土层渗透系数K的经验值

土层渗透系数K的经验值
土层渗透系数K的经验值

一、土层渗透系数

土层渗透系数K的经验值

土质名称 K(m/d) 土质名称K(m/d)

高液限黏土 <0.001

砂细1~5

黏土质砂 0.001~0.05 中5~20

含砂低液限黏土 0.05~0.10 粗 20~50

含砂低液限粉土 0.10~0.50 砾类土 50~150

低液限黏土(黄土) 0.25~0.50 卵石 100~500

粉土质砂 0.5~1.0 漂石(无砂质充填) 500~1000

按土质颗粒大小的渗透系数K经验值

土质名称 K(m/d) 黏土质粉砂 0.01~0.074mm颗粒多数 0.5~1.0

均质粉砂 0.01~0.074mm颗粒多数 1.5~5.0

黏土质细砂 0.074~0.25mm颗粒多数 1.0~1.5

均质细砂 0.074~0.25mm颗粒多数 2.0~2.5

黏土质中砂 0.25~0.5mm 颗粒多数 2.0~2.5

均质中砂 0.25~0.5mm颗粒多数 35~50

黏土质粗砂 0.5~1.0mm颗粒多数 35~40

均质粗砂 0.5~1.0mm颗粒多数 60~75

砾石100~125

二、计算渗水量

缺水文地质资料计算渗水量:Q=F1q1+ F 2q2

式中:F1—基坑底面积,m2

q1—基坑每平方米底面积平均渗水量,m3/h

F 2—基坑侧面积,m2

q2—基坑每平方米侧面积平均渗水量,m3/h

q1基坑每平方米底面积平均渗水量,m3/h

序号土类土的特征及粒径渗水量m3/h

1 细粒土质砂、松软粉质

基坑外侧有地表水,内侧为岸边干地,土的天然

含水量<20%,土粒径<0.05mm

0.14~0.18

2 有裂隙的碎石岩层、较

密实的粘质土

多裂隙透水的岩层,有孔隙水的粘质土层 0.15~0.25

3 黏土质砂、黄土层、紧

密砾土层

细砂粒径0.05~0.25mm,大孔土质量800~

950kg/m3, 砾石土孔隙率在20%以下

0.16~0.32

4 中粒砂、砾砂层砂粒径0.25~1.0mm,砾石含量在30%以下,平

均粒径10mm以下

0.24~0.8

5 粗粒砂、砾石层砂粒径1.0~2.5mm,砾石含量在30~70%,平均

最大粒径150mm以下

0.8~3.0

6 砾卵砂、砾卵石层砂粒径2.0mm以上,砾石、卵石含量在30%以上

(泉眼总面积在0.07m2以下,泉眼直径在50mm

以下)

2.4~4.0

7 漂石、卵石土有泉眼或

砂砾石有较大泉眼

石粒径平均直径50~200mm,或有个别大弧石在

0.5 m3以下(泉眼总面积在0.15m2以下,泉眼直

径在300mm以下)

4.0~8.0

8

砾石、卵石、漂石、粗

砂、泉眼较多

>8.0 表中渗水量:无地表水时用下限;地表水深2~4m,土中有孔隙时用中限;地表水

深大于4m,松软土时用上限。

q2 基坑每平方米侧面积平均渗水量,m3/h

1 敞口放坡开挖基坑或土围堰按上表同类土质渗水量20~30%计

2 石笼填土心墙围堰按上表同类土质渗水量10~20%计

3 挡土板或单层草袋围堰按上表同类土质渗水量10~20%计

4 钢板桩、沉箱及混凝土支护坑壁按上表同类土质渗水量0~5%计

5 竹笼围堰按上表同类土质渗水量15~30%计

三、水泵的选择

1、设备总排水量=1.5倍渗水量,

如水泵安装在静水位以下时,则设备总排水量=2倍渗水量

2、每台水泵排水量

设备总排水量 = 1.5倍渗水量时,每台水泵排水量 < 0.5倍渗水量

设备总排水量 = 2倍渗水量时,每台水泵排水量 < 渗水量

常用离心单级水泵的流量,用下式估算:渗水量= 0.79 D2 (m3/h)

其中D为水泵进口直径,cm

3、水泵类型:渗水量< 20 (m3/h ),用膜式水泵、手压水泵、离心水泵或潜水泵;渗水量在20~60 (m3/h ) 时,用膜式水泵、离心水泵或潜水泵;渗水量> 60 (m3/h ) 时,用离心水泵

土的固结实试验影响因素的研究

土的固结实试验影响因素的研究 摘要:固结系数是岩土工程中较常采用的计算参数之一,大量的实际工程计算与监测结果表明,试验得到的固结系数偏小.为了探讨固结试验过程的内在特征,将常规固结试验仪器进行了改进,使其能够进行土样底部的孔压测定。 关键词:土固结实;试验;影响;因素 1 引言 在岩土工程土工试验中,包含着样品(土体)的物理性质试验和力学性质试验。在许多工程中,通过土工试验的物理性质试验,除了对土进行定名、判定其状态外,还必须对其进行力学性质的试验,以便为工程提供必要的设计参数。本文所涉及的固结试验,就是力学性质试验当中的一种,这里所谓的固结,一般来说是指垂直方向上的固结,也就是单向固结。我们在了解了单向固结及其力学机理后,进行固结试验在严格遵守试验规程的同时,还要特别重视影响试验的种种因素并采取有效措施进行控制,为土工试验成果提供保证[1]。 2 土体的单向固结及力学机理 土的固结是指土体在某一压力作用下,与时间有关的压缩过程。对于饱和的土体来说,是由于土中孔隙水的逐渐向外排出而引起的。如果土中孔隙水只朝着一个方向向外排出,土体的压缩也只是在一个方向上发生(一般指垂直方向),那么我们就把这种压缩过程称为单向固结;土体单向固结的快慢取决于它的渗透速度。 在压力作用下,土体中的孔隙水不断地向外排出,它的体积在逐渐地减小,这只是我们观察到的一种表面现象,而它的本质却与土体固结内部所受到的压力有着直接关系,也就是土体固结的力学机理。在某一垂直压力作用下,饱和土的固结过程也就是土体中各点的超静孔隙水应力不断消散,附加有效应力相应的增加的过程,或者说是超静孔隙水应力逐渐转换为附加有效应力的过程,而在这个转化过程中,任一时刻、任一深度上的应力始终遵循着有效应力基本原理:所施加的垂直压力等于附加有效应力与超静孔隙水应力之和。这就是土体单向固结的力学机理[2]。 根据饱和土体的力学机理,我们可以解决在附加应力的作用下,地基内的孔隙水应力问题。 关于土体的单向固结,我们对土有以下假设:土是均质、各向同性和饱和的;土的压缩完全是由于孔隙体积的减小,土粒和孔隙水是不可压缩的;土的压缩和

