苏科版九年级数学上册江阴市要塞中学~12月份检测试卷
2018-2019学年最新苏科版九年级数学上学期12月份综合检测题及答案解析-精编试题

最新苏科版九年级上数学月考试卷(12月份)班级 姓名一、选择题 1.下列二次根式中与是同类二次根式的是( ) A .B .C .D .2.若x=3是方程x2﹣5x+m=0的一个根,则这个方程的另一个根是( ) A .﹣2 B .2C .﹣5D .53.已知⊙O 的半径为2,直线l 上有一点P 满足PO=2,则直线l 与⊙O 的位置关系是( ) A .相切 B .相离 C .相离或相切 D .相切或相交4.从1、2、3、4中任取两个不同的数,其和大于6的概率是( ) A .B .C .D .5.如图,圆锥的底面半径OB=6cm ,高OC=8cm .则这个圆锥的侧面积是( )A .30cm2B .30πcm2C .60πcm2D .120cm26.如图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的 ⌒EF 上, 若OA =2cm ,∠1=∠2,则 ⌒EF的长为( ) A .π3 cm B .2π3 cmC .4π3 cmD .8π3 cm二、填空题 7.要使式子在实数范围有意义,则x 的取值范围为 .8.已知菱形的两条对角线的长分别是6和8,那么它的边长是 . 9.抛物线y=x 2+2x+1的顶点坐标是 .第6题FEC BA O2110.已知圆锥的母线长为5,底面圆半径为2,则此圆锥的侧面积为 . 11.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程是 .12.如图,AB 是⊙O 的一条弦,AB=6,圆心O 到AB 的距离为4,则⊙O 的半径为 .13.若关于x 的方程mx 2﹣6x+1=0只有一个解,则m 的值是 . 14.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.15.二次函数y=-x 2+bx+c 的部分图象如图所示,图象的对称轴为过点(-1,0)且平行于y 轴的直线,图象与x 轴交于点(1,0),则一元二次方程-x 2+bx+c=0的根为 .16.如图,平行于x 轴的直线AC 分别交函数y 1=x 2(x≥0)与y 2=x 23(x≥0)的图象于B 、C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE∥AC,交y 2的图象于点E ,则DEAB = .三、解答题 17.计算:(2﹣3)÷.18.解方程:4t 2﹣(t+1)2=0.OA B第12题PBAO第14y–1 13Ox第15题第16题xOy 2=x 23y 1=x 2yEDCB A19.计算:2a﹣+(a >0).20.已知二次函数的图象关于y 轴对称,且过点(0,﹣2)和(1,﹣1). (1)求出这个二次函数的关系式;(2)判断该二次函数的图象与x 轴的交点个数.21.省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环): 第一次 第二次 第三次 第四次 第五次 第六次 甲 10 8 9 8 10 9 乙107101098根据表格中的数据,已经求出甲六次测试的平均成绩=9环,方差S 2甲=.(1)计算乙六次测试的平均成绩及方差;(2)你认为推荐谁参加全国比赛更合适?请说明理由. (提示:s 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2])22.如图,已知四边形ABCD 是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E 、F ,且DE=DF .(1)求证:△ADE ≌△CDF;(2)判断四边形ABCD 的形状,并说明理由.F EADBC23.如图,⊙O是△ABC的外接圆,∠ABC=45°,AD是⊙O的切线交BC的延长线于D,AB交OC于E.(1)求证:AD∥OC;(2)若AE=2,CE=2.求⊙O的半径和线段BE的长.24.某花圃用花盆培育某种花苗,原来每盆植入3株花苗时,平均每株可盈利3元.经过试验发现若每盆多植入1株花苗,则平均每株盈利就减少0.5元.为使每盆培育花苗的盈利达到10元,则每盆应该植入花苗多少株?25.七年级我们学过三角形的相关知识,在动手实践的过程中,发现了一个基本事实:三角形的三条高(或三条高所在直线)相交于一点.其实,有很多八年级、九年级的问题均可用此结论解决.【运用】如图,已知:△ABC的高AD与高BE相交于点F,且∠ABC=45°,过点F 作FG∥BC交AB于点G,求证:FG+CD=BD.小方同学在解答此题时,利用了上述结论,她的方法如下:连接CF并延长,交AB于点M,∵△ABC的高AD与高BE相交于点F,∴CM为△ABC的高.AECDGBF(请你在下面的空白处完成小方的证明过程.)【操作】如图AB是圆的直径,点C在圆内,请仅用无刻度的直尺........画出△ABC中AB 边上的高.26.某果品批发公司以16元/千克购进一批樱桃.由往年市场销售情况的统计分析可知:当销售价定为25 元/千克时,每天可售出1 000千克;若销售价定为20元/千克时,每天可售出2000千克.假设每天的销售量y(千克)与销售价x(元/千克)之间满足一次函数.(1)试求y与x之间的函数关系式;(2)在商品无积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每天的销售毛利润W(元)最大?最大利润是多少?BAC27.如图,在矩形ABCD 中,AB=6,BC=8,动点P 以2个单位/秒的速度从A 点出发,沿对角线AC 向C 移动,同时动点Q 以1个单位/秒的速度从C 点出发,沿CB 向点B 移动,当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒. (1)求△CPQ 的面积S 与时间t 之间的函数关系式;(2)以P 为圆心,PA 为半径的圆与以Q 为圆心,QC 为半径的圆相切时,求出t 的值. (3)在P 、Q 移动的过程中,当△CPQ 为等腰三角形时,直接写出t 的值;28.二次函数图象的顶点在原点O ,经过点A (1,);点F (0,1)在y 轴上.直线y=﹣1与y 轴交于点H . (1)求二次函数的解析式;(2)点P 是(1)中图象上的点,过点P 作x 轴的垂线与直线y=﹣1交于点M ,求证:FM 平分∠OFP;(3)当△FPM 是等边三角形时,求P 点的坐标.备用图DABCPQDABCPQ参考答案1.解:∵=3,四个选项中只有与3被开方数相同,是同类二次根式.故选A.2.B3.解:当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切;当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交.故直线l与⊙O的位置关系是相切或相交.故选D.4.D 5.C 6.C7.解:由题意得1﹣x≥0,解得x≤1.故答案为:x≤1.8.解,在菱形ABCD中,OA=×8=4,OB=×6=3,AC⊥BD,在Rt△AOB中,AB===5,所以,菱形的边长是5.故答案为:5.9.解:∵a=1,b=2,c=1,∴﹣=﹣=﹣1,==0,故答案是(﹣1,0).10.解:依题意知母线长=5,底面半径r=2,则由圆锥的侧面积公式得S=πrl=π×5×2=10π.故答案为:10π.11.解:第一次降价后的价格为36×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1﹣x)×(1﹣x),则列出的方程是36(1﹣x)2=25.故答案为:36(1﹣x)2=25.8.513.