排列组合和排列组合计算公式复习过程

合集下载

备战高考数学复习知识点讲解课件74---排列与组合

备战高考数学复习知识点讲解课件74---排列与组合

角度3 分组分配问题
(1)(2022·四川名校5月联考)某学校开展“学雷锋践初心,向建党百年
献礼”志愿活动.现有6名男同学和4名女同学,分配到4个“学雷锋志愿
服务站”参加志愿活动,若每个志愿服务站至少有男、女同学各1名,则
不同的分配方案种数为( )
A.65
B.1 560
C.25 920 √D.37 440
同的三角形; 第三类:共线的 4 个点中没有点为三角形的顶点,共有 C38=56(个)不同的三
角形. 由分类加法计数原理知,不同的三角形共有 48+112+56=216(个).
方法二(间接法):从 12 个点中任意取 3 个点,有 C312=220(种)取法,而在共 线的 4 个点中任意取 3 个均不能构成三角形,即不能构成三角形的情况有 C34=4(种). 故这 12 个点构成三角形的个数为 C312-C34=216. 答案:216
【解析】 (2)不考虑京剧的位置,越剧、粤剧排在一起的排列有 A22种,把 越剧与粤剧看成一个整体“捆绑”起来,与剩余的 4 个剧种排列,有 A55种, 共有 A22A55种.根据对称性知,京剧排在前三与后三的情况是一样的,所以 满足条件的演出顺序有A222A55=120(种).
常用的两种求解排列组合问题的两种方法 (1)相邻问题采用“捆绑法”; (2)不相邻问题采用“插空法”.
备战高考数学复习知识点讲解课件
第74讲 排列与组合
考向预测
核心素养
考查排列组合的简单应用,以实际问题为背 景,多与概率结合考查.
数学建模、数学运算
01 基础知识 回顾
一、知识梳理 1.排列与组合的概念
名称
定义
排列 组合
并按照_一__定__的__顺__序___排成

高考数学总复习------排列组合与概率统计

高考数学总复习------排列组合与概率统计

高考数学总复习------排列组合与概率统计【重点知识回顾】1.排列与组合⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计 数原理和分步有关,分类计数原理与分类有关.⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.⑶排列与组合的主要公式①排列数公式:An m(n n! n(n1) (nm1) (m ≤n)m)!A n n=n!=n(n―1)(n ―...2)21.·②组合数公式:Cn mn! n(n 1) (n m 1) (m ≤n).m!(n m)! m (m 1) 2 1③组合数性质:①C n mC n nm(m ≤n). ②C n 0C n 1C n 2C n n2n③Cn 0C n 2C n 4C n 1C n 32n12.二项式定理⑴二项式定理(a+b)n=C n 0a n+C 1n a n -1b+⋯+C n ra n -rb r+⋯+C n n b n,其中各项系数就是组合数C n r,展开r - r b r . 式共有n+1项,第r+1项是T r+1=C n a n⑵二项展开式的通项公式二项展开式的第r+1 项Tr+1=C n r a n -r b r(r=0,1, ⋯叫n)做二项展开式的通项公式。