上海《基坑工程技术规范》

第1章总则 上海工程勘察设计有限公司 上海现代建筑设计(集团)有限公司 1.0.1为使上海地区的基坑工程设计与施工符合安全适用、技术先进、经济合理的原则,保证基坑及周边环境安全,制定本规范。 1.0.2本规范适用于上海地区的建筑、市政、港口、水利工程的陆上以及临水基坑的勘察、设计、施工、检测和监测。 1.0.3基坑工程应综合考虑地质条件、水文条件、开挖深度、主体结构类型、周边环境保护要求及施工条件,并结合工程经验,合理设计、精心施工、严格检测和监测。 1.0.4本规范根据《建筑结构可靠度设计统一标准》(GB50068),采用以分项系数表达的极限状态设计方法制定。 1.0.5基坑工程除应符合本规范的规定外,尚应符合国家和本市现行有关标准、规范和规程的规定 第2章术语、符号 上海工程勘察设计有限公司 上海现代建筑设计(集团)有限公司 2.1 术语 页脚内容1

2.1.1基坑foundation pit 为进行工程基础的施工,在地面以下开挖的坑。 2.1.2基坑工程foundation pit project 为保证基坑及周边环境安全而采取的围护、支撑、降水、挖土等工程措施的总称。 2.1.3围护墙retaining wall 围在基坑周边、能承受作用于基坑侧壁上各种荷载的墙体。 2.1.4基坑支护结构structure of support and protect foundation pit 基坑工程中采用的围护墙及支撑(或锚杆)等结构的总称。 2.1.5基坑周边环境environment around foundation pit 基坑开挖影响范围内的既有建(构)筑物、道路、地下设施、地下管线等的总称。 2.1.6水土合算calculate together with water pressure and soil pressure 将作用于围护墙体与土体界面处的水压力及土压力合并,计算支护结构上的作用效应。 2.1.7水土分算calculate separate with water pressure and soil pressure 将作用于围护墙体与土体界面处的水压力及土压力分开,分别计算支护结构上的作用效应。 2.1.8复合土钉支护composite soil nail of support and protect 由土钉与被加固的基坑侧壁土体以及混凝土护面等组成的结构。 2.1.9水泥土重力式墙self-vertical wall of cement-soil 页脚内容2

固结试验

固结试验 一、试验目的 测定试样在完全侧限与轴向排水条件下,变形和压力的关系或孔隙比与压力关系,变形和时间的关系,以便计算土的压缩系数、压缩指数、压缩模量、固结系数等。 二、试验原理 土在外荷载作用下,水和空气逐渐被挤出,土骨架颗粒之间相互挤密,封闭气体的体积缩小,从而引起土的固结变形。 三、试验方法 1.快速固结法:规定试样在各级压力下的固结时间为1小时,仅在最后一级压力下除测记1小时的量表读数外,还应测读达压缩稳定时的量表读数,一般为24小时。 2.标准固结法:各级荷载以24小时为稳定标准,按照规定时间:6s、15s、1min、2min15s、4min、6min15s、9min、12 min 15s…….24h,至稳定为止。读数计算沉降量。 本次试验课因时间问题,采用“标准固结法”,每级荷载假设9min固结稳定。 四、仪器设备 ①三联固结仪;②环刀(高=2cm,面积=30cm2)、刮土刀、天平、秒表等。 五、试验步骤 1.将环刀内侧涂上一层凡士林,刀刃相下放在土样上。 2.用刮土刀将环刀均匀压入土样,高出环刀上沿1-2mm为宜,然后用钢丝锯和刮土刀将土样两端刮平。 3.擦干净环刀外层称其质量,取贴近环刀的余土测含水率。 4.将土样放入固结容器内,试样上依次放置护环、滤纸、透水板、加压盖。 5.将固结容器放置于固结仪加压框中,安装百分表并施加1kPa预压力后百分表调零。 6.按照试验方案加初级荷载,加荷后按6s、15s、1min、2min15s、4min、6min15s、9min…时间顺序读数。 7.固结稳定后,施加下一级荷载并按上述时间读数直至加荷结束。 8.试验结束后,拆除试验,清理试验仪器。 六、成果整理 1.计算公式 1.试验记录表

土力学与地基基础试题及答案(密题)解析

第一部分选择题 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.在土中对土颗粒产生浮力作用的是 ( ) A.强结合水 B.弱结合水 C.毛细水 D.重力水 2.评价粘性土软硬状态的物理指标是 ( ) A.含水量 B.孔隙比 C.液性指数 D.内聚力 3.淤泥质土是指 ( ) A.w> w P,e≥1.5的粘性土 B.w> w L,e≥l.5的粘性土 C.w> w P,1.O≤e <1.5的粘性土 D.w> w L,1-O≤e<1.5的粘性土 4.基底附加压力式中d表示 ( ) A.室外基底埋深 B.室内基底埋深 C.天然地面下的基底埋深 D.室内外埋深平均值 5.为了方便比较,评价土的压缩性高低的指标是 ( ) A.a1-2 B.a2-3 D.a2-4 C. a1-3