解:∵关于x的方程mx2﹣6x+1=0只有一个实数根,∴m=0,或者:△=36﹣4m=0,解得:m=9,故答案为0或9.14.815.x1=1,x2=-316.3- 317.解:原式=(4﹣)÷=3÷=.18.解:原方程可化为:(2t+t+1)(2t﹣t﹣1)=0,整理得:(3t+1)(t﹣1)=0,可得3t+1=0或t﹣1=0,解得:t1=﹣,t2=1.19.解:原式=2a﹣+,=(2﹣+)a•,=a.20.解:(1)设二次函数的关系式为:y=ax2+c,把点(0,﹣2)和(1,﹣1)代入得,解得.所以二次函数的关系式为y=x2﹣2;(2)令y=0,则x2﹣2=0,得x=±,所以该二次函数的图象与x轴有两个交点.21解:(1)=(10+7+10+10+9+8)÷6=9(环),s2乙=[(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=.(2)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.推荐乙参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但六次测试中,乙的高分成绩比甲的次数多,说明乙的冲击力更强,故推荐乙参加比赛更合适.22.解:(1)∵DE⊥AB,DF⊥BC ∴∠AED=∠CFD=90°,∵四边形ABCD是平行四边形,∴∠A=∠C,…分在△AED和△CFD中, ∠AED=∠CFD,∠A=∠C,DE=DF,∴△AED≌△CFD(AAS);(2)四边形ABCD是菱形.理由如下:∵△AED≌△CFD∴AD=CD,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.23. (1)证明:连结OA,如图,∵AD是⊙O的切线,∴OA⊥AD,∵∠AOC=2∠ABC=2×45°=90°,∴OA⊥OC,∴AD∥OC;(2)解:设⊙O的半径为R,则OA=R,OE=R﹣2,AE=2,在Rt△OAE中,∵AO2+OE2=AE2,∴R2+(R﹣2)2=(2)2,解得R=4,作OH⊥AB于H,如图,OE=OC﹣CE=4﹣2=2,则AH=BH,∵OH•AE=•OE•OA,∴OH===,在Rt△AOH中,AH==,∴HE=AE﹣AH=2﹣=∴BH=,∴BE=BH﹣HE=﹣=.24.解:设每盆植入的花苗在原来基础上增加x 株,即每盆植入花苗为(x+3)株,此时,平均每株盈利为(3﹣0.5x )元. 由题意得:(x+3)(3﹣0.5x )=10 化简,整理得:x 2﹣3x+2=0 解这个方程,得:x 1=1,x 2=2 ∴x+3=4或5.答:要使每盆培育花苗的盈利达到10元,每盆应该植入花苗4株或5株. 25.解:(1)在Rt△ADB 中,AD=BD ,……………………∵在Rt△BCM 中,∠MBC=45°,∴∠BCM=45°,即∠DCF=45°,……………… ∴在Rt△CFD 中,CD=DF , ………………… ∵FG∥BC,∴∠AGF=∠ABC=45°,∴在Rt△AFG 中,AF=FG ,……………………∴FG+CD=AF+DF=AD=BD. ………………… (2)如右图,CG 即为所画的高,画图正确. ……26.解:(1)由可知可设y=kx+b ,将点(25,1000),(20,2000)代入可得:,解得:,∴y=﹣200x+6000.(2)根据题意得出:w=(x ﹣16)×y =(x ﹣16)(﹣200x+6000) =﹣200(x ﹣23)2+9800,∴当销售单价定为23元/千克时,W 取得最大值,最大利润为9800元.FED BAC G27.解:在矩形ABCD 中,∠B=90°,AB=6,BC=8,则AC=10,由题意得:AP=2t ,CP=10-2t ,CQ=t ,(1)过点P 作PF⊥BC 于F ,可得△CPF ∽△ CAB,∴PF AB = CP CA ,即PF 6 = 10-2t 10, ∴P F =6-65t , ………2分 ∴S=12×QC×P F =-35t 2+3t (0≤t≤5). ……………………3分(2)∵△PCF∽△ACB, ∴PF PC FC AB AC BC ==,即1026108PF t FC -==,∴PF=665t -,FC=885t -, 则在Rt△PFQ 中,2222226841(6)(8)56100555PQ PF FQ t t t t t =+=-+--=-+. ①当⊙P 与⊙Q 外切时,有PQ=PA+QC=3t ,此时222415610095PQ t t t =-+=,整理得:2701250t t +-=, 解得t 1=156-35, t 2=-156-35(舍去).②当⊙P 与⊙Q 内切时,有PQ=PA -QC=t ,此时22241561005PQ t t t =-+=,整理得:29701250t t -+=, 解得t 1= 259,t 2=5.… 综上所述:⊙P 与⊙Q 相切时t=259或t=5或t=156-35. (3)当t= 103秒(此时PC=QC ),t= 259秒(此时PQ=QC ),或t= 8021秒(此时PQ=PC )△CPQ 为等腰三角形.28. (1)解:∵二次函数图象的顶点在原点O ,∴设二次函数的解析式为y=ax 2,将点A (1,)代入y=ax 2得:a=,∴二次函数的解析式为y=x 2;(2)证明:∵点P 在抛物线y=x 2上, F D A B C P Q∴可设点P的坐标为(x,x2),过点P作PB⊥y轴于点B,则BF=|x2﹣1|,PB=|x|,∴Rt△BPF中,PF==x2+1,∵PM⊥直线y=﹣1,∴PM=x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥y轴,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)解:当△FPM是等边三角形时,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴x2+1=4,解得:x=±2,∴x2=×12=3,∴满足条件的点P的坐标为(2,3)或(﹣2,3).。
新课标-最新苏科版九年级数学第一学期12月份月考达标检测题及答案解析-精编试题

最新苏科版九年级上学期12月份测试数学试题(考试时间:120分钟 卷面总分:150分)一、选择题:(每题3分,共24分) 1.数据1,3,3,4,5的众数为 ( ▲ ) A .1B .3C .4D .52.在一个不透明的布袋中装有3个白球和5个红球,它们除颜色不同外,其余均相同,从中随机摸 出一个球,摸到红球的概率是( ▲ )A .51B .31C .83D .853.-元二次方程02=-x x 的解为( ▲ ) A .0B .1C .0或1D .此方程无实数解4.⊙O 的半径为8,圆心O 到直线l 的距离为4,则直线l 与⊙O 的位置关系是( ▲ ) A .相离B .相切C .相交D .不能确定5.如图是二次函数c bx ax y ++=2的图象,下列关系式中,正确的是( ▲ ) A .a >0且c <0B .a <0且c <0C .a <0且c >0D .a >0且c >06.△ABC 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是( ▲ ) A .80° B .160°C .100°D .80°或100°7.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、 30°,则∠ACB 的大小为( ▲ ) A .15︒ B .28︒ C .29︒ D .34︒8.若关于x 的一元二次方程02=++-b ax x 有两个不同的实数根n m ,)(n m <,方程12=++-b ax x 有两个不同的实数根q p ,)(q p <,则q p n m ,,,的大小关系为( ▲ )(第7题)Oyx(第5题)A .n q p m <<<B .q n m p <<<C .q n p m <<<D .n q m p <<<二、填空题:(每题3分,共30分)9.