⑶二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, r n r (r=0,1,2, ⋯,n). 即C n =C n②若n 是偶数,则中间项 (第n n项)的二项公式系数最大,其值为 C n 2;若n 是奇数, 12则中间两项(第n 1项和第n3 n1 n1项)的二项式系数相等,并且最大,其值为C n 2 =C n 2. 2 2③所有二项式系数和等于 2n,即C 0n +C 1n +C 2n +⋯+C nn =2n.④奇数项的二项式系数和等于偶数项的二项式系数和,10213n ―1 即C n +C n +⋯=C n +C n +⋯=2 . 3.概率(1)事件与基本事件:随机事件: 在条件下, 可能发生也可能不发生的事件S事件不可能事件:在条件下,一定不会发生的事件 确定事件 S必然事件:在条件下,一定会发生的事件 S基本事件:试验中不能再分的最简单的 “单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的; 试验中的任意事件都可以用基本事件或其和的形式来表示.( 2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件 的概率是一个常数,不随具体的实验次数的变化而变化.(3)互斥事件与对立事件:事件定义集合角度理解 关系事件 A 与B 不可能同时两事件交集为空事件A 与B 对立,则A互斥事件与B 必为互斥事件;发生事件 A 与B 不可能同时两事件互补 事件A 与B 互斥,但不对立事件一是对立事件 发生,且必有一个发生(4)古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件 ”的概率模型.几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.两种概型中每个基本事件出现的可能性都是相等的, 但古典概型问题中所有可能出现的 基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.(5)古典概型与几何概型的概率计算公式:古典概型的概率计算公式:P(A)A 包含的基本事件的个数 .基本事件的总数构成事件A 的区域长度(面积或体积) 几何概型的概率计算公式: P (A ).试验全部结果构成的区域长度(面积或体积)两种概型概率的求法都是 “求比例”,但具体公式中的分子、分母不同.(6)概率基本性质与公式①事件A 的概率P(A)的X 围为:0≤P(A)≤1.②互斥事件A 与B 的概率加法公式: P(AB)P(A) P(B).③对立事件A与B的概率加法公式:P(A) P(B) 1.(7)如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率是p kkn―kn的展开式的第k+1 项.n (1 ―p).实际上,它就是二项式[(1 ―p)+p] (k)=C n p2(8)独立重复试验与二项分布①.一般地,在相同条件下重复做的n次试验称为n次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;②.二项分布的概念:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为( X k )k k (1)nk(012 )P Cp p,k ,,,,nn.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4、统计(1)三种抽样方法①简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,⋯,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.②系统抽样系统抽样适用于总体中的个体数较多的情况.系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔k,当N(N为总体中的个体数,n为样本容量)是整数时,nk N;当N不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n整除,n n这时k N;第三步,在第一段用简单随机抽样确定起始个体编号l,再按事先确定的规则n抽取样本.通常是将l加上间隔 k得到第2个编号(l k),将(l k)加上k,得到第3个编号(l 2k),这样继续下去,直到获取整个样本.③分层抽样当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.(2)用样本估计总体样本分布反映了样本在各个X围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.3①用样本频率分布估计总体频率分布时, 通常要对给定一组数据进行列表、作图处理.作 频率分布表与频率分布直方图时要注意方法步骤. 画样本频率分布直方图的步骤: 求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.②茎叶图刻画数据有两个优点: 一是所有的信息都可以从图中得到; 二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程1 n 2.有时也用标准差的平方———方差来代替标准差,度,其计算公式为s(x i x)ni1两者实质上是一样的.(3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值, 获得对这两个变量之间的整体关系的了解. 分析两个变量的相关关系 时 ,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估 计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系: 如果这些点大致分布在通过散点图中心的一条直线附近, 那么就说这两个变量之间具有线性相关关系, 这 条直线叫做回归直线, 其对应的方程叫做回归直线方程. 在本节要经常与数据打交道, 计算量大,因此同学们要学会应用科学计算器. (4)求回归直线方程的步骤:n n 2;第一步:先把数据制成表,从表中计算出 ,, x i y i , xy x ii1 i1 第二步:计算回归系数的 a ,b ,公式为n n nn x i y i ( x i )( y i ) b i 1 i1 i 1 , n 2 n x i )2n x i (i 1 i 1a y ;bx第三步:写出回归直线方程y bxa . (4)独立性检验①22 列联表:列出的两个分类变量 X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2}的 样本频数表称为 2 2列联表1分类y1 y2 总计x1 a b a bx2cdc d总计 a c b da bcd构造随机变量K2(an(ad bc)2d)(其中n ab cd)b)(c d)(a c)b4得到K2的观察值k常与以下几个临界值加以比较:如果k 2.706,就有9000的把握因为两分类变量X和Y是有关系;如果k 3.841 就有9500的把握因为两分类变量如果k 6.635 就有9900的把握因为两分类变量如果低于k 2.706,就认为没有充分的证据说明变量【典型例题】考点一:排列组合【方法解读】1、解排列组合题的基本思路:X和Y是有关系;X和Y是有关系;X和Y是有关系.①将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步②对“组合数”恰当的分类计算是解组合题的常用方法;③是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”;2、解排列组合题的基本方法:①优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;②排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

