异方差和自相关

合集下载

自相关和异方差处理顺序

自相关和异方差处理顺序

自相关和异方差处理顺序引言自相关和异方差是时间序列分析中常见的两种问题,它们影响了模型的准确性和可靠性。

在进行时间序列建模时,需要处理这些问题,以确保模型的有效性。

本文将深入探讨自相关和异方差处理的顺序,并讨论不同处理顺序的影响。

什么是自相关和异方差自相关自相关是指时间序列中当前观测值与之前观测值之间的相关性。

它衡量的是时间序列中各个观测值之间的依赖关系。

自相关可以用自相关函数(ACF)图来表示,通过观察ACF图,可以判断时间序列是否存在自相关。

异方差异方差是指时间序列中方差不稳定的特征。

在时间序列中,方差可能随着时间的推移发生变化,这会导致模型的拟合不准确。

异方差可以用方差函数(VCF)图来表示,通过观察VCF图,可以判断时间序列是否存在异方差。

自相关和异方差处理的重要性自相关和异方差对时间序列建模的准确性和可靠性有重要影响,它们需要被处理以获得可靠的模型结果。

•自相关的存在会导致参数估计不准确,预测结果失真。

如果存在自相关,模型会无法捕捉到序列的真实动态,导致预测结果不准确。

•异方差使得模型的残差不符合正态分布,违背了建模的基本假设。

这会使得模型的显著性检验和置信区间估计不可靠,影响模型的有效性。

因此,为了获得可靠的模型结果,需要对自相关和异方差进行处理。

自相关和异方差处理顺序的影响自相关和异方差的处理顺序会对最终的模型结果产生影响。

不同的处理顺序可能导致不同的模型结构和参数估计。

先处理自相关后处理异方差如果先处理自相关再处理异方差,可能会导致如下影响:1.自相关处理可能会改变时间序列的动态特征。

当我们去除自相关时,可能会削弱序列中的一些重要信息,导致模型无法准确捕捉到序列的动态变化。

2.异方差处理可能会影响自相关的结构。

当我们对残差进行异方差处理时,可能会改变残差序列的结构,从而使得自相关的估计失真。

先处理异方差后处理自相关如果先处理异方差再处理自相关,可能会产生如下影响:1.异方差处理可能改变原始序列的动态特征。

第三章异方差和自相关

第三章异方差和自相关
▪ 在本章中,我们将着重考虑假定2和假定3得不到 满足,即存在异方差和自相关情况下的处理办法。
2
第一节 异方差的介绍
一、异方差的定义及产生原因
▪ 异方差(heteroscedasticy)就是对同方差假设 (assumption of homoscedasticity)的违反。经典 回归中同方差是指随着样本观察点X的变化 i ,线 性模型中随机误差项 的方差并不改变,保持为
▪ 对每一个回归模型,计算残差平方和:记 值较小的一组子样本的残差平方和为 RSS1
= 1i2 ,xi 值较大的一组子样本的残差平
方和为 RSS2 = 2i2 。
13
▪ 第三步,建立统计量。
▪ 用所得出的两个子样本的残差平方和构成F统 计量:
F
2i
2
/(
n
2
d
1i
2
/(
n
2
d
k 1) k 1)
用OLS法。对 进行t检验,如果不显著,则没
有异方差性。否则表明存在异方差。 ▪ Park检验法的优点是不但能确定有无异方差性,
而且还能给出异方差性的具体函数形式。但也有
质疑,认为 仍可vi 能有异方差性,因而结果的真
实性要受到影响。
20
(四)Glejser检验法
▪ 这种方法类似于Park检验。首先从OLS回归取得
7
一、图示法
▪ 图示法是检验异方差的一种直观方法,通常有下 列两种思路:
▪ (一)因变量y与解释变量x的散点图:若随着x 的增加,图中散点分布的区域逐渐变宽或变窄,
或出现了偏离带状区域的复杂变化,则随机项可 能出现了异方差。
▪ (与x二的)散残点差图图,。或残者差在图有即多残个差解平释方变ˆ量i(2 时i2的可估作计残值)