若一组数据1、-2、3、0,则这组数据的极差为 ▲ . 10.二次函数422+-=x x y 图象的顶点坐标为 ▲ .11.将二次函数22x y =的图像向左移1个单位,再向下移2个单位后所得函数的关系式为 ▲ . 12.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售 价每盒16元,则该药品平均每次降价的百分率是 ▲ .13.已知方程0162=++kx x 有两个相等的实数根,则=k ▲ .14.已知P 为⊙O 内一点,OP=2,如果⊙O 的半径是3,那么过P 点的最短弦长是 ▲ . 15.现有一个圆心角为90,半径为cm 8的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不 计).该圆锥底面圆的半径为 ▲ cm .16.如图,在Rt △ABC 中,∠C=90°,CA=CB=2,分别以A ,B ,C 为圆心,以1为半径画弧,三 条弧与AB 所围成的阴影部分的面积是 ▲ .17.如图,⊙O 过正方形ABCD 的顶点A 、B ,且与CD 相切.若正方形ABCD 的边长为2,则⊙O 的半径为 ▲ .18.如图,点O (0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1, 再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标 是 ▲ .三、解答题:(本大题共10小题.共96分) 19.解列方程:(每题4分,共8分)yx3214321C C C B B B B C B O(第16题)(第17题)(第18题)ABC DOxy C A B2-2-4⑴0142=+-x x ⑵())3(232-=-x x20.(本题8分)先化简,再求值:÷⎪⎭⎫ ⎝⎛--+1111x x 1222+--x x x x ,其中x 是方程042=-+x x 的根.21.(本题8分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如下所示. (1)请你根据图中的数据填空:甲的平均数 ▲ 环、众数 ▲ 环、方差 ▲ 环2;乙的平均数 ▲ 环、众数 ▲ 环、方差 ▲ 环2.(2)请你判断谁的成绩好些,并说明理由.22.(本题8分)在一个不透明的布口袋中装除颜色外,其余都相同的白、红、黑三种颜色的小球各1 只,甲、乙两人进行摸球游戏:甲先从袋中摸出一球,看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为甲胜,问谁在游戏中获胜的可能性更 大些?说明理由.23.(本题10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A 、B 、C ,请在 网格图中进行下列操作:(1)利用网格确定该圆弧所在圆的圆心D 点的位置,并写出点D 坐标为 ▲ ;(2)连接AD 、CD ,则⊙D 的半径为 ▲ (结果保留根号),∠ADC 的度数为 ▲ ; (3)若扇形DAC 是一个圆锥的侧面展开图,求该圆锥底面圆的半径(结果保留根号).24.(本题10分)对于一个三角形,设其三个内角的度数分别为︒x 、︒y 和︒z ,若x 、y 、z 满足222z y x =+,我们定义这个三角形为美好三角形.(1)△ABC 中,若︒=∠50A ,︒=∠70B ,则△ABC ▲ (填“是”或“不是”)美好三角形; (2)已知△ABC 是美好三角形,︒=∠60A ,求∠B 、∠C 的度数(∠B <∠C).25.(本题10分)某商场将进价为20元的某种服装,按60元售出时,每天可以售出20套.据市场调 查发现,这种服装每降低1元售价,销量就增加2套,要求售价不得低于成本. (1)求每天销售利润y (元)与售价x (元/件)之间的函数表达式.(2)当售价为多少时,才能使每天的销售利润最大?最大利润为多少元?26.(本题10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的直线互相垂直,垂足为 D ,且AC 平分∠DAB . (1)求证:DC 为⊙O 的切线;(2)若⊙O 的直径为4,AD=3,求AC 的长.27.(本题12分) 已知二次函数122-+-=m mx x y (m 是常数). (1)求证:不论m 为何值,该函数的图象与x 轴有2个公共点;(2)如图,若该函数与x 轴的一交点是原点,求另一交点A 的坐标及顶点C 的坐标;(3)在(2)的条件下,y 轴上是否存在一点P ,使得PA+PC 最小?若存在,求出点P 的坐标;若不存在,请说明理由.28.(本题12分)如图,在平面直角坐标系中,抛物线a ax ax y 432--=的图象经过点C (0,2), 交x 轴于点A 、B (A 点在B 点左侧),顶点为D . (1)求抛物线的表达式及点A 、B 的坐标;(2)将△ABC 沿直线BC 对折,点A 的对称点为A ′,试求A ′的坐标;(3)抛物线的对称轴上是否存在点P ,使∠BPC=∠BAC ?若存在,求出点P 的坐标;若不存在,请 说明理由.九年级数学答案一、选择题:(每题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案BDCCADBA二、填空题:(每题3分,共30分)9.5 10.(1,3) 11.2)1(22-+=x y 12.20% 13.±814.52 15. 2 16.22π-17.4518.(-8,0) 三、解答题:(本大题共10小题,共96分) 19.解列方程:(每题4分,共8分)(1)x 1 =2+3x 2 =2-3 -----------4分 (2)x 1 =3x 2 =5 -----------8分20.先化简,再求值:(本题8分)解:∵042=-+x x ∴42=+x x ∴4)1(=+x x -----------2分∴原式=()()÷-+-112x x ()()211--x x x =()()∙-+-112x x ()()112--x x x =()12+-x x -----------7分=21- -----------8分 21.(本题8分)(1)7、7、0.4 -----------3分6、6、2.8-----------6分(2)甲的成绩好些.理由略. -------------8分 22.(本题8分)解:(1)图(或表)略. -----------4分 (2)甲在游戏中获胜的可能性更大些 -----------5分∵P(甲胜)=96= 32 P(乙胜)=93= 31 ∴P(甲胜)>P(乙胜) ∴甲在游戏中获胜的可能性更大些-----------8分 23.(本题10分)(1) (-1,0) --------2分 (2)17,90° ---------6分(3)417--------10分 24.(本题10分)(1) 不是 --------2分 (2) ∠B=45∠C=750--------10分25.(本题10分)解:(1)由题意得:()()[]x x y -+-=6022020∴280018022-+-=x x y --------5分 (2)∵280018022-+-=x x y ∴1250)45(22+--=x y ∴当45=x 时,1250=最大y∴当售价为45元时,才能使每天的销售利润最大,最大利润为1250元.--------10分 26.(本题10分)(1)证明:连接OC ,如图所示: ∵OA=OC ∴∠OAC=∠OCA∵AC 平分∠DAB ∴∠DAC=∠OAC ∴∠DAC=∠OCA ∴OC ∥AD ∵AD ⊥CD ∴OC ⊥CD ∴直线CD 为⊙O 的切线 --------5分 (2)解:连接BC ,如图所示: ∵AB 为直径 ∴∠ACB=90° ∵∠DAC=∠OAC ∠ADC=∠ACB=90° ∴△ADC ∽△ACB∴=即=∴AC=2--------10分27.