高二数学《排列组合》复习课件

高二数学《排列组合》复习课件

4、(徐州二模)从6人中选4人组成4×100m接 力赛,其中甲跑第一棒,乙不跑最后一棒,有多 少种选法?
分析:(一)直接法
(二)间接法
A A A 2 A A4
3 4 3 5 1 2
2 4
=48
5、(南通一模)一个三位数,其十位上的数字 既小于百位上的数字也小于个位上的数字(如 735,414等),那么这样的三位数有 285 个. 2 2 2 2
排列组合复习课
*
一、复习回顾: (一)、知识结构 排列 基 本 原 理 排列数公式 应 用 问 题
组合数公式
组合
组合数性质
(二)、重点难点 1. 两个基本原理
2. 排列、组合的意义
3. 排列数、组合数计算公式
4. 组合数的两个性质 5. 排列组合应用题
1. 两个基本原理
①分类记数原理(加法原理):完成一件事,有 n类办法,在第1类办法中有m1种不同的方法, 在第2类办法中有m2种不同的方法……在第n类 办法中有mn种不同的方法,那么完成这件事共有 N= m1+ m2 +…..+ mn种不同的方法. ②分步记数原理(乘法原理):完成一件事需要 n个步骤,做第1步有m1种不同的方法,做第2 步有m2种不同的方法, ……做第n步有mn种不 同的方法,那么完成这件事共有N= m1× m2 ×.…..× mn种不同的方法.
C C .
5. 排列组合应用题
(1) 正确判断是排列问题,还是组合 问题,还是排列与组合的综合问题。 (2) 解决比较复杂的排列组合问题时, 往往需要既分类又分步。正确分类,不 重不漏;正确分步,连续完整。 (3) 掌握基本方法,并能灵活选择使 用。
(三)、常用解题方法及适用题目类型