6.原状土试样的无侧限抗压强度与重塑土样的无侧限抗压强度之比称为土的 ( ) A.液化指标 B.强度提高系数 C.固结系数 D.灵敏度 7.作用在挡土墙上的土压力,当在墙高、填土物理力学指标相同条件下,对于三种土压力的大小关系,下列表述哪项是正确的? ( ) A. E a

2020年整理固结实验报告.doc

固结实验报告 专业班级学号姓名同组者姓名(写一个)实验编号 100004 实验名称固结实验 实验日期批报告日期成绩 一、实验目的 土的固结试验可测定土的压缩系数、压缩模量、体积压缩系数、压缩指数、回弹指数、竖向固结系数、水平向固结系数以及先期固结压力,为计算分析土的变形特性提供依据。 二、实验原理 土在外荷载作用下,其空隙间的水和空气逐渐被挤出,土的骨架颗粒之间相互挤紧,封闭气泡的体积也将缩小,从而引起土体的压缩变形。 三、实验仪器 1、小型固结仪:包括压缩容器和加压设备两部分,环刀(内径Ф61.8mm,高20mm,面积30cm2),单位面积最大压力4kg/cm2;杠杆比1:10。 2、测微表:量程10mm,精度0.01mm。 3、天平,最小分度值0.01g及0.1g各一架。 四、实验步骤 1、按工程需要选择面积为30cm2的切土环刀取土样。 2、在固结仪的固结容器内装上带有试样的切土环刀(刀口向下),在土样两端应贴上洁净而润湿的滤纸,放上透水石,然后放入加压导环和加压板以及定向钢球。 3、检查各部分连接处是否转动灵活;然后平衡加压部分。 4、横梁与球柱接触后,插入活塞杆,装上测微表,并使其上的短针正好对 R。 准6字,再将测微表上的长针调整到零,读测微表初读数0

5、加载等级:按教学需要本次试验定为0.5、1.0、2.0、3.0、4.0、每级荷载经10分钟记下测微表读数,读数精确到0.01mm。然后再施加下一级荷载,以此类推直到第五级荷载施加完毕,记录测微表读数R1、R2、R3、R4、R5。 7、试验结束后,必须先卸下测微表,然后卸掉砝码,升起加压框架,移出压缩仪器,取出试样后将仪器擦洗干净。 五、注意事项 1、使用仪器前必须严格按程序进行操作对仪器不清楚的地方马上问老师 2、试验过程中不能卸载百分表也不用归零 六、实验数据记录与处理 压缩曲线

次固结系数的测定

次固结系数的测定 次固结尤其是软土的次固结是工程应用中比较关注的问题,但不知出于何种原因,现行的国标行标均在有意无意间回避次固结系数的测定,即使是ASTM ,在固结试验这个章节里也没有提及次固结系数。我们说在主固结完成之后,孔隙排水的过程基本结束,但土颗粒骨架在重力作用下发生缓慢蠕变的过程是相对漫长的,对工程建筑的影响是很大的,特别是一些重要建筑,关乎百年大计,如颗忽视这个问题结果是可想而知了。 单就试验技术而言,一维相的次固结系数不难确定,以前的规范上好像就有过相关内容(记得是老早的公路规范还是地矿部规范,还得查找后确认),目前大约只有英国土木规范BS :1377有关于次固结系数的计算方法,公式如下: 式中,δh —CF 线段上,与时间t 2、t 1对应的试样的高度变化; h 0—试样初始高度,取20mm 。

次固结系数试验的方法就是在主固结完成后继续观测沉降变化,绘制沉降量--时间对数关系曲线,如上图所示,国内的试验规范已消失有关次固结的条文,但一些文献上资料上普遍采用的次固结系数计算公式与上式稍有区别,即以孔隙比代替了沉降量,相应的公式为: 上述的国内文献载的次固系公式摘自《工程地质手册》,可见这两种计算结果之间相差一个1+e0的系数,所以在提交结果时一定要注明所采用的公式,不然很容易搞错。 接着前面的话题,既然通过固结试验测定次固结的试验方法并不难,计算公式也容易理解,为什么很多试验规范避而不谈呢,我认为以下这种考虑可能是现实的。次固系必然是发生在主固结之后,我们已经知道主固结的完成需要一些时间,对于透水性较弱的粘性土,主固结基至在数小时之内难以完成,那么要获得次固结段的数据,势必需要更长的时间,有的个把月都嫌短,这就对试验环境条件提出了严苛的要求,任何风吹草动都会影响到试验结果,我自己连续观测过一个结构性粘土在超过前期压力的某级荷载作用下的次固结,十天之后就不得不中止,因为一般实验室的条件不可能达到那么安静恒温恒湿没有一丝震动何况还有难免的观测误差人为误差。当然我说的是比较极端的情况,有些透水性能较好的土或者是在小于前期固结压力的荷载作用下的次固结其实很容易观测。 次固结与前期固结压力和土的性质都有关系,尤其是结构性粘土与前期固结压力的关系极为明显,在小于前期固结压力之前,次固结可能很快到达,一般观测24小时就可出现明显的尾部直线段,而且数值也比较小。有不少文献已经对此做了细致的研究。