(本题12分)(1)证明:∵)1(4)2(422---=-m m ac b 4442+-=m m 3)12(2+-=m >0 ∴不论m 为何值,该函数的图象与x 轴有2个公共点. --------4分 (2)解:∵122-+-=m mx x y O (0,0) ∴0=1-m 解得1=m ∴x x y 22-=当0=y 时, 022=-x x 解得01=x 22=x ∴A (2,0)∵x x y 22-= 即1)1(2--=x y ∴C (1,-1) --------8分(3)解:如图所示:作A (2,0)关于y 轴的对称点A ’(-2,0) 设直线A ’C :b kx y +=A ’(-2,0)C (1,-1) ∴ b k +-=20, b k +=-1解得 31-=k 32-=b ∴3231--=x y 当 0=x 时, 32-=y ∴P (0,32-) --------12分28.(本题12分)解:(1)∵a ax ax y 432--=C (0,2) ∴﹣4a=2 解得 21-=a ∴223212++-=x x y 当0=y 时,0223212=++-x x 解得11-=x 42=x∴A (﹣1,0),B (4,0)--------4分 (2)如图1所示:过点A'作A'H ⊥x 轴于H ,由∠AOC=∠COB=90° 易得△AOC ∽△COB所以∠ACO=∠CBO 可得∠ACB=∠OBC+∠BCO=90° 由A'H ∥OC AC=A'C 得OH=OA=1 A'H=2OC=4 所以A'(1,4)--------8分(2)分两种情况:①如图2所示:以AB 为直径作⊙M ,⊙M 交抛物线的对称轴于P (点P 在BC 的下方) 易得∠CPB=∠CAB 易得MP=AB 所以P (,)②如图3所示:将△ABC 沿直线BC 对折,点A 的对称点为A'以A'B 为直径作⊙M',⊙M' 交抛物线的对称轴于P'(点P'在BC 的上方) 则∠CP'B=∠CA'B=∠CAB过点M'作M'E ⊥A'H 于E ,交对称轴于F 则M'E=21BH=23EF=21123=- 所以M'F=12123=- 在Rt △M'P'F 中 P'F=所以P'M=2+所以P'(,2+) 综上所述,P 的坐标为(,)或(,2+)图1图2图3M。
苏科版九年级数学上册12月月考卷

绝密★启用前第一学期12月月考卷初 三 数 学考试范围:苏教版九年级全一册; 考试时间:100分钟; 试卷总分:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择填空题)一、选择题(每小题3分,共24分)1.下列方程中,是一元二次方程的是 (▲) A .2210x x+= B .ax 2+bx +c =0C .(x -1)(x -2)=1D .3x 2-2xy -5y 2=02.已知二次函数22(3)1y x =-+,下列说法正确的是A .开口向上,顶点坐标(3,1)B .开口向下,顶点坐标(3,1)C .开口向上,顶点坐标(3,1)-D .开口向下,顶点坐标(3,1)-3.用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是(▲)A .(x -1)2=2B .(x -1)2=4C .(x -1)2=1D .(x -1)2=74.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的度数等于(▲) A .60° B .80° C .40° D. 50°5. 如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,若CD =8, 且AE :BE =1:4,则AB 的长度为(▲)A.10B.5C. 12D.35第4题图第5题图第6题图6.如图,PA、PB切⊙O于点A、B,CD是⊙O的切线,交PA、PB于C、D两点,△PCD的周长是36,则AP的长为(▲)A.12B.18C.24D.97.下列说法一定正确的是(▲)A.三角形的内心是三内角角平分线的交点B.过三点一定能作一个圆C.同圆中,同弦所对的圆周角相等D.三角形的外心到三边的距离相等8.二次函数2=++,自变量x与函数y的对应值如表:y ax bx cx …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 …y … 4 0 ﹣2 ﹣2 0 4 …下列说法正确的是x>-时,y随x的增大而增大A.抛物线的开口向下B.当3C.二次函数的最小值是2-D.抛物线的对称轴是5x=-2二、填空题(每题3分, 共30分)9. 方程x2=3x的解为▲10.若关于x的方程032=x有一个根为-1,则另一个根为▲x++a11.将抛物线2=-向左平移2个单位,再向下平移3个单位,得抛物线y x32为_______.金戈铁制卷12.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是 ▲13. 一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,设平均每次降价的百分率是x,则可列出方程 ▲14.已知直角三角形的两条直角边长分别为6和8,则它的外接圆的半径为 ▲ 15.已知m 、n 是方程x 2+2x -5=0的两个实数根,则n m mn m ++-32 = ▲ .16.如图,已知经过原点的⊙P 与x 、y 轴分别交于A 、B 两点,点C 是劣弧 OB 上一点,则∠ACB 度数为 ▲第16题图 第17题图 第18题图 17.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为弧BD 的中点.若∠A=40°,则∠B= ▲ 度.18.如图,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(1,0)A -,与y 轴的交点B 在(0,2)-和(0,1)-之间(不包括这两点),对称轴为直线1x =.下列结论:①0abc >;②420a b c ++>;③2416ac b a -<;④1233a <<;⑤bc >. 其中正确结论的序号是____________金戈铁制卷第II 卷(非选择题)评卷人 得分三、解答题(共66分)19.解方程(10分)(1)2320x x --= (2)())3(432-=-x x x20.(本题6分)己知二次函数221y x x =--. (1)写出其顶点坐标为 对称轴为 ;(2)在右边平面直角坐标系内画出该函数图像; (3)根据图像写出满足2y >的x 的取值范围 .21.(本题6分)关于x 的方程2380x mx +-=.(1)求证:不论m 为何值,方程总有两个不相等的实数根; (2)若方程有一个根是23,求另一个根及m 的值.金戈铁制卷yxOCDB A22.(本题6分)已知二次函数2y x bx c =++的图象与y 轴交于点(0,3)C -,与x 轴的一个交点坐标是(1,0)A -.(1)求二次函数的解析式,并写出顶点D 的坐标; (2)将二次函数的图象沿x 轴向左平移32个单位长度,当 0y <时,求x 的取值范围.23.(本题9分)如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧. (1)直接写出圆弧所在圆的圆心P 的坐标(2)画出图形:过点B 的一条直线l ,使它与该圆弧相切; (3)连结AC ,求线段AC 和弧AC 之间图形的面积。
2023-2024学年江苏省无锡市江阴市九年级上学期12月月考数学试题