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解1. 学习目标掌握排列、组合问题的解题策略2.重点(1)特殊元素优先安排的策略:(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略.3.难点综合运用解题策略解决问题.4.学习过程:(1)知识梳理1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ⨯⨯⨯=...21种不同的方法.特别提醒:分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏.3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列.4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示.5.排列数公式:)、(+∈≤-=+---=N m n n m m n n m n n n n P m n ,)!(!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒:规定0!=16.组合:从n 个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n 个不同元素中取m 个不同元素的一个组合.7.组合数:从n 个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数,用符号m n C 表示.8.组合数公式:)!(!!!)1)...(2)(1(m n m n m m n n n n P P C m m m n m n-=+---== 组合数的两个性质:①m n n m n C C -= ;②11-++=m nm n m n C C C 特别提醒:排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.(2)典型例题考点一:排列问题例1.六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.【解析】:(1)方法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有14P 种站法,然后其余5人在另外5个位置上作全排列有55P 种站法,根据分步乘法计数原理,共有站法:)(4805514种=P P方法二:由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有25P 种站法,然后中间4人有44P 种站法,根据分步乘法计数原理,共有站法:(种)4804425=P P 方法三:若对甲没有限制条件共有66P 种站法,甲在两端共有552P 种站法,从总数中减去这两种情况的排列数,即共有站法:)(48025566种=-P P (2)方法一:先把甲、乙作为一个“整体”,看作一个人,和其余4人进行全排列有55P 种站法,再把甲、乙进行全排列,有22P 种站法,根据分步乘法计数原理,共有)(2402255种=P P 方法二:先把甲、乙以外的4个人作全排列,有44P 种站法,再在5个空档中选出一个供甲、乙放入,有15P 种方法,最后让甲、乙全排列,有22P 种方法,共有)(240221544种=P P P(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有44P 种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有25P 种站法,故共有站法为(种)4802544=P P 此外,也可用“间接法”,6个人全排列有66P 种站法,由(2)知甲、乙相邻有2402255=P P 种站法,所以不相邻的站法有)(480240720225566种=-=-P P P .(4)方法一:先将甲、乙以外的4个人作全排列,有44P 种,然后将甲、乙按条件插入站队,有223P 种,故共有(种))(14432244=⨯P P 站法. 方法二:先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有24P 种,然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列有33P 种方法,最后对甲、乙进行排列,有22P 种方法,故共有(种)144223324=P P P 站法. (5)方法一:首先考虑特殊元素,甲、乙先站两端,有22P 种,再让其他4人在中间位置作全排列,有44P 种,根据分步乘法计数原理,共有(种)484422=P P 站法. 方法二:首先考虑两端两个特殊位置,甲、乙去站有22P 种站法,然后考虑中间4个位置,由剩下的4人去站,有44P 种站法,由分步乘法计数原理共有(种)484422=P P 站法. (6)方法一:甲在左端的站法有55P 种,乙在右端的站法有55P 种,甲在左端而且乙在右端的站法有44P 种,故甲不站左端、乙不站右端共有66P -255P +44P =504(种)站法.方法二:以元素甲分类可分为两类:①甲站右端有55P 种站法,②甲在中间4个位置之一,而乙又不在右端有441414P P P 种,故共有55P +441414P P P =504(种)站法.考点二:组合问题 例2. 男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.【解析】:(1)选法为(种)1202436=C C .(2)方法一:至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类计数原理可得总选法数为(种)2461644263436244614=+++C C C C C C C C . 方法二:因“至少1名女运动员”的反面为“全是男运动员”,故可用间接法求解.从10人中任选5人有510C 种选法,其中全是男运动员的选法有56C 种.所以“至少有1名女运动员”的选法(种)24656510=-C C . (3)方法一:可分类求解:“只有男队长”的选法为48C ;“只有女队长”的选法为48C ;“男、女队长都入选”的选法为38C ;所以共有248C +38C =196(种)选法.方法二:间接法:从10人中任选5人有510C 种选法.其中不选队长的方法有58C 种.所以“至少1名队长”的选法为510C -58C =196种.(4)当有女队长时,其他人任意选,共有49C 种选法;不选女队长时,必选男队长,共有48C 种选法,而且其中不含女运动员的选法有45C 种,所以不选女队长时的选法共有4548C C -种选法. 所以既有队长又有女运动员的选法共有191)(454849=-+C C C 种.