淤泥质土 性质

西北地区残积淤泥类土的工程地质特性 余侃柱 提要残积淤泥类土分布于我国西北地区,它具有成层性差,结构、构造不均一,厚度变化大,抗剪强度低,中压缩性,非湿陷性,高灵敏性,承载力低,在饱水状态下,还具有触变、流变性等特点。该文以临厦—临洮、定西—榆中盆地等为代表该类土的资料为基础,深入研究该类土的工程特性。 关键词残积淤泥类土工程特性评价处理措施 ENGINEERING GEOLOGICAL PROPERTIES OF THE RESIDUE MUCKY SOIL IN NORTHWEST REGIONS Yu Kanzhu (Institute of Water Conservancy and hydropower Investigation and Design, Gansu Province) Abstract The residue mucky soils are distributed in the northwest region of China. They possess the characteristics of bad stratification, nonuniformity of strcture and texture, large variance in thickness, low shear strength, medium compressibility, non-collapsibility, high sensitivity and low bearing capacity. Under saturated condition, they also possess characteristics of thixotropy and rheology. The paper takes the data from Linxia-Lintao and Dingxi-Yuzhong basins as representatives of these soils. On this basis, it deeply studies the engineering properties of these soils. Keywords residual mucky soil; assessment of engineering characteristics; treatment measures 1 前言 我国西北地区一些地槽、盆地中普遍分布着残积淤泥类土,它有别于我国沿海一带分布的典型淤泥质土,它是一种区域性特殊类型土。该类土天然含水量高,孔隙比大,透水性低,中压缩性,高灵敏性,强度低,固结缓慢,还具有一定触变、流变特性。近年来,随着水利、交通、工业民用建筑和其它行业进一步开发建设,该类土往往构成各类工程建筑物的地基和边坡,因其特性危害到地基和边坡的稳定性,因而决定着合理的工程设计和地基处理措施。本文以甘肃省临夏—临洮、定西—榆中、内官—香泉等盆地的该类土为代表,深入研究该类土的工程特性,对工程建设有着重要的意义。 2 残积淤泥类土的分布规律与成因 近年来,在临夏—临洮、定西—榆中、内官—香泉等盆地的水利工程如南阳渠灌溉工程、引洮灌溉工程等的勘测设计中发现该类土,并且在甘肃省东部、南部和我国西北地区其它地方也有此类土的分布。该类土分布一般与周围环境有直接关系,与古地貌形态、水文气象条件、水文地质条件、地层岩性等密切相关。主要表现在以下几方面:

岩土工程测试

1岩土工程勘察收费的计算方法 通用工程勘察收费按照下列公式计算 1工程勘察收费=工程勘察收费基准价×(1 ±浮动幅度值) 2工程勘察收费基准价=工程勘察实物工作收费+工程勘察技术工作收费 3工程勘察实物工作收费=工程勘察实物工作收费基价×实物工作量×附加调整系数 4工程勘察技术工作收费= 工程勘察实物工作收费×技术工作收费比例 2如何判别场地复杂程度等级和地基复杂程度等级 根据场地的复杂程度,可按下列规定分为三个场地等级: (1一级场地(复杂场地): ①对建筑抗震危险的地段;②不良地质作用强烈发育;③地质环境已经或可能受到强烈破坏;④地形地貌复杂;⑤有影响工程的多层地下水,岩溶裂隙水或其它水文地质条件复杂,需专门研究的场地。 (2)二级场地(中等复杂场地): ①对建筑抗震不利的地段;②不良地质作用一般发育;③地质环境已经或可能受到一般破坏;④地形地貌较复杂⑤基础位于地下水位以下的场地; (3)三级场地(简单场地): ①抗震设防烈度等于或小于 6 度,或对建筑抗震有利的地段;②不良地质作用不发育;③地质环境基本未受破坏;④地形地貌简单;⑤地下水对工程无影响; 根据地基的复杂程度,可按下列规定分为三个地基等级: (1 )符合下列条件之一者为一级地基(复杂地基):①岩土种类多,很不均匀,性质变化大,需特殊处理; ②严重湿陷、膨胀、盐渍等特殊性岩土,以及其他复杂、需专门处理的岩土。 (2 )符合下列条件之一者为二级地基(中等复杂地基):①岩土种类较多,不均匀,性质变化较大; ②不满足复杂地基条件的特殊性岩土。 (3 )符合下列条件者为三级地基(简单地基):①岩土种类单一,均匀,性质变化不大;②无特殊性岩土。 3简述黏土、粉质粘土、粉土现场特征的差异 粉土:(1)灰黄,很湿,稍密,含云母片,摇振反应迅速,无光泽,干强度低,韧性低。(2 )浅灰色,含云母片,摇振反应中等,无泽反应,干强度低,韧性低 粉质粘土:灰黄~褐黄色,可塑,无摇振反应,切面有光泽,干强度中等,韧性中等 粘土:灰黄色,可塑,无摇振反应、光滑,干强度高,韧性高,局部分布。 4勘察中如何对土进行描述 土的描述应符合以下规定:碎石土应描述颗粒级配、颗粒形状、颗粒排列、母岩成分、风化程度、充填物的性质和充填程度、密实度等;砂土应描述颜色、矿物组成、颗粒级配、形状、粘粒含量、湿度、密实度等;粉土应描述颜色、包含物、湿度、密实度、摇震反应、干强度、韧性、土层结构等;粘性土应描述颜色、状态、包含物、光泽反应、摇震反应、干强度、韧性、土层结构等; 5简述岩土工程勘探方法的类型和基本方法 类型1、直接勘探-坑探工程:比如,试坑、探槽、探井、平硐、斜井、大直径钻孔。 2 、半直接勘探-钻探工程:指小孔径的钻孔 3 、间接勘探-触探、物探。基本方法:坑探、槽探、井探、洞探、钻探,以及触探、物探等。