2023-2024学年江苏省无锡市江阴市九年级上学期12月月考数学试题1.tan45º的值为()A.B.1C.D.2.下列函数中一定是二次函数的是()A.y=3x﹣1B.y=ax2+bx+C.y=x2+D.s=2t2﹣2t+1c3.如图为⊙O的直径,弦于E,,,则直径的长为()A.B.13C.25D.264.中,,,,的值为()A.B.C.D.25.下列说法正确的是()A.三点确定一个圆B.任何三角形有且只有一个内切圆C.长度相等的弧是等弧D.三角形的外心是三条角平分线的交点6.已知,相似比为,且的周长为,则的周长为()A.9B.C.D.7.函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.8.如图,正方形的边,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.C.D.9.如图,抛物线y=﹣x2+1与x轴交于A,B两点,D是以点C(0,﹣3)为圆心,2为半径的圆上的动点,E是线段BD的中点,连接OE,则线段OE的最大值是()A.2B.C.3D.10.已知抛物线y=﹣x2+bx﹣c的顶点在直线y=3x+1上,且该抛物线与y轴的交点的纵坐标为n,则n的最大值为()A.B.C.D.11.二次函数y=(x﹣2)2+1的顶点坐标是__.12.设,是一元二次方程的两个根,则______.13.已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为______.14.如图,在上述网格中,小正方形的边长均为1,点A,B,O都在格点上,则∠AOB的正弦值是______.15.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x﹣2﹣1012y1771﹣11则当x=3时,y=_________.16.如图,抛物线与直线交于,两点,则不等式的解集是_______.17.如图,将函数y=(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B′,若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是__________.18.如图,在平面直角坐标系中,点A(0,4),弧MN所在圆的圆心在x轴上,其中M(0,3),N(4,5),点P为弧MN上一点,则线段AP长度的最小值为___________________.19.解方程:(1);(2).20.计算:(1);(2).21.如图,平面直角坐标系中,A点坐标,B点坐标,C点坐标,请按要求用无刻度直尺在格点图上完成下列作图.(1)以点为位似中心,位似比为,将放大得到;(2)面积为______;(3)在图中画出外接圆的圆心P,点P的坐标为______.22.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证△ADF∽△EAB;(2)若AB=12,BC=10,求DF的长.23.如图,点A、B、C在圆O上,,直线,,点O在BD上.(1)判断直线AD与圆O的位置关系,并说明理由;(2)若圆的半径为6,求图中阴影部分的面积.24.无锡市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中、都与地面l平行,车轮半径为,,,坐垫E与点B的距离为.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到的距离调整为人体腿长的时,坐骑比较舒适.小明的腿长约为,现将坐垫E调整至坐骑舒适高度位置,求的长.(结果精确到,参考数据:,,)25.某商店销售一种进价50元/件的商品,经市场调查发现:该商品的每天销售量y(件)是售价x(元/件)的一次函数,其售价、销售量的二组对应值如下表:售价x(元/件)5565销售量y(件/天)9070(1)若某天销售利润为800元,求该天的售价为多少元/件?(2)设该商店销售商品每天获得的利润为W(元),求W与x之间的函数关系式,并求出当销售单价定为多少时,该商店销售这种商品每天获得的利润最大?26.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形,请你用圆规和无刻度的直尺过圆心作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段,请你用圆规和无刻度的直尺作一个以为斜边的等腰直角三角形;【问题再解】如图3,已知扇形,请你用圆规和无刻度的直尺作一条以点为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)27.如图,在中,,,,点P从点A出发沿方向向点B运动,速度为,同时点Q从点B出发沿方向向点A运动,速度为,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)______;______;(2)设点P的运动时间为x秒,的面积为,当存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在上运动时,多少秒时的面积为?28.如图a,抛物线y=ax2﹣2ax﹣b(a<0)与x轴的一个交点为B(﹣1,0),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的解析式;②如图b,点E是y轴负半轴上的一点,连接BE,将OBE绕平面内某一点旋转180°,得到PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③如图c,点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.。
2018-2019学年最新苏科版九年级数学上学期12月份月考测试卷及答案-精编试题

20 316 3最新苏科版九年级上学期12月份数学质量监测(时间120分钟满分150分)注:请将所有答案填在答题纸上,否则答题无效。
一、选择题(每题3分,共18分)1.在△ABC中,∠C=90°,sinA=45,则tanB=A.43B.34C.35D.452.如图,已知A,B,C在⊙O 上,为优弧,下列选项中与∠AOB相等的是A.2∠C B.4∠B C.4∠A D.∠B+∠C3.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于A.20°B.25°C.40° D.50°4.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是A.3 B.6 C.9 D.125.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是A .B .C .D .6.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD =,BC=4,则AC的长为A.1 B.C.3 D.二、填空题(每题3分,共30分)7.下表是我市某一天在不同时段测得的气温情况0:00 4:00 8:00 12:00 16:00 20:00 25℃27℃29℃32℃34℃30℃则这一天气温的极差是 ℃.8.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:22=甲S ,5.12=乙S ,则射击成绩较稳定的是(填“甲”或“乙”).9.在圆中,30°的圆周角所对的弦的长度为2,则这个圆的半径是 .10.如图,在△ABC 中,∠C=90°,AC=2,BC=1,CD 是AB 上的高,则tan∠BCD 的值是 .11.如图,AD 、EC 是正五边形ABCDE 的两条对角线,则EFFC=. 12.