考点三:综合问题例3.4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?【解析】:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有种14422132414=P C C C ;(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也就是说另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有24C 种方法;4个球放进2个盒子可分成(3,1)、(2,2)两类: 第一类有序不均匀分组有8221134=P C C 种方法;第二类有序均匀分组有622222224=⨯P P C C 种方法. 故共有842222222422113424=⨯+)(P P C C P C C C 种. 当堂测试1.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( )A.70 种B.80种C.100 种D.140 种【解析】:分为2男1女,和1男2女两大类,共有7024151425=+C C C C 种.解题策略:合理分类与准确分步的策略.2.2020年北京奥运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事司机、导游、翻译、礼仪四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( )A.48 种B.12种C.18种D.36种【解析】:合理分类,通过分析分为(1)小张和小赵恰有1人入选,先从两人中选1人,然后把这个人在前两项工作中安排一个,最后剩余的三人进行全排列有24331212=P C C 种选法.(2)小张和小赵都入选,首先安排这两个人做前两项工作有222=P 种方法,然后在剩余的3人中选2人做后两项工作,有633=P 种方法.故共有363322331212=+P P P C C 种选法.解题策略:①.特殊元素优先安排的策略.②.合理分类与准确分步的策略.③.排列、组合混合问题先选后排的策略.3.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A.48B.12C.180D.162【解析】:分为两大类:(1)含有0,分步:①从另外两个偶数中选一个,有12C 种方法,②.从3个奇数中选两个,有23C 种方法;③.给0安排一个位置,只能在个、十、百位上选,有13C 种方法;④.其他的3个数字进行全排列,有33P 种排法,根据乘法原理共有10833132312=P C C C 种方法.(2)不含0,分步:①偶数必然是2和4 ;②奇数有23C 种不同的选法,③然后把4个元素全排列,共44P 种排法,不含0 的排法有724423=P C 种.根据加法原理把两部分加一块得108+72=180个4.甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种【解析】:4人中恰有1名女同学的情况分为两种,即这1名女同学或来自甲组,或来自乙组,则所有不同的选法共有345121625261315=+C C C C C C 种选法.解题策略:合理分类与准确分步的策略.5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A.6B.12C.30D.36【解析】:法一:甲、乙所选的课程中至少有1门不相同的选法可以分为两类:⑴.甲、乙所选的课程中2门均不相同,甲先从4门中任选2门,乙选取剩下的2门,有62224=C C 种.⑵.甲、乙所选的课程中有且只有1门相同,分为2步:①从4门中先任选一门作为相同的课程,有414=C 种选法,②甲从剩余的3门中任选1门,乙从最后剩余的2门中任选1门,有61213=C C 种选法,由分步计数原理此时共有24121314=C C C 种.最后由分类计数原理,甲、乙所选的课程中至少有1门不相同的选法共有6+24=30种. 故选C .法二:可以先让甲、乙任意选择两门,有362424=C C 种方法,然后再把两个人全相同的情况去掉,两个人全相同,可以将甲与乙看成为同一个人,从4门中任选两门有624=C 种选法,所以至少有一门不相同的选法为30242424=-C C C 种不同的选法. 解题策略:正难则反,等价转化的策略.6.用0 到9 这10 个 数字,可以组成没有重复数字的三位偶数的个数为 ( )A.324B.328C.360 D .648【解析】:第一类个位是0,共29P 种不同的排法;第二类个位不是0,共181814C C C 种不同的解法.故共有29P +181814C C C =328(个).解题策略:合理分类与准确分步的策略.7.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的总数为( )A.85B.56C.49D.28【解析】:合理分类,甲、乙全被选中,有1722C C 种选法,甲、乙有一个被选中,有2712C C 种不同的选法,共1722C C +2712C C =49种不同的选法.解题策略:(1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略.8.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的总数为( )A.4B.18C.24D.30【解析】:将甲、乙、丙、丁四名学生分成三组,则共有24C 种不同的分法,然后三组进行全排列共33P 种不同的方法;最后再把甲、乙分到同一个班的情况排除掉,共33P 种不同的排法.所以总的排法为24C 33P -33P =30种.注意:这里有一个分组的问题,即四个元素分成三组有几种不同的分法的问题.解题策略:⑴.正难则反、等价转化的策略⑵.相邻问题捆绑处理的策略⑶.排列、组合混合问题先选后排的策略;解排列组合的应用题要注意以下几点:仔细审题,判断是排列还是组合问题,要按元素的性质分类,按事件发生的过程进行分步.深入分析,严密周详,注意分清是乘还是加,要防止重复和遗漏,辩证思维,多角度分析,全面考虑.对限制条件较复杂的排列组合问题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后用两个计数原理来解决.由于排列组合问题的答案一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决方案是否完备,有无重复和遗漏,也可采用不同的方法求解.看看结果是否相同,在对排列组合问题分类时,分类标准应统一,否则易出现遗漏和重复.初夏早上六点,清亮透明的月儿还躲藏在云朵里,不忍离去,校园内行人稀少,我骑着单车,晃晃悠悠的耷拉着星松的睡眼。

