω0t) + bn*sin(nω0t))其中,a0为直流分量,an和bn分别为傅里叶级数的系数,ω0 =2π/T为基础角频率。

要进行频域分析,首先需要计算出信号的傅里叶系数an和bn。

计算步骤如下:1.计算直流分量a0,即信号f(t)在一个周期内的平均值。

2. 计算余弦项的系数an,使用公式:an = (2/T) * ∫(f(t)*cos(nω0t)dt)其中,∫表示对t从0到T的积分。

3. 计算正弦项的系数bn,使用公式:bn = (2/T) * ∫(f(t)*sin(nω0t)dt)同样,∫表示对t从0到T的积分。

计算出所有的an和bn之后,可以得到信号f(t)的频谱分布。

频谱是指信号在频率域上的幅度分布,可以用幅度谱和相位谱来表示。

1. 幅度谱表示信号各个频率分量的幅度大小。

幅度谱可以通过计算an和bn的幅度来得到,即幅度谱A(f) = sqrt(an^2 + bn^2)。

2. 相位谱表示信号各个频率分量的相位差。

相位谱可以通过计算an 和bn的相位差来得到,即相位谱ϕ(f) = atan(bn/an)。

通过这些计算,我们可以获得信号在频域上的频谱分布,进一步分析信号的频率特性。

频域分析的应用十分广泛。

在通信系统中,频域分析可以用于分析信号的频率偏移、频率响应等问题,为系统的调试和优化提供依据。

在音频和视频信号处理中,频域分析可以用于音频信号的均衡和滤波,视频信号的去噪和增强等。

此外,频域分析还在图像处理、生物医学信号处理等领域得到广泛应用。

总之,周期信号的频域分析是一种将信号从时域转换到频域的方法,可以帮助我们更好地理解信号的频率特性和频谱分布。

通过计算傅里叶系数,可以得到信号的幅度谱和相位谱,从而分析信号在频域上的特性。

第13讲 周期信号的频谱及其特点

第13讲 周期信号的频谱及其特点

号的调制与解调等等。
精选版课件ppt
2
本章主要内容
3.1 3.2 3.3 3.4 3.5
周期信号的分解与合成 周期信号的频谱及特点 非周期信号的频谱 傅氏变换的性质与应用(1) 傅氏变换的性质与应用(2)
精选版课件ppt
3
本章主要内容
3.6 周期信号的频谱 3.7 系统的频域分析 3.8 无失真传输系统与理想低通滤波器 3.9 取样定理及其应用 3.10 频域分析用于通信系统
0 0 20 30 40 50
0.15
精选版课件ppt
14
周期信号的单边频谱
已知周期信号 f(t)11c o ts2 1s in t
2 4 3 4 3 6
求其基波周期T,基波角频率0,画出它的单边频谱图。
解:将f(t)改写为: f(t) 1 1 c o t s2 1 c o t s 2 4 3 4 3 62
精选版课件ppt
13
周期信号的单边频谱
画出周期信号 f(t) 的振幅频谱和相位频谱。
f(t) 1 si0 n t 2 co 0 t sco 20 ts ( 4 )
f(t) 1 5 co 0 ts 0 .( 1) 5 c o 20 s t 4
Ak 5
k
0.25
1
1
0
0
20 30 40 50
相位频谱图描述各次谐波的相位与频率的关系。
根据周期信号展开成傅里叶级数的不同形式,频谱图又分 为单边频谱图和双边频谱图。
精选版课件ppt
8
周期信号的单边频谱
周期信号 f ( t ) 的三角函数形式的傅里叶级数展开式为
f(t)A0 Ancos(n1tn) n1
A n 与 n 1 的关系称为单边幅度频谱;

第四章周期信号频域分析

第四章周期信号频域分析

第四章周期信号频域分析信号分析是现代通信、电子、控制等领域中非常重要的一个方向。

在信号分析中,频域分析是一种非常常用和有效的手段。

本章将介绍周期信号的频域分析方法。

周期信号是指在时间轴上按照一定规律重复出现的信号。

周期信号可以表示为周期函数的形式,即y(t+T)=y(t),其中T为信号的周期。

在频域分析中,我们希望能够将周期信号分解为一系列的频率组成的谐波分量,从而得到信号在不同频率上的能量分布情况。

常用的周期信号频域分析方法有傅里叶级数分析和离散傅里叶变换分析两种。

傅里叶级数分析是将一个周期信号表示为一系列谐波分量的和的形式。

假设一个周期信号f(t)的周期为T,可以将其分解为如下的傅里叶级数形式:f(t) = a0 + Σ(an * cos(n * ω0 * t) + bn * sin(n * ω0 * t))其中,a0表示信号的直流分量,an和bn分别表示信号在频率为n * ω0的正弦函数和余弦函数上的系数,n为谐波次数。

离散傅里叶变换分析是将一个有限长的离散时间信号表示为一系列复数形式的谐波分量的和,常用的离散傅里叶变换分析方法是快速傅里叶变换(FFT)。

假设一个有N个采样点的离散时间信号为x(n),其离散傅里叶变换为X(k),则有:X(k)=Σ(x(n)*e^(-j*2π*k*n/N))其中,k表示谐波次数,n为采样点的序号,N为采样点的总数。