如图,C 岛在A 岛的北偏东50o 方向,C 岛在B 岛的北偏西40o 方向,若AC=40海里,BC=20海里,则A ,B 两岛的距离等于 海里 . (结果保留根号)13.网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sinA= . 14.如图,直线MN 与⊙O 相切于点M ,ME=EF 且EF∥MN,则cos∠E=.15.如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则ADAB=. 16.如图,在平行四边形ABCD 中,AB=6cm ,AD=9cm ,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG⊥AE,垂足为G ,BG=4cm ,则EF+CF 的长为 cm .三、解答题(共102分)17.(本题6分)计算:|2-|o 2o 12sin30(3)(tan45)-+--+第10题图第11题图第12题图18.(本题8分) 现有一个圆心角为90,半径为cm 8的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计)求该圆锥底面圆的半径。
最新2019-2020年度苏科版九年级数学上学期12月份月考检测题及答案解析-精编试题

最新苏科版第一学期12月月考卷初三数学考试范围:苏教版九年级全一册;考试时间:100分钟;试卷总分:120分题号 一 二 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择填空题)一、选择题(每小题3分,共24分) 1.下列方程中,是一元二次方程的是(▲) A .2210x x+=B .ax 2+bx +c =0C .(x -1)(x -2)=1D .3x 2-2xy -5y 2=02.已知二次函数22(3)1y x =-+,下列说法正确的是A .开口向上,顶点坐标(3,1)B .开口向下,顶点坐标(3,1)C .开口向上,顶点坐标(3,1)-D .开口向下,顶点坐标(3,1)-3.用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是(▲)A .(x -1)2=2B .(x -1)2=4C .(x -1)2=1D .(x -1)2=74.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的度数等于(▲) A .60° B .80° C .40° D. 50°5. 如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,若CD =8, 且AE :BE =1:4,则AB 的长度为(▲)A.10B.5C. 12D.35第4题图第5题图第6题图6.如图,PA 、PB 切⊙O 于点A 、B ,CD 是⊙O 的切线, 交PA 、PB 于C 、D 两点,△PCD 的周长是36,则AP 的长为(▲)A.12B.18C.24D.9 7.下列说法一定正确的是(▲)A .三角形的内心是三内角角平分线的交点B .过三点一定能作一个圆C .同圆中,同弦所对的圆周角相等D .三角形的外心到三边的距离相等8.二次函数2y ax bx c =++,自变量x 与函数y 的对应值如表: x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 … y…4﹣2﹣24…下列说法正确的是A .抛物线的开口向下B .当3x >-时,y 随x 的增大而增大C .二次函数的最小值是2-D .抛物线的对称轴是52x =-二、填空题(每题3分, 共30分) 9. 方程x 2=3x 的解为▲10.若关于x 的方程032=++a x x 有一个根为-1,则另一个根为▲11.将抛物线232y x =-向左平移2个单位,再向下平移3个单位,得抛物线为_______.12.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是▲13. 一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,设平均每次降价的百分率是x,则可列出方程▲14.已知直角三角形的两条直角边长分别为6和8,则它的外接圆的半径为▲ 15.已知m 、n 是方程x 2+2x -5=0的两个实数根,则n m mn m ++-32 =▲. 16.如图,已知经过原点的⊙P 与x 、y 轴分别交于A 、B 两点,点C 是劣弧 OB 上一点,则∠ACB 度数为▲第16题图第17题图第18题图17.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为弧BD 的中点. 若∠A=40°,则∠B=▲度.18.如图,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(1,0)A -,与y 轴的交点B 在(0,2)-和(0,1)-之间(不包括这两点),对称轴为直线1x =.下列结论:①0abc >;②420a b c ++>;③2416ac b a -<;④1233a <<;⑤bc >. 其中正确结论的序号是____________第II卷(非选择题)评卷人得分三、解答题(共66分)19.解方程(10分)(1)2320x x--=(2)())3(432-=-xxx20.(本题6分)己知二次函数221y x x=--.(1)写出其顶点坐标为对称轴为;(2)在右边平面直角坐标系内画出该函数图像;(3)根据图像写出满足2y>的x的取值范围.21.(本题6分)关于x的方程2380x mx+-=.(1)求证:不论m为何值,方程总有两个不相等的实数根;(2)若方程有一个根是23,求另一个根及m的值.yxOCDB A22.(本题6分)已知二次函数2y x bx c =++的图象与y 轴交于点(0,3)C -,与x 轴的一个交点坐标是(1,0)A -.(1)求二次函数的解析式,并写出顶点D 的坐标; (2)将二次函数的图象沿x 轴向左平移32个单位长度,当0y <时,求x 的取值范围.23.(本题9分)如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧. (1)直接写出圆弧所在圆的圆心P 的坐标(2)画出图形:过点B 的一条直线l ,使它与该圆弧相切; (3)连结AC ,求线段AC 和弧AC 之间图形的面积。
江苏省江阴市九年级上12月月考数学试卷含答案

12月初三数学单元检测卷(满分130分,时间120分钟)一、选择题:(本大题共10小题,每题3分,共30分) 1.一元二次方程x x =2的解为( ▲ )A .0=xB .1=xC .0=x 且1=xD .0=x 或1=x2.已知点A 在半径为r 的⊙O 内,点A 与点O 的距离为6,则r 的取值范围是( ▲ ) A .r >6B .r ≥6C .0<r <6D .0<r ≤63.使31x -有意义的x 的取值范围是( ▲ ) A .13x >B .13x ≥C .13x >-D .13x ≥-4.4.二次函数y =x 2-4x -5的图象的对称轴为( ▲ )A .直线x =4B .直线x =-4C .直线x =2D .直线x =-2 5.下列问题中,错误..的个数是( ▲ ) (1)三点确定一个圆; (2)平分弦的直径垂直于弦; (3)相等的圆心角所对的弧相等; (4)正五边形是轴对称图形. A .1个; B .2个; C .3个; D .4个.6.若关于x 的一元二次方程x 2-2x +k =0有两个不相等的实数根,那么k 的取值范围是( ▲ ) A .k <1 B .k ≠0 C .k >1 D .k <07.