排列组合复习资料

排列组合复习资料
C62 15
八.正难则反间接法 例8. 四面体的顶点和各棱中点共10个点, 从中取4个不共面的点,不同的取法有 多少种?
取出的4点不共面情形复杂,故采用间接 法。取出的4点共面有三类:
(1)过四面体的一个面有4C64 种;
(2)过四面体的一条棱上的三个点和对棱
的中点的平面有6种;
(3)过四面体的四条棱的中点且与另两条棱平
2
解:分两类完成
3 1 5 1)用3种颜色涂色有:C43 A33 2)用4种颜色涂色有:C21 A44
4
共有C43 A33 C21 A44 72(种)
5.综合问题
练习8:6本不同的书分给甲、乙、丙三人, 每人至少一本,有多少种不同的分法?
解: (C63C32C11 ).A33
(C64
.
C21C11 A22
解: ( CA52C22 32 ).A33 90
分配问题
练习2:
隔板法
(1)7个相同的小球,任意放入4个不
同的盒子中,共有多少种不同的方法?
解:相当于将7个小球用3块隔板分成4份
解:小球数 隔板数 7 3 10 共有不同方法数C130
分配问题
隔板法
练习(2:2)7个相同的小球,任意放入4个 不同的盒子中,每个盒子至少有1个 小球的不同放法有多少种?
板中, ,插所班共入有级有分n,_个_法_每元_数_一C素_为_种96排__插_成_板种C一方nm分排法11法的对。n应-一1个种空分隙法
一 二三四五 六 七 班 班班班班 班 班
练习题7
有编号为1、2、3的3个盒子和10个相 同的小球,现把这10个小球全部装入3 个盒子中,使得每个盒子所装球数不 小于盒子的编号数,这种装法共有多 少种?

排列组合的计算方法及过程

排列组合的计算方法及过程

排列组合的计算方法及过程排列组合是数学中常用的计算方法,用于确定从一组元素中选择若干个元素的方式。

下面是排列组合的计算方法及过程:1. 排列 (Permutation):排列是从一组元素中选取若干个元素进行有序排列的方式。

对于给定的n个元素中选取r个元素进行排列,排列数记为P(n, r)或nPr,计算公式如下:P(n, r) = n! / (n - r)!其中,n! 表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。

2. 组合 (Combination):组合是从一组元素中选取若干个元素进行无序组合的方式。

对于给定的n个元素中选取r个元素进行组合,组合数记为C(n, r)或nCr,计算公式如下:C(n, r) = n! / (r! * (n - r)!)下面通过一个具体的例子来说明排列组合的计算过程:例:从A、B、C、D四个元素中选取3个元素进行排列和组合。

1. 排列:a. 计算排列数:P(4, 3) = 4! / (4 - 3)! = 4! / 1! = 4 * 3 * 2 = 24b. 列出所有排列方式:ABC, ABD, ACB, ACD, ADB, ADC,BAC, BAD, BCA, BCD, BDA, BDC,CAB, CAD, CBA, CBD, CDA, CDB,DAB, DAC, DBA, DBC, DCA, DCB2. 组合:a. 计算组合数:C(4, 3) = 4! / (3! * (4 - 3)!) = 4! / (3! * 1!) = 4b. 列出所有组合方式:ABC, ABD, ACD, BCD通过以上例子,可以看到排列和组合的计算方法和过程。

在实际应用中,排列组合常用于统计学、概率论、组合优化等领域,能够帮助解决很多问题。

排列组合的计算公式和算法

排列组合的计算公式和算法

排列组合的计算公式和算法
排列组合的计算公式是:
全排列:A(n,n)=n!
组合:C(n,m)=A(n,m)/A(m,m)=n!/(m!*(n-m)!)
这个计算公式是通过对排列组合的一些基本概念的分析所得,所以其算法就是将排列组合的基本概念结合起来,从而得出最终计算结果。