异方差与自相关

异方差与自相关

七、 异方差与自相关一、背景我们讨论如果古典假定中的同方差和无自相关假定不能得到满足,会引起什么样的估计问题呢?另一方面,如何发现问题,也就是发现和检验异方差以及自相关的存在性也是一个重要的方面,这个部分就是就这个问题进行讨论。

二、知识要点1、引起异方差的原因及其对参数估计的影响2、异方差的检验(发现异方差)3、异方差问题的解决办法4、引起自相关的原因及其对参数估计的影响5、自相关的检验(发现自相关)6、自相关问题的解决办法 (时间序列部分讲解) 三、要点细纲1、引起异方差的原因及其对参数估计的影响原因:引起异方差的众多原因中,我们讨论两个主要的原因,一是模型的设定偏误,主要指的是遗漏变量的影响。

这样,遗漏的变量就进入了模型的残差项中。

当省略的变量与回归方程中的变量有相关关系的时候,不仅会引起内生性问题,还会引起异方差。

二是截面数据中总体各单位的差异。

后果:异方差对参数估计的影响主要是对参数估计有效性的影响。

在存在异方差的情况下,OLS 方法得到的参数估计仍然是无偏的,但是已经不具备最小方差性质。

一般而言,异方差会引起真实方差的低估,从而夸大参数估计的显著性,即是参数估计的t 统计量偏大,使得本应该被接受的原假设被错误的拒绝。

2、异方差的检验 (1)图示检验法由于异方差通常被认为是由于残差的大小随自变量的大小而变化,因此,可以通过散点图的方式来简单的判断是否存在异方差。

具体的做法是,以回归的残差的平方2i e 为纵坐标,回归式中的某个解释变量i x 为横坐标,画散点图。

如果散点图表现出一定的趋势,则可以判断存在异方差。

(2)Goldfeld-Quandt 检验Goldfeld-Quandt 检验又称为样本分段法、集团法,由Goldfeld 和Quandt 1965年提出。

这种检验的思想是以引起异方差的解释变量的大小为顺序,去掉中间若干个值,从而把整个样本分为两个子样本。

用两个子样本分别进行回归,并计算残差平方和。

异方差自相关稳健标准误

异方差自相关稳健标准误

异方差自相关稳健标准误异方差自相关稳健标准误(Heteroscedasticity Autocorrelation Robust Standard Errors,简称HAC标准误)是一种用于计量经济学和统计分析中处理异方差和自相关问题的方法。

在统计学中,方差齐性和误差项间的独立性是回归模型的两个重要假设,然而在实际数据分析中,这两个假设常常无法满足。

异方差和自相关问题可能导致参数估计的不准确和显著性检验结果的误导,因此需要使用适当的估计方法来解决这些问题。

HAC标准误通过在计算标准误时考虑样本中的异方差和自相关结构,从而得到更为准确的参数估计和显著性检验结果。

HAC标准误的计算方法通常分为两个步骤:需要估计异方差和自相关的结构;然后,在计算标准误时将这些结构考虑进去。

关于异方差的估计方法,最常用的是广义最小二乘法(GLS)和加权最小二乘法(WLS);关于自相关的估计方法,一般采用自相关的样本估计和自相关稳健的标准误。

得到异方差和自相关的估计后,可以通过计算异方差和自相关稳健的方差协方差矩阵,从而计算出HAC标准误。

HAC标准误可以通过多种方法进行计算,常用的方法有肯伯根-普·怀特(Newey-West)方法、Rogers方法和克伦贝克-均特(Kerning-Andrews)方法等。