如图,一块直角三角板ABC 的斜边AB 与量角器的直径重合,点D 对应54°,则∠BCD 的度数为( ▲ )A .54°B .27°C .63°D .36°102030405060708017016015014013012011010010203040506070801701601501401301201101000090180180DCBAO第7题图y 2=x 23y 1=x 2yE D第10题8.已知二次函数()12+-=h x y (h 为常数),在自变量X 的值满足31≤≤x 的情况下,与其对应的函数值y 的最小值为5,则h 的值为() A .1或 -5 B .-1或 5 C .1或 -3D .1或39.若关于x 的一元二次方程(x ﹣2)(x ﹣3)=m 有实数根x 1、x 2,且x 1≠x 2,有下列结论: ①x 1=2,x 2=3;②m >﹣;③二次函数y=(x ﹣x 1)(x ﹣x 2)+m 的图象与x 轴交点的坐标为(2,0)和(3,0). 其中,正确结论的个数是( ) A .0B .1C .2D .310.如图,点M (﹣3,4),点P 从O 点出发,沿射线OM 方向1个单位/秒匀速运动,运动的过程中以P 为对称中心,O 为一个顶点作正方形OABC ,当正方形面积为128时,点A 坐标是( ) A .(,)B .(,11) C .(2,2) D .(,)二、填空题(每空2分,共16分.) 11.若x y =45,则2x -y x +y的值为▲.12.抛物线y=﹣x 2+2x+3与x 轴两交点的距离是__________13.已知一组数据1,a ,3,6,7,它的平均数是4,这组数据的中位数是▲. 14.关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为▲. 15.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB =6cm ,高OC =8cm .则这个圆锥漏斗的侧面积是▲cm 2.16.丁丁推铅球的出手高度为1.6m ,离手3m 时达到最大高度2.5m ,在如图所示的直角坐标系中,铅球的落点与丁丁的距离为_________.17.如图,点P 在双曲线y =kx (x >0)上,⊙P 与两坐标轴都相切,点E 为y 轴负半轴上的一点,过点P 作PF ⊥PE 交x 轴于点F ,若OF -OE =6,则k 的值是▲.18.如图,平行于x 轴的直线AC 分别交抛物线y 1=x 2(x ≥0)与y 2=x23(x ≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC,交y 2于E ,则DEAB=______第17题图三、解答题(本大题共10小题,共84分.解答时应写出文字说明、证明过程或演算步骤.) 19.(本小题满分8分)(1)计算:(1)101()27(5)6tan 604-︒-+-π+(2)化简:2311)24(a a a ++--÷20(本小题满分8分)解下列方程:(1)0652=--x x (2)x x-=-2)2(3221.(8分)已知关于x 的一元二次方程x 2+2(m +1)x +m 2-1=0. (1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足(x 1-x 2)2=16-x 1x 2,求实数m 的值.22.(本题满分8分)“知识改变命运,科技繁荣祖国.”为提升中小学生的科技素养,我区每年都要举办中小学科技节.为迎接比赛,某校进行了宣传动员并公布了相关项目如下:A ——杆身橡筋动力模型;B ——直升橡筋动力模型;C ——空轿橡筋动力模型.右图为该校报名参加科技比赛的学生人数统计图.第16题图科技节报名参赛人数扇形统计A25%B41.67% C科技节报名参赛人数条形统计图参赛人数(单位:人) 2 6 810 8612(1)该校报名参加B 项目学生人数是▲人;(2)该校报名参加C 项目学生人数所在扇形的圆心角的度数是▲ °;(3)为确定参加区科技节的学生人选,该校在集训后进行了校内选拔赛,最后一轮复赛,决定在甲、乙2名候选人中选出1人代表学校参加区科技节B 项目的比赛,每人进行了4次试飞,对照一定的标准,判分如下:甲:80,70,100,50;乙:75,80,75,70.如果你是教练,请你用学过的数学统计量分析派谁代表学校参赛?请说明理由.23.(本题满分8分) 如图,在平行四边形ABCD 中,以点A 为圆心,AB 为半径的圆,交BC 于点E .(1)求证:ABC ∆≌EAD ∆; (2)如果AC AB ⊥,6=AB ,53cos =∠B ,求EC 的长.24,(本题满分8分)一座拱桥的轮廓是抛物线型(如图1),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m . (1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.25.(本题满分8分)某公司准备开发A 、B 两种新产品,信息部通过调研得到两条信息:yxO BAC图220m 10m EF6m信息一:如果A 种产品,所获利润A y (万元)与金额x (万元)之间满足 正比例函数关系:A y kx =;信息二:如果B 种产品,所获利润B y (万元)与金额x (万元)之间满足 二次函数关系:2B y ax bx =+.根据公司信息部报告,A y 、B y (万元)与金额x (万元)的部分对应值如下表所示:(1) 填空:A y =▲;B y =▲;(2)如果公司准备20万元同时开发A 、B 两种新产品,设公司所获得的总利润为W (万元),B 种产品的金额为x (万元),则A 种产品的金额为_________万元,并求出W 与x 之间的函数关系式;(3)请你设计一个在(2)中公司能获得最大总利润的方案.26.(本题满分8分)如图,直线y =—x +3与x 轴、y 轴分别交于A 、C 两点,对称轴为直线x =1的抛物线过A 、C 两点,抛物线与x 轴的另一个交点为点B (B 在A 的左侧),顶点为D.(1) 求抛物线的解析式及顶点D 的坐标;(2) 在x 轴上方作矩形PMNQ ,使M 、N (M 在N 的左侧)在线段AB 上,P 、Q (P 在Q 的左侧)恰好在抛物线上,QN 与直线AC 交于E ,当矩形PMNQ 的周长最大时,求△AEN 的面积.27(本题满分10分).如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB.(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.①问:值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求取值范围.28.(本题满分10分)在平面直角坐标系中,直线y =-125x +5与x 轴、y 轴分别交于点A 、B ,P 是射线AB 上一动点,设AP =a ,以AP 为直径作⊙C . (1)求cos ∠ABO 的值;(2)当a 为何值时,⊙C 与坐标轴恰有3个公共点;(3)过P 作PM ⊥x 轴于M ,与⊙C 交于点D ,连接OD 交AB 于点N ,若∠ABO =∠D , 求a 的值.