固结系数的测定

试验三 固 结 系 数 的 测 定 1.通过试验测定试样的固结系数,用以计算地基土体受荷载后的固结度及固结时间。 2.测定固结系数所用仪器设备与固结试验相同 3.试样的切取与安装与固结试验相同,加预压荷载后测微表调零。 4.进行试验 (1)施加第一级荷载,一般为25kPa 或50kPa ,加荷的同时,开动秒表,记录测微计读数,测记时间为6",15",1',2'15",4',6'15",9',12'15",16',20'15",25',30'15",36',42'15",49',64',100',200',400',23h ,24h ,至稳定为止。 (2)重复上述步骤继续加荷P 2=100kPa ,P 3=200kPa ,P 4=400kPa (3)读数完成后拆除测微计,卸下砝码从固结容器内取出环刀与土样,用滤纸吸去附在土样表面及环刀外水份,称环刀加土质量以求试验后的密度。 (4)将环刀中的土样推出,从其中内部取两试样,测定试验后的含水率。 5.计算及绘图 (1)时间平方根法: 对P 1=100kPa ,以变形为纵坐标,时间平方根为横坐标,绘制变形与时间平方根关系曲线(如图3-1)。延长曲线开始段的直线,交纵坐标于ds 。ds 为理论零点,过ds 作另一直线,令其横坐标为前一直线横坐标的1.15倍,那么后一直线与t d -曲线交点所对应的时间的平方即为试样固结度达90%。所需的时间 t 90。 该级压力下的固结系数按下式计算: 式中:Cv —固结系数,cm 2/s h —最大排水距离,等于某级压力下试样的初始和终了高度的平均值,cm ; 图3-1 时间平方根法求t 90 (2)时间对数法: 对某一级压力,以变形为纵坐标,时间的对数为横坐标,绘制变形与时间对数关系曲线,(如图3-2)。在曲线的开始段,选任一时间t 1,查得相应的变形值d 1,再取时间t 2=t 1/4,查得相对应的变形值d 2,则2d 2-d 1即d 01;另取一时间依同法求得d 02、d 03、d 04等,取其平均值为理论零点d s ,延长曲线中部的直线段和通过9028480t h .C v =

0803303班土力学作业(3-7章)

0803303班土力学作业(3~7章) 第三章 思考题 土的自重应力分布有何特点地下水位的升降对自重应力有何影响,如何计算(肖煜 07) 答:在均质土层的自重应力是三角分部,σ cz =r·z,在成土层中的自重应力是 折线分部的,σ cz =r 1 h 1 +r 2 h 2 +……+r i h i, 地下水位升降对自重应力的影响:地下水 位以下的土层因为受到地下水浮力的影响,其自重应力相应减少,所以地下水位以下的部分应扣除10KN/M3的浮力。 在刚性基础的基地压力分部有何特征工程中如何计算中心荷载及偏心荷载的基底的受压 (孙涛 08) 答:在中心荷载下,基底压力呈马鞍分布,中间小边缘达,当基础上的荷载较大时基础边缘由于压力很大,使土产生塑性变形,边缘压力不再增加,而使中央部分继续增加,基底压力重新分布呈抛物线形,荷载继续增加,中部突出部分呈钟状。中心荷载,p=,F是基础顶面的竖向力值,G是基础及回填土重,A 是基础面积。偏心荷载P=,e是偏心距。 试以矩形面积上的均布荷载和条形荷载为例,说明地基中附加应力的服不规律 (张凯 07) 答:均布矩形:1,附加应力σ z 自基底算起,随深度成曲线衰减。 2,σ z 具有一定的扩散性。 3,基底下任意深度水平面上的σ z ,轴线上最大,离中轴线越远越小。 条形基 1,其作用影响深度要比矩形基础大得多。 2,基础下地基的侧向变形主要发生于浅层,基础边缘下的土容易发生剪切破坏。 试简述太沙基德有效应力原理。 (李斌 05) 答:土颗粒间的接触应力再截面积上的平均应力,称为有效应力,用σ表示,有效应力作用,会引起土颗粒的移动,使空隙体积改变,土体发生压缩变 形,通过模型可建立平衡条件:σ A =σ S A S +μ S A u +μ a Aa .。 饱和土中μ a, A a 为零, A s /A一般可以省略,这有σ‘=σ-μ,此式极为太沙基有效应力。 习题 (郭静波)(刘永良)(备注:上次已交) 某条形基础如图所示,作用在基础上的荷载为250kn/m,基础深度范围内土的重度r=m3,试计算0—3,4—7及5—5剖面的各点竖向附加应力,并绘制曲线。(余晓航 03)

总传热系数经验值

浸没在液体中的盘管总传热系数大致值.W/(m2 带有夹套的容器总传热系数大致值.W/(m2

空气冷却器总传热系数大致值.W/(m2

不同压力下水的汽化潜热 水在一个大气压(0.1MPa)100℃时的汽化潜热为2257.2kJ/kg 饱和水和饱和水蒸气热力性质表(按压力排列) 压力/MPa 温度/℃汽化潜热kJ/kg 0.001 6.9491 2484.1 0.002 17.5403 2459.1 0.003 24.1142 2443.6 0.004 28.9533 2432.2 0.005 32.8793 2422.8 0.006 36.1663 2415 0.007 38.9967 2408.3

0.008 41.5075 2402.3 0.009 43.7901 2396.8 0.01 45.7988 2392 0.015 53.9705 2372.3 0.02 60.065 2357.5 0.025 64.9726 2345.5 0.03 69.1041 2335.3 0.04 75.872 2318.5 0.05 81.3388 2304.8 0.06 85.9496 2293.1 0.07 89.9556 2282.8 0.08 93.5107 2273.6 0.09 96.7121 2265.3 0.1 99.634 2257.6 0.12 104.81 2243.9 0.14 109.318 2231.8 0.16 113.326 2220.9 0.18 116.941 2210.9 0.2 120.24 2201.7 0.25 127.444 2181.4 0.3 133.556 2163.7 0.35 138.891 2147.9 0.4 143.642 2133.6 0.5 151.867 2108.2 0.6 158.863 2086 0.7 164.983 2066 0.8 170.444 2047.7 0.9 175.389 2030.7 1 179.916 2014.8 1.1 184.1 1999.9 1. 2 187.995 1985.7 1. 3 191.64 4 1972.1 1.4 195.078 1959.1 1. 5 198.327 1946. 6 1.6 201.41 1934.6 1. 7 204.346 1923 1. 8 207.151 1911.7 1. 9 209.838 1900.7