傅里叶级数分析和离散傅里叶变换分析都可以用于分析周期信号的频域特性。

通过这些方法,我们可以得到周期信号在不同频率上的谐波分量的能量大小,从而了解信号的频谱特性。

在实际应用中,频域分析常用于信号处理、滤波、频率识别、通信系统设计等各个领域。

比如,在通信系统中,我们可以通过频域分析方法来实现信号的调制解调、滤波、信道均衡等操作。

在音频处理中,我们可以通过频域分析来进行音频变调、音频合成等操作。

总结起来,周期信号的频域分析可以帮助我们了解信号在不同频率上的分布情况,从而实现信号处理、频率识别等功能。

周期信号的时域及其频域分析

周期信号的时域及其频域分析

周期信号的时域及其频域分析一、实验目的1、掌握multisim软件的应用及用虚拟仪器对周期信号的频谱测量2、掌握选频电平表的使用,对信号发生器输出信号(方波、三角波、矩形波等)频谱的测量二、实验原理周期信号的傅里叶级数分析法,可以把周期信号表示为三角傅里叶级数或指数傅里叶级数,其中周期信号应满足.1、周期信号表示为三角傅里叶级数f(t)=式中,为直流分量,和为n次谐波分量系数,T为周期,Ω=为角频率。

当n=1,cos(Ωt)和sin(Ωt)合成角频率为Ω=的正弦分量,称为基波分量,Ω称为基波频率;当n>1(n为整数),cos(nΩt)和sin(nΩt)合成角频率为nΩ的正弦分量,称为n次谐波分量,nΩ称为谐波频率。

2、周期信号表示为指数傅里叶级数将一周期信号f(t)分解为谐波分量,即f(t)=其中,是第n次谐波分量的复数振幅。

三角傅里叶级数和指数傅里叶级数虽然形式不同,但是实际上它们是属于同一性质的级数,即都是将一周期信号表示为直流分量和谐波分量之和。

三、实验内容1、在multisim实现周期信号的时域频域测量及分析(1)、绘制测量电路(2)、周期信号时域、频域(幅度频谱)的仿真测量虚拟信号发生器分别设置如下参数:周期方波信号:周期T=100μs,脉冲宽度τ=50μs,脉冲幅度Vp=5V;.周期矩形信号:周期T=100μs,脉冲宽度τ=20μs,脉冲幅度Vp=5V;周期三角形信号:周期T=200μs,脉冲幅度Vp=5V。

采用虚拟示波器及虚拟频谱仪分别测量上述信号的时域、频域波形并保存测试波形及数据。

2、周期信号的时域、频域(幅度)频谱的测量信号发生器、示波器、选频电平表的连线如图所示。

信号发生器的输出信号分别为周期方波信号,周期矩形信号,周期三角波信号,参数设置同仿真设置。

采用示波器及选频电平表对信号发生器的输出信号分别测量,并将测量数据记录于表格中(依照V=10db/20,将所测量的幅度值由分贝换算为伏特)表格记录:(1)通过实验学会了用示波器测量信号的FFT变换,从而测出信号的频谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n1

Cn

an
jbn 2
由于C0是实的,所以b0=0,故
C0

a0 2
三角形式傅立叶级数
f
(t)

a0 2


(an
n1
cos n0t
bn
sin n0t)dt
其中:a0

2 T
T
2 T
2
f (t)dt
an

2 T
T
2 T
f (t) cosn0tdt
2
(n = 1,2)
[例题3]
f (t)
2 1

f (t) 1.5
Sa ( n ) cos(nt )
n1
2
2
-4 -3 -2 -1
1 2 34
t
f1(t)
2
-4 -3 -2 -1
1 2 34
f2 (t)
1
t

nLeabharlann ntf2 (t) 0.5
n1
Sa (
2
) cos(
2
)
-4 -3 -2 -1
2
Cn
Cn Cn e jn
A / T
幅频特性
相频特性
2
2



0 2 / T
n 0
3.频谱的特性
•(1)离散频谱特性
周期信号的频谱是由 间隔为ω 0的谱线组成
信号周期T越大,ω 0就越小,则谱线越密。 反之,T越小,ω 0越大,谱线则越疏。
Cn
A T0





0
0 2π T0
0t

1 3
c
os30t

1 5
c
os50t
)
例2 试计算图示周期三角脉冲信号的傅立叶级数展开式。
f (t)

-2 1 0 2
t
解: 该周期信号f (t)显然满足狄里赫勒的三个条件,Cn存在
1
Cn T
T 2 T
f (t)e jn0t dt 1 ( 0 te jn0t dt 2 1
Cn
3.频谱的..特. 性
(2)幅度衰减特性 30 0

2 / 9π2
2 / π2
1/ 2
0 0 2 / π2
...
30
2 / 9π2
周期三角波信号的频谱
• 当周期周矩期形信信号号的频的谱幅度频谱 随着谐波n0增大 时,
幅度频谱|Cn|不断衰减,并最终趋于零。
• 若信号时域波形变化越平缓,高次谐波成分就
2. 时移特性