初三数学12月份参考答案一、10月份单元检测双向细目表题号考查内容 能力层次题型试题来源分值预计得知识点识记理解分析应用评价探究CABO xyPC ABOxyPD MN分1 一元二次方程的解法√√√选择自编 3 2.92点与圆的位置关系√√√选择课课练 3 2.8 3二次根式定义√√√选择自编 3 2.8 4二次函数性质√√√√选择课课练 3 2.8 5 圆中概念√√√选择导单 3 2,56 一元二次方程根的判别式√√√选择无锡江南测试3 2.67圆周角定理√√√选择市中测试 3 2.28二次函数性质√选择数学俱乐部3 2.19二次函数性质√选择无锡中考 3 1.510正方形等综合√选择江南模拟题3 111 比例性质√填空课课练 2 1.812二次函数性质√填空自编 2 1.8 13中位数定义√√填空自编 2 1.8 14一元二次方程的定√√填空学导单 2 1.8义15圆锥面积公式√√填空长寿中学 2 1.5 16二次函数应用√√√填空学导单 2 1.517 圆与反比例综合应用√√填空泰州中考 2 1.218旋转等综合应用√√填空扬州中考 2 0.519 分式化简√√解答题自编8 720一元二次方程解法√√解答题自编8 7,5 21根与系数的关系√√解答题学导单8 6 22 数据处理√√√解答题去年模卷8 623 圆中要有关综合知识√√√解答题江南模卷8 624二次函数实际应用√√√解答题课课练8 425二次函数的应用题√√解答题去年市中模卷8 426二次函数性质√√√√解答题扬州中考8 227函数综合应用√√解答题数学俱乐部8 328圆与函数综合√√解答题苏州中考10 3.1合计84.4 二、参考答案 一.选择1. D2.A3.B4.C5.C6. A7.C8.B9.C 10.D 二.填空 11.3112.4 13.3 14.1-=a 15.π60 16.8 17.9 18.3-3 三解答题 19 (1) 335+ (2)a+220 (1) x1=6, x2=-1 (2) x1=2, x2=21.(1)∵原方程有实数根,∴△=4(m +1)2-4(m 2-1)≥0 解得m ≥-1,故m 的取值范围是m ≥-1(2)若方程两实数根分别为x 1、x 2,则x 1+x 2=-2(m +1),x 1x 2=m 2-1 由(x 1-x 2)2=16-x 1x 2得(x 1+x 2)2=16+3x 1x 2,即4(m +1)2=16+3(m 2-1) 化简整理得,m 2+8m -9=0,解得m =-9或m =1 考虑到m ≥-1,故实数m 的值为122. (1) 10 ………2分; (2) 120°……4分 (3) X 甲=X 乙=75 …………5分 S 2甲=325 S 2乙=12.5 …………7分 ∵S 2甲>S 2乙, ∴选乙…………8分 2324解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得;所以抛物线的表达式是。
新课标-最新苏科版九年级数学第一学期12月份月考检测试题及答案-精编试题

E I D C BA 最新苏科版九年级数学12月份月度检测试题(考试时间:120分钟 满分150分)一、选择题(每题3分,共18分):1.下列函数中是二次函数的是( )A .y=4x 2+x 3-1B .y=(x+4)2-x 2C .y=(x -2)(x+2)D .y=21(x -1)2-5x 3 2.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的( )A .众数B .方差C .平均数D .中位数3.如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,且BD ⊥AC ,若AB ⌒的度数为60°,则∠BDC 的度数是( )A .60°B .30°C .35°D .45°4.已知△ABC 和△A ′B ′C ′的面积比为1:4,则它们的相似比为:( )A .1:4B .1:3C .1:2D .1:15.二次函数y=x 2+5x+4,下列说法正确的是( )A .抛物线的开口向下B .当x >﹣3时,y 随x 的增大而增大C .二次函数的最小值是﹣2D .抛物线的对称轴是x=﹣6.如图,I 是△ABC 的内心,AI 的延长线与△ABC 的外接圆相交于点D ,与BC 交于点E ,连接BI 、CI 、BD 、DC .下列说法中正确的有( )①∠CAD 绕点A 顺时针旋转一定的角度一定能与∠DAB 重合; ②I 到△ABC 三个顶点的距离相等;③∠BIC=90°+21∠BAC ; ④线段DI 是线段DE 与DA 的比例中项;⑤点D 是△BIC 的外心;A .1个B .2个C .3个D .4个二、填空题(每题3分,共30分):7.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S 甲2=1.9,乙队队员身高的方差是S 乙2=1.2,那么两队中队员身高更整齐的是 队.(填“甲”或“乙”).8.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为 .9.写出一个y 关于x 的二次函数的解析式,使得它的图像的顶点在x 轴的负半轴上: _______________________.10.如图,已知AD ∥EF ∥BC ,若AE :EB=2:3,FC=6,则DC=.11.已知关于x 的方程x 2-2mx -3=0有一根是1,则它的另一根是_____________.12.若一个圆锥形零件的母线长为5cm ,底面半径为3cm ,则这个零件的侧面展开图的圆心角为______°.13.如图,点AB 是⊙O 内接正六边形的一边,点C 在AB ⌒上,且BC 是⊙O 内接正八边形的一边,若AC是⊙O 内接正n 边形的一边,则n=________.14.已知A(-1,y 1)、B(2,y 2)、C(-2,y 3)在函数y=-2(x -1)2+1的图像上,则y 1、y 2、y 3的大小 关系是___________________.(用 “<”连接)15.如图,AB 是半圆O 的直径,C 为半圆O 上一点,BD 是半圆O 的切线,AC 、OC 的延长线分别交DB于点E 、D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江阴市要塞中学2014~2015学年12月份检测试卷
初三数学 2014.12
说明:本试卷满分130分 考试时间:120分钟 请将本卷所有答案写在答卷上.
一、选择题:(本大题共10小题,每题3分,共30分,每题的四个选项中,只有一个....
符合题意) 1.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值为( ▲ )
A .1
B .0
C .1或2
D .2
2.已知等腰三角形的腰长、底边长分别是一元二次方程x 2-7x +10=0的两根,则该等腰三角形的
周长是 ( ▲ )
A .9或12
B .9
C .12
D .21
3.若△ABC ∽△DEF ,周长比为1:4.若BC =1,则EF 的长是 ( ▲ )
A .2
B .4
C .8
D .16
4.抛物线()223y x =++的顶点坐标是 ( ▲ )
A .(2,3)
B .(-2,3)
C .(2,-3)
D .(-2,-3)
5.在Rt △ABC 中,∠C =90°,下列式子必定成立的是 ( ▲ )
A .a =c ·sin
B B .a =c ·cos B
C .a =c ·tan B
D .a =c ·1tan B
6.如图所示,在□ABCD 中,BE 交AC ,CD 于G ,F ,交AD 的延长线于E ,则图中的相似三角形有
( ▲ )
A .3对
B .4对
C .5对
D .6对
7.现给出以下几个命题:(1)长度相等的两条弧是等弧;(2)相等的弧所对的弦相等;(3)圆中90°的
角所对的弦是直径;(4)矩形的四个顶点必在同一个圆上;(5)在同圆中,相等的弦所对的圆周角
相等.其中真命题的个数为 ( ▲ )
A .1
B .2
C .3
D .4
8.半径为2的圆中,弦AB 、AC 的长分别2和22,则∠BAC 的度数是 ( ▲ )
A .15°
B .15°或45°
C .15°或75°
D .15°或105°
A .①②③
B .①③④
C .①②④
D .②③④
10.如图,A (0,8),B (0,2),点E 为x 轴正半轴上一动点,设tan ∠AEB =m ,则m 的取值范围是
( ▲ )。