肯伯根-普·怀特方法是最常用的方法之一,该方法通过对滞后自相关的样本估计进行加权,得到了一种异方差和自相关稳健的标准误估计。

Rogers方法是另一种常用的计算HAC标准误的方法,该方法用到了平方残差的自协方差。

克伦贝克-均特方法则是一种非参数方法,该方法通过估计异方差和自相关结构的权重,从而得到HAC标准误。

HAC标准误有许多优点。

HAC标准误可以有效地处理由异方差和自相关引起的参数估计的不准确性和显著性检验结果的误导。

HAC标准误可以在保持统计效率的提供稳健性,即在样本量较小的情况下也能得到准确的标准误估计。

异方差自相关豪斯曼检验

异方差自相关豪斯曼检验

异方差自相关豪斯曼检验异方差性(Heteroscedasticity)是指数据的方差不是常数,而是随着自变量的变化而变化。

当数据呈现异方差性时,固定效应模型可能会产生无偏但不一致的估计,而随机效应模型通常能够更好地处理异方差性。

因此,豪斯曼检验可以帮助确定在存在异方差性时应该选择哪种模型。

同时,时间序列数据中还可能存在自相关性(Autocorrelation),即误差项之间存在相关性。

如果数据中存在自相关性,那么OLS估计量可能不再是最佳线性无偏估计。

通过进行豪斯曼检验,可以确定在存在自相关性时是否需要使用修正的OLS估计方法。

要进行豪斯曼检验,首先需要建立两个模型:一个固定效应模型和一个随机效应模型。

然后通过计算两个模型的估计值的差异来进行检验。

在检验中,我们感兴趣的是这个差异是否由异方差性或自相关性引起的。

具体来说,豪斯曼检验的原假设是两个模型没有系统性的差异。

如果原假设被拒绝,说明两个模型之间存在显著差异,这可能是由于异方差性或自相关性导致的。

为了说明豪斯曼检验的方法和步骤,我们将考虑一个实际的研究示例。

假设我们对一个国家的 GDP 进行研究,我们想分析GDP 与劳动力投入之间的关系。

我们建立了一个固定效应模型和一个随机效应模型,用来估计 GDP 对劳动力投入的影响。

在固定效应模型中,我们假设不同国家之间的劳动力投入是不同的,即随着时间的推移,劳动力投入在各国之间也可能存在差异。

而在随机效应模型中,我们假设劳动力投入在各国之间是同质的,即不同的劳动力投入只是由于随机误差所致。

接下来,我们用豪斯曼检验来检验这两个模型之间的差异。

我们首先估计这两个模型,并计算它们之间的差异。

接着,我们对这些差异进行统计检验,以确定差异是否显著。

如果实证结果表明固定效应模型比随机效应模型更好,那么我们可以得出结论,数据中存在异方差性和自相关性。

在这种情况下,我们可能需要对模型进行修正,以更准确地描述数据。

总的来说,豪斯曼检验是一种在经济学和其他社会科学研究中经常使用的方法,用于检验两个模型之间的差异。

第五讲-多重共线性、异方差、自相关

第五讲-多重共线性、异方差、自相关

表 4.3.3 中国粮食生产与相关投入资料
农业化肥施 粮食播种面 受灾面积 农业机械总
用量 X 1
(万公斤)
积X 2
(千公顷)
X3
(公顷)
动力X 4
(万千瓦)
1659.8
114047 16209.3
18022
1739.8
11288பைடு நூலகம் 15264.0
19497
1775.8
108845 22705.3
20913
0.9752 1.53
t值
0.85
19.6 3.35 -3.57
Y=f(X1,X2,X3,X4) -13056 6.17 0.42 -0.17 -0.09
0.9775 1.80
t值
-0.97 9.61 3.57 -3.09 -1.55
Y=f(X1,X3,X4,X5) -12690 5.22 0.40 -0.20
含义:解释变量的样本向量近似线性相关。
多重共线性来源:
(1)解释变量x受到同一个因素的影响; 例如:政治事件对很多变量都产生影响,这些变量同时上升 或同时下降。
(2)解释变量x自己的当期和滞后期;
(3)错误设定。
二、多重共线性的后果
1、完全共线性下参数估计量不存在
Y X
的OLS估计量为: βˆ (XX) 1 XY
1、检验多重共线性是否存在
(1)对两个解释变量的模型,采用简单相关系数法 求出X1与X2的简单相关系数r,若|r|接近1,则说
明两变量存在较强的多重共线性。
(2)对多个解释变量的模型,采用综合统计检验法
若 在OLS法下:R2与F值较大,但t检验值较小, 说明各解释变量对Y的联合线性作用显著,但各解 释变量间存在共线性而使得它们对Y的独立作用不 能分辨,故t检验不显著。