利用origin求固结系数的方法

《资源节约与环保》 2019年第3 期 摘 要: 在进行软土地基的变形分析和加固设计时,固结系数是一个关键的参数,目前固结系数主要是通过在室内进行固结试验来求取,其求解方法有多种,采用最多的是时间平方根法和时间对数法。这两种方法均通过作图来确定固结系数,在作图过程中人为因素影响很大。为更加准确的求解土体的固结系数,以时间平方根法为例,介绍了应用Origin 软件进行高效、准确确定固结系数的步骤。该方法精确度高,便于应用。 关键词: 固结系数;origin 软件;时间平方根法引言 土壤的固结系数反映了土在实验过程中固结速率的大小,其值越大代表土样固结越快。固结系数是土的一个非常重要的试验参数,可以用来计算土体的固结度及超净孔压的消散过程[1]。在沉降的预测、地基处理设计中,能否准确的获取计算结果与固结系数的合理取值有很大的关系。固结系数的获取主要有现场试验和室内试验两种途径,现场试验虽能更好反映实际情况,但其所需的测试时间长,且现场环境条件一般比较复杂,因此,目前主要是通过室内固结试验来获得固结系数[2]。本文针对固结试验中固结系数的确定,以时间平方根法为例,应用Origin 软件对固结系数进行求解。 1时间平方根法求取固结系数的原理 土工试验规程(SL237-1999)[3]中对时间平方根法进行了描述,对应于某一级压力下的固结系数具体确定方法如下: 在该级压力下,根据固结试验测得的实验数据,以百分表的读数d 为纵坐标,加压时间t 的平方根为横坐标绘制曲线,如图1。找出d~t 姨曲线开始的直线段l 1,并将其延长,使之与纵坐 标轴相交,交点的位置d s 称为理论零点。过d s 点作一直线l 2,使其横坐标为前述直线段的1.15倍。直线l 2与d~t 姨曲线交点所对应的时间记为t 90,t 90表示土样固结度达到90%所对应的时间。于是土样的固结系数Cv(cm 2/s)可按式(1)进行计算。 图1时间平方根法求固结系数的过程图C v =0.848(h 軈) 2 t 90 (1) 式中h 軈为最大排水距离(cm),因实验过程中是双向排水的,因而h 軈为在该级压力下试样稳定后的高度与试样初始高度的平均值的一半。 可以看出在求解固结系数的过程中,直线段和交点的确定十分重要,若利用excel 进行计算,则其功能比较单一,确定过程会有一些误差,相对而言origin 的功能更加完善,并且操作简便。因而本文应用origin 来求解固结系数。 2origin 求解固结系数的步骤 本文选用李金轩等(1996)[4]文献中的数据来说明origin 求解固结系数的步骤。2.1d~t 姨曲线绘制 在启动origin 之后,将记录表中的数据粘贴在出现的空白表格中,注意时间应为平方根。选中数据,点击plot 选项绘制d~t 姨曲线图,如图2。一般曲线上的直线段出现在0~25min 之 内,且固结试验加压开始60min 以内,土样的固结度已达70%~80%以上[5],因而求解固结系数通常只需用到60min 以内的数据。2.2d~t 姨曲线开始段直线与纵坐标轴交点的确定 观察d ~t 姨曲线的变化特征,确定直线段出现的位置,点击窗口左边的selection on active plot ,框选开始段直线点,当最大和最小值点出现黑色的小箭头时表示点已经选好。 鼠标左键单击窗口上方的Analysis ,依次选择Fitting-Linear fitting , 打开对话框,在出现的对话框中Find Y from X 后面的小方框中打上勾,点击ok ,就可在图片中出现拟合好的开始段直线l 1(图3)。在表格中的最后一个标签-FitLinearFindYfromX1中,输入x 值为0,则出现x=0时直线对应的y 值,这样以来d ~t 姨曲线开始段直线与纵坐标轴交点即可确定,记为点1。2.3绘制l 2直线 在表格中的FitLinearFindYfromX1中,任意输入一个较大的x 值,得出l 1曲线上的另一个点的坐标,记为点2,使得点2的纵坐标不变,横坐标扩大1.15倍,得到的点记为点三,通过点1、点2来确定直线l 2。同2.1,在表格中输入点1、点2的坐标,在已有的图上画出直线l 2, 如图3。图2origin 求解过程图 利用origin 求固结系数的方法 谢潇1,2,3,4周佩佩5 (1陕西省土地工程建设集团责任有限公司陕西西安7100752陕西地建土地工程技术研究院有限责任公司陕西西安7100753国土资源退化及未利用土地整治工程重点实验室 陕西西安 710075 4陕西省土地整治工程技术研究中心 陕西西安 710075 5南京市水利规划设计院股份有限公司江苏南京210016 )141 DOI:10.16317/https://www.360docs.net/doc/5d7054773.html,ki.12-1377/x.2019.03.105