则有
f (t) Cn
f (t t0 ) e jn0t0 Cn
3.卷积性质
若f1(t)和f2(t)均是周期为T0的周期信号,且 f1(t) C1n , f2 (t) C2n
则有 f1(t) * f2 (t) T0C1n C2n 例4-4:
4. 微分特性

1 T
T 2 T
fT (t)e jn0t dt
2
x(t)

C0
+C1e j0t

C1e j0t

C e j20t 2

C e j20t 2
...
C e jN0t N

C e jN0t N
...
直流分量
基波分量
N 次谐波分量
物理含义:周期信号f(t)可以分解为不同频率虚指数信号之和。

1/ 2,
n0
周期三角脉冲信号的指数形式傅立叶级数展开式为

f (t) Cn
n =
e jn0t 1 2 m=
2
e j(2m1)0t
[(2m 1) ]2


f (t) C0 2 Re( Cne jn0t )
n1
周期三角脉冲信号的三角形式傅立叶级数展开式为
t
2 / 9π2
2 / 9π2
2 / π2 0 2 / π2
周期三角波信号的时域波形
周期三角波信号的频谱
Fourier级数的收敛条件
周期信号展开为傅立叶级数条件: • 周期信号fT(t)应满足Dirichlet条件,即:
• (1) 绝对可积,即满足 T /2 f (t) dt T / 2
Cn

1 T
T 2 T
f (t)e jn0t dt
1 T
2
2 2
Ae jn0t dt
A
T
Sa( n0 )
2
因此,周期方波信号的指数形式傅立叶级数展开式为
f (t)

Cn e jn0t
A

Sa( n0 )e jn0t
n =
T n=
2
bn T
T
2 T
f (t)sin n0tdt
2
(n = 1,2)
例题1:试计算图示周期矩形脉冲信号的傅立叶
级数展开式。
周期矩形信号的频谱
f (t) Cn
A
A T0






0
-T 0
T 0 2π T0
t
解:该周期信号f (t)显然满足狄里赫勒的三个条件, 必然存在傅立叶级数展开式。

2A π
cos0t

2A 3π
cos30t

2A 5π
cos50t

~xΔ
(t)

1 2

4 π2
cos 0t

4 9π2
cos
30t

4 25π2
cos
50t

不同的时域信号,只是傅里叶级数的系数Cn不同,因此通
过研究傅里叶级数的系数来研究信号的特性。
连续周期信号的频谱
~x (t) A
fT (t)sin n0tdt 0
2
T 2 0
fT (t) cosn0tdt
纵轴对称周期信号其傅立叶级数展开式中只
含有直流项与余弦项。
• 2、奇对称信号(原点对称) fT(t)=fT(t)
f(t) A
T0 / 2
0 T0 / 2
t
-A
an

2 T
T
2 T
2
fT (t) cosn0tdt 0
连续周期信号的频谱
周期信号可以分解为不同频率虚指数信号之和
例如例1,2信号

fT (t) Cn e jn0t
n =
~xr
(t)

A 2

2A π
cos0t

2A 3π
cos30t

2A 5π
cos50t

~xΔ
(t)

1 2

4 π2
cos 0t

4 9π2
cos
30t

• (2) 在一个周期内只有有限个不连续点; • (3) 在一个周期内只有有限个极大值和极小值。
注意:条件(1) 为充分条件但不是必要条件; 条件(2)(3)是必要条件但不是充分条件。
不满足Dirichelet条件的信号
吉伯斯现象
用有限次谐波分量来近似原信号,在不连续点 出现过冲,过冲峰值不随谐波分量增加而减少, 且 为跳变值的9% 。
2


f (t) C0 2 Re( Cne jn0t )
n1
可得,周期方波信号的三角形式傅立叶级数展开式为

f (t) (A / T0 ) (2A / T0 )Sa(n0 / 2) cosn0t n1
若=T/2,则有
fT (t)

A 2

2A

(c
os
吉伯斯现象产生原因
时间信号存在跳变破坏了信号的收敛性,使得 在间断点傅里叶级数出现非一致收敛。
1.2
1
N=5
0.8
0.6
0.4
0.2
0
-0.2
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
1.2
N=50
1
0.8
0.6
0.4
0.2
0
-0.2
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
1.2
1
N=15
0.8
1te jn0t dt)
0
2

1
(te jn0t
0

0 e jn0t dt te jn0t
1

1 e jn0t dt)
2 jn0
1 1
00

1
(n
)2
(cos
n
1)
0

2
T

Cn

1
(n )2
(cosn
1)

2 /(n )2 , n为奇数
(2) 从系统分析角度,已知单频正弦信号激励下的响 应,利用迭加特性可求得多个不同频率正弦信号同时 激励下的总响应而且每个正弦分量通过系统后,是衰 减还是增强一目了然。
1. 指数形式傅立叶级数
连续时间周期信号可以用指数形式傅立叶级数表示为

f (t) Cn e jn0t 其中
n =
Cn
f
(t)

1 2

m=1
4
[(2m 1) ]2
相关文档
最新文档