统计分析与方法-第七章 回归分析2-异方差与自相关

统计分析与方法-第七章 回归分析2-异方差与自相关

1.000 . 15 .443 .098 15 .721** .002 15
**. Correlation is significant at the 0.01 level (2-tailed).
因此选取注册资本构造权函数
最优权数的幂指数确定
Source variable.. 注册资本 Dependent variable.. 销销收收 Log-likelihood Function = -125.581891 POWER value = -2.000 Log-likelihood Function = -122.148284 POWER value = -1.500 Log-likelihood Function = -118.756247 POWER value = -1.000 Log-likelihood Function = -115.440464 POWER value = -.500 Log-likelihood Function = -112.257523 POWER value = .000 Log-likelihood Function = -109.297553 POWER value = .500 Log-likelihood Function = -106.695645 POWER value = 1.000 Log-likelihood Function = -104.627066 POWER value = 1.500 Log-likelihood Function = -103.261903 POWER value = 2.000 Log-likelihood Function = -102.682848 POWER value = 2.500 Log-likelihood Function = -102.833168 POWER value = 3.000 The Value of POWER Maximizing Log-likelihood Function = 2.500

第五章异方差与自相关问题

第五章异方差与自相关问题

(c) 计算统计量
Tj
rs ( j) n 2 1 rs2 ( j)