具体的步骤如下:
1、首先,我们要弄清楚全排列和组合的概念,才能清楚的理解排列组合的计算公式。

2、然后,用这些基本概念去讨论排列组合的情况,得出一个公式去验证排列组合的情况是否正确。

3、接着,我们需要做出正确的推断,将基本概念和判断的概率公式综合起来,形成一个新的公式。

4、最后,用新的公式推导出排列组合的计算公式,并计算出结果。

排列组合计算公式过程

排列组合计算公式过程

排列组合计算公式过程
排列组合计算是组合数学中一个经典的问题,它是指从n 个物体中取出m(m<n)个物体的排列组合,因此也称n取m排
列组合问题。

排列组合计算是由古希腊数学家费马提出的,他认为n个物体可以分成一组,总共有n!种排列方法,n!是一
个递归公式,用来计算一个物体有多少排列方式,其中定义:
0!=1,n!=(n-1)!×n。

排列组合计算公式为:A(n,m)=n!/(n- m)!,问题表达为:从n个抽取m个物体共有多少种组合,用排列组合计算公式求解,即:A(n,m)=n!/(n- m)!,即有A(n,m)种组合方式。

排列组合计算的运算过程可以分为三个步骤:首先求出
每种可能的 n!;其次将 n! 除以 (n-m)!,以计算出除去一组不同的排列后,剩下的可能性;最后,按照 (n-m)! 的排列组合,计算得到 A(n,m) 的所有组合可能、每个物体的排列次序。

由于组合计算过程较为复杂,所以确定n个物体以及m个物体之间的关系,还需要考虑可能出现的重复情况,同时处理起来较为繁琐。

从上面可以看出,排列组合计算是由古希腊数学家费马
发展的一种计算方法,它使用n!/(n-m)!的递归公式,来解决
从n个物体中取出m个物体的排列组合问题,排列组合计算过程实际上分为三个步骤,虽然运算过程较为繁琐,但也能够得出准确结果,因此在各种组合计算问题中,排列组合计算公式也一直得到使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合公式/排列组合计算公式排列P------和顺序有关组合C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1:123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵,,∴原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有()A.60个B.48个C.36个 D.24个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()A.140种B.84种C.70种 D.35种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种)可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解:甲公司从8项工程中选出3项工程的方式C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C3 8×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6在(x-)10的展开式中,x6的系数是()A.-27C610B.27C410C.-9C610D.9C410解设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为()A.1B.-1C.0D.2解:A.例92名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有()A.6种B.12种 C.18种 D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

应选B.例10从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同取法共有().A.140种B.84种C.70种D.35种解:取出的3台电视机中,甲型电视机分为恰有一台和恰有二台两种情形.∵C24·+C25·C14=5×6+10×4=70.∴应选C.例11某小组共有10名学生,其中女生3名,现选举2 名代表,至少有1名女生当选的不同选法有()A.27种B.48种C.21种 D.24种解:分恰有1名女生和恰有2名女生代表两类:∵C13·C1 7+C23=3×7+3=24,∴应选D.例12由数学0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有().A.210个B.300个C.464个D.600个解:先考虑可组成无限制条件的六位数有多少个?应有P15·P 55=600个.由对称性,个位数小于十位数的六位数和个位数大于十位数的六位数各占一半.∴有×600=300个符合题设的六位数.应选B.例13以一个正方体的顶点为顶点的四面体共有().A.70个B.64个C.58个D.52个解:如图,正方体有8个顶点,任取4个的组合数为C48=70个.其中共面四点分3类:构成侧面的有6组;构成垂直底面的对角面的有2组;形如(ADB1C1 )的有4组.∴能形成四面体的有70-6-2-4=58(组)应选C.例14如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有().A.12对B.24对C.36对D.48对解:设正六棱锥为O—ABCDEF.任取一侧棱OA(C16)则OA与BC、CD、DE、EF均形成异面直线对. ∴共有C16×4=24对异面直线.应选B.例15正六边形的中心和顶点共7个点,以其中三个点为顶点的三角形共个(以数字作答).解:7点中任取3个则有C37=35组.其中三点共线的有3组(正六边形有3条直径).∴三角形个数为35-3=32个.例16设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则的值为。

相关文档
最新文档