土力学与地基基础作业 参考

土力学与地基基础课程作业 第一章土的物理性质 作业题: 一、填空题 1、土的稠度状态依次可分为固态、半固态、可塑态、以及流动态其界限含水量依次是缩限、塑限、液限。 2、天然含水量大于液限 ,天然孔隙比大于或等于 1.5 的粘性上称为淤泥。 3、土的结构分为以下三种: 单粒结构、蜂窝状结构、絮状结构。 4、土中的水主要有固态水、气态水和液态水三种。 5的土称为级配良好的土,其中的评价指标叫不均匀系数。 6、粘性土的塑性指数表达式为IP=WL-Wp 。 7、粒径大于2mm的颗粒质量超过总质量的50%的土,称为碎石土。 二、选择题 8、土的不均匀系数Cu越大,表示土的级配 ( B ) A.土粒大小均匀,级配良好 B.土粒大小不均匀,级配良好 C.土粒大小均匀,级配不好 D.土粒大小不均匀,级配不好 9、有一完全饱和土样切满环刀内,称得总重量为72.49克,经105℃烘至恒重为61.28 克,已知环刀质量为32.54克,土的相对密度为2.74。其天然孔隙 比为 ( A ) A.1.069 B.1.000 C.1.058 D.1.088 10、土的结构性强弱可用 ( B ) A.保护度 B.灵敏度 C.粘聚力 D.相对密实度 11、空隙比的定义表达式是(A ) A. e=Vv/Vs B. e=Vv/V; C. e=Vw/Vv; D. e=Vs/Vv 12、若土的粒径级配曲线很陡,则表示( C )。 A. 粒径大小较均匀 B. 不均匀系数较大 C. 级配良好 D. 填土易于夯实

三、名词解释 13、塑性指数:塑性是表征细粒土物理性能一个重要特征,一般用塑性指数来表示; 液限与塑限的差值称为塑性指数IP,即IP=WL-WP 14、砂土液化:是指饱水的疏松粉、细砂土在振动作用下突然破坏而呈现液态的现象, 由于孔隙水压力上升,有效应力减小所导致的砂土从固态到液态的变化现象。 15、压缩模量:指土在完全侧限条件下的竖向附加应力与相应的应变增量之比,也就 是指土体在侧向完全不能变形的情况下受到的竖向压应力与竖向总应变的比值 16、饱和度 S:表明土中孔隙被水充满的程度. r 四、简答题 17、管涌发生的条件是什么?防治措施有哪些? 答:(1)必要条件:土中粗颗粒所构成的孔隙直径必须大于细颗粒的直径。通常发生在Cu>10的土中。(2)水力条件:动水力能带动细颗粒在孔隙间滚动或移动。 18、什么是土的冻胀性?产生机理是什么? 答:在寒冷地区,铺筑高级路面的道路或砂石路面及其附属构造物、隧道、挡土墙、人行道和坡面等,由于土或岩石中产生的冻胀作用,常常使这些构造遭受较大的 破坏。土所产生的冻胀引起道路的冻害造成道路破损,因而影响车辆的通行,降 低道路的使用寿命,称之为冻胀土现象。 产生的机理:所谓的道路冻胀,主要是冬季在路基土中沿着温度的降低方向生成 了冰晶体形状的霜柱,使路面产生隆起的一种现象。隧道侧墙的破坏主要由于土 中霜柱的作用使土体沿冷却方向的横向产生冻胀,从而使隧道的侧壁,向冷空气 侵入的隧道中心轴方向推移,因而沿着侧墙部分的水平方向产生了作用力。坡面 上的冻胀作用是沿着垂直方向发生的。冻胀作用使道路产生的破坏状态在中央部 分冻胀量最大,因而沿路面中心线的纵断方向上产生纵向裂缝。这种冻胀破坏与 冬季期间道路除雪情况以及路面施工接缝情况有密切关系。施工时在路面中心如

土的压缩性和固结理论

五 土的压缩性和固结理论 一、填空题 1.土体的压缩性被认为是由于土体中______________减小的结果。 2.土的固结系数表达式为_________,其单位是____________;时间因数的表达式为___________。 3.根据饱和土的一维固结理论,对于一定厚度的饱和软粘土层,当t=0和0≤z ≤H 时,孔隙水压力u=______________;当t=∞和0≤z ≤H 时,孔隙水压力u=__________________。 4.在土的压缩性指标中,s E 和a 的关系为____________________;S E 和0E 的关系为_______。对后者来说,其关系只在理论上成立,对_________土相差很多倍,对__________土则比较接近。 5.土的压缩性是指___________。 6.压缩曲线的坡度越陡,说明随着压力的增加,土孔隙比的减小愈___________,因而土的压缩性愈_________________。反之,压缩曲线的坡度越缓,说明随着压力的增加,土的孔隙比的减小愈___________,因而土的压缩性愈___________。《规范》采用21-a 来评价土的压缩性高低,当21-a _____________时,属低压缩性土;当21-a _____________时,属中压缩性土;21-a _____________时,属高压缩性土。 7.土的压缩指数的定义表达式为___________。 8. 超固结比OCR 指的是______和______之比;根据OCR 的大小可把粘性土分为______、______、______三类;1OCR <的粘性土属______土。 9.压缩系数______,压缩模量______,则土的压缩性越高。这两个指标通过______试验,绘制______曲线得到。 答案:1.孔隙体积 2.w a e k γ) 1(C 1V += 年2m 2T h t c v v = 3.z σ 0 4.a e E s 11+= s E E β=0 硬土 软土 5土在压力作用下体积减小的特征 6.显著 高 小 低 21-a <0.11 M -pa 0.11 M -pa ≤21-a <0.51 M -pa 21-a ≥0.51 M -pa 7.1 2 211 221C lg lg lg p p e e p p e e C -=--= 8.先期固结压力、现在土的自重应力、正常固结土、超 固结土、欠固结土、欠固结土 9.越大、减小、压缩、e p - 二、选择题 1.下列说法中,错误的是( )。 (A )土在压力作用下体积会缩小 (B )土的压缩主要是土中孔隙体积的减小