(d)T j 近似服从自由度为n 2 的 t 分布。根据显著性水平
t 及自由度 n 2,查取
分布临界值 t 。如果 2
Tj
t ,则判定 2
模型存在单调形式的异方差,否则拒绝异方差。
§5.2 异方差问题
3. F 检验
(a)选择可能与异方差有关的解释变量 X j 。将 X j的样本观测值由小到
X kn
f f f
( X j1 ) Y2
(X j2) Yn
(X jn )
1
f ( X j1 ) 1
f (X j2) 1
f (X jn )
X 11
f ( X j1 )
X 12
f (X j2)
X 1n
f (X jn )
X k1
f ( X j1 )
X k2
f (X j2)
f
X kn (X jn
几种常见的可供参考的函数形式:
e 0 1X j
e
0
1X
1 j
e 0 1 X j
取 d 为函数 f ( X j ) 中的可变部分 : X j
X
1 j
Xj
§5.3 异方差模型的估计
(三)异方差模型的广义最小平方估计
Y1 Y2 Yn
1 1 1
X 11 X 12
X 1n
Y1
X k1 X k2
等级相关检验表明模型存在递增形式的异方差。
例5.1 异方差性的 F 检验
按照销售收入水平的排序,从中心删去第9-12号样本点,形成
两个子样本A与B:
ei2 1.451
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GLS和WLS的一个缺点是假设扰动项的协方 差矩阵为已知。这常常是一个不现实的假定。 因此,现代计量经济学多使用“可行广义最 小二乘法”(FGLS)。
可行广义最小二乘法FGLS
(1) 对原方程用OLS进行估计,得到残差项 的估计ûi , (2) 计算ln(ûi2) (3) 用ln(û2)对所有可能产生异方差的的解
estat hettest,rhs (使用方程右边的解释变量,而
不是yˆ )
最初的BP 检验假设扰动项服从正态分布,有一定局
限性。Koenker(1981)将此假定放松为iid,在
实际中较多采用,其命令为:
estat hettest, iid
estat hettest, rhs iid
1.sysuse auto,clear reg price weight length mpg
2。怀特检验:
2。怀特检验命令: 做完回归后,使用命令: estat imtest, white
Breusch and Pagan 检验
根据异方差检验的基本思路,Breusch and Pagan(1979)和Cook and Weisberg (1983)
主要异思方路差:的用变量ei2作/a回vg归(。ei2) 对一系列可能导致
estat hettest,normal
在本题中,造成异方差的更可能是解释变量的线性组 合,例如:
i2 2 *(a1*lengthi a2 * foreigni)
此时需要下载命令wls0 findit wls0 wls0 price weight length foreign, wvar(length foreign) type(e2) estat hettest,normal
检查是否具有异方差。 2。reg weight length mpg 检查是否具有异方差。 3。use production,clear
reg lny lnk lnl 检查是否具有异方差
4。use nerlove,clear reg lntc lnq lnpl lnpf lnpk 检验是否具有异方差
var( 1 )
cov( 1 , n ) 2 0
2I
cov(
n
,
1
)
var( n )
0
2
此时可得:
Var( ) 2 (X ' X )1
在存在异方差的情况下:
Var( ) 2(X ' X )1 X 'X (X ' X )1
因此,估计结果无偏,但不是有效的(随机假设有:
假设 对于解释变量的所有观测值,随机误差项
有相同的方差。
Var(i
)
E
(
2 i
)
2
i 1, 2,...n
Var(U) E[U E(U)][U E(U)]' E(UU ')
E(μμ )
E
1
1
n
2 1
E
1 n
n
n
1
2 n
加权最小二乘法(WLS):
sysuse auto,clear reg price weight length foreign estat hettest,normal 假设异方差由weight引起,即:
2 i
2
* lengthi
reg price weight length foreign [aw=1/length]
后两种现在已经基本不用。
1。画图:散点图和残差图。
1。残差图: rvfplot (residual-versus-fitted plot) rvpplot varname (residual-versuspredictor plot) 作图命令一定要在回归完成之后进行
rvfplot yline(0)
解释变量依然为原解释变量。
Step4:构造统计量Score=0.5*RSS服从自由度为 k的卡方分布。查表检验整个方程的显著性。 注意:在第3步中,方便起见也可以用被解释变量的 拟合值作为解释变量。
3。BP 检验:做完回归后,使用命令:
estat hettest ,normal(使用拟合值yˆ )
误差项存在异方差:U的方差-协方差矩阵 Var(u)主对角线上的元素不相等 。
2 1
0 .
0
0 .. 0
2 2
...
0
. ... .
0
...
2 n
异方差是违背了球型扰动项假设的一种情形。 在存在异方差的情况下:
(1)OLS 估计量依然是无偏、一致且渐近 正态的。
(2)估计量方差Var(b|X) 的表达式不再是 σ2(X’X)−1,因为Var(ε|X) ≠σ2I。
异方差的处理
1。使用“OLS+异方差稳健标准误”(robust standard error):这是最简单,也是目前比较 流行的方法。只要样本容量较大,即使在异方差 的情况下,只要使用稳健标准误,则所有参数估 计、假设检验均可照常进行。
sysuse nlsw88, clear
reg wage ttl_exp race age industry hours
reg wage ttl_exp race age industry hours, r
2。利用广义最小二乘法(GLS)
广义最小二乘法是对原模型加权,使之变成一个新 的不存在异方差性的模型,然后采用普通最小二乘 法估计其参数。 其含义为 Var(b) =σ2 (X'X)-1(X'ΣX) (X'X)-1 通过加权使得Σ =I 因此,GLS和WLS要求Σ已知。
(3)Gauss-Markov 定理不再成立,即 OLS不再是最佳线性无偏估计(BLUE)。
一般截面数据容易产生异方差 而时间序列数据容易产生自相关
异方差的检验
1。残差图 2。怀特检验 3。Breusch-Pagan(BP)检验 4。 G-Q 检验 (Goldfeld-Quandt,1965) 5。 Szroeter's 秩检验(Szreter,1978)
ei2 / avg(ei2) a0 a1X 1 a2X 2 ... akXk ui
H0: a1=a2=...=0 (不存在) H1: a1,a2...不全为0 (存在)
Step1:估计原方程,提取残差,并求其平方ei2。 Step2:计算残差平方和的均值avg(ei2) 。 Step3:估计方程,被解释变量为ei2/avg(ei2) ,
相关文档
最新文档