土的压缩固结试验

试验七 固结综合试验 一、基本原理 (一) 土的压缩性 土在外荷载作用下,其孔隙间的水和空气逐渐被挤出,土的骨架颗粒之间相互挤紧,封闭气泡的体积也将缩小,从而引起土层的压缩变形,土在外力作用下体积缩小的这种特性称为土的压缩性。 土的压缩性主要有两个特点:①土的压缩主要是由于孔隙体积减少而引进的。对于饱和土,土是由颗粒和水组成的,在工程上一般的压力作用下,固体颗粒和水本身的体积压缩量都非常微小,可不予考虑,但由于土中水具有流动性,在外力作用下会沿着土中孔隙排出,从而引起土体积减少而发生压缩;②由于孔隙水的排出而引起的压缩对于饱和粘性土来说是需要时间的,土的压缩随时间增长的过程称为土的固结。 (二) 土的压缩曲线及有关指标 固结试验(亦称压缩试验)是研究土的压缩性的基本的方法。固结试验就是将天然状态下的原状土或人工制备的扰动土,制备成一定规格的土样,然后置于固结仪内,在不同荷载和在完全侧限条件下测定土的压缩变形。 由固结试验可得到土的压缩变形ΔH 与荷载 p 之间的关系,并可进一步得到相应的孔隙比e 与荷载 p 之间的关系 :e--p 曲线或e--lgp 曲线。 图7-1 固结试样中土样孔隙比的变化 如图7-1所示,设土样的初始高度为H 0,初始孔隙比为e 0 ,在荷载p 作用下,土样稳定后的总压缩量为ΔH ,假设土粒体积V s =1(不变) ,根据土的孔隙比的定义e=V v / V s ,则受压前后土粒体积不变,且土样横截面积不变,所以受 ) 17(111000 ?+Δ?=+=+e H H e H e H

压前后试样中土粒所占的高度不变,因此,根据荷载作用下土样压缩稳定后的总于是有: 压缩量ΔH ,即可得到相应的孔隙比e 的计算公式: ) 27()1(00 0?+Δ? =e H H e e 1) 1(0 0?+= w s w G e 式中 ρρ ,其中,G s 为土粒比重,ω0为土样的初始含水 量,ρ0 为土样的初始密度(g/cm 3),ρw 为水的密度(g/cm 3) 。 e ,从而可绘制出土的如此,根据式(7-2)即可得到各级荷载p 下对应的孔隙比e-p 曲线及e-lgp 曲线等。 1. e-p 曲线及有关指标 图7-2 土的压缩曲线 通常将由固结试验得到的直角坐标系绘制成如图(7-2)所示以看出,由于软粘土的压缩性大,当发生压力变化Δp 时,则相应的比由e 1 减小到e 2 ,当压力e-p 关系,采用普通的e-p 曲线。 (1) 压缩系数a 从图(7-2)可孔隙比的变化Δe 也大,因而曲线就比较陡;反之,像密实砂土的压缩性小,当发生相同压力变化Δp 时,相应的孔隙比的变化 Δe 就小,因而曲线比较平缓,因此,土的压缩性的大小可用e-p 曲线的斜量来反映。 如图(7-2)所示,设压力由p 1 增至 p 2 ,相应的孔隙变化范围不大时,可将该压力范围的曲线用割线来代替,并用割线的斜量来表示土在这一段压力

饱和土体一维大变形固结系数研究_谢新宇

第32卷第3期 1998年5月浙 江 大 学 学 报Jo urnal of Zhejiang U niv ersity (自然科学版)(Nat ural Scienc e )№3Vol.32Ma y 1998饱和土体一维大变形固结系数研究 X 谢新宇 夏建中X X  朱向荣 潘秋元 (浙江大学土木工程学系,杭州,310027)摘 要 本文在一维大变形固结理论研究的基础上,给出了大变形固结系数的定义及其不同描述方法时的具体表达式,并采用土体e ~log R ′和e ~log k 线性假定,探讨了一维大变形固结系数在固结过程中的变化规律.通过研究表明,考虑土体大变形性状的一维固结系数是有效应力(或孔隙比)的函数,其变化规律与土的物理力学特性有关. 关键词:固结系数;大变形;渗透性;压缩性 中图法分类号:T U 432.3 0 前 言 传统的太沙基一维固结方程中,得到的一维固结系数是不随固结过程变化的.在对一维大变形固结的研究中,由于大变形固结理论建立在连续介质力学的基础之上,其控制方程势必比传统的太沙基固结理论或比奥固结理论复杂一些.一些研究者就不同的工程背景,通过模型试验和理论分析对传统固结理论提出了改进方法. Wroth 等[1]认为,通常情况下,进行一系列的小变形计算,然后利用位移来修正坐标是不能得到大变形的计算结果的.T oh 等[2]指出大变形和变参数的小变形增量有限元分析都能较好地与离心模型试验测试结果一致.Poskitt [3]采用摄动法求解一维大应变固结方程,与Gib-son 等[4]结论不同的是:尽管模型是非线性的,但众所周知的太沙基固结理论关于超静孔隙水压力(或应变)分布与h 2成比例的规律(h 为排水路径的长度)仍然存在.Olso n 等[5]给出了一个固结系数的近似表达式,用直接的计算方法,反映出固结系数c v 变化时的解(c v 作为有效应力的函数而变化),能正确说明早期固结阶段在排水边界上形成透水面较小的原因. 在工程应用中,固结系数一般定义为c v =k (1+e 0)/a v C f ,其中e 0为初始孔隙比,C f 为水的重度,以此得到的分析结果与实际往往存在差距,弗洛林[6]注意到这个问题,提出固结系数以k (1+e cp )/C f a v 来表达,e cp 为固结过程中孔隙比的一种平均值,但是,具体e cp 取值还是应该由 固结程度确定.吴崇礼和郭述军[7]用c ′v =c v /(1+e -)2作为软土的固结系数,其中e -为土层的 平均孔隙比,薛兴度和魏道垛[8]也希望通过改变c v 值,而沿用传统的太沙基理论来估计实际工 X XX 现在杭州应用工程技术学院工作 国家自然科学基金资助项目,No.59679015;浙江省自然科学基金资助项目,No.593077 本文于1996年9月收到 谢新宇:男,1969年9月出生,讲师

相关文档
最新文档