变压器后备保护原理与应用

合集下载

变压器后备保护分析与动作跳闸处理原则

变压器后备保护分析与动作跳闸处理原则

变压器后备保护分析与动作跳闸处理原则一、后备保护分析1.差动保护:差动保护是变压器后备保护中最重要的一部分。

其主要原理是通过监测变压器的输入和输出电流之间的差异,来判断变压器内部是否发生故障。

当差动电流大于设定阈值时,差动保护动作,切断变压器电路,以保护变压器。

2.过流保护:过流保护是指变压器输入端或输出端电流超过额定值时,保护装置会发出信号使断路器或刀闸跳闸,以切断电路。

过流保护是保护变压器的重要手段之一,用于防止变压器过负荷运行和短路故障。

3.过温保护:变压器内部温度的急剧升高会导致变压器绝缘材料老化和失效,进而引发火灾事故。

因此,过温保护是必要的。

过温保护通常采用温度传感器监测变压器内部温度,一旦温度超过设定值,保护装置会发出信号,切断电源,停止变压器的运行。

当变压器后备保护装置动作跳闸时,需要及时采取相应的措施进行处理,以保证变压器的安全和设备的正常运行。

1.检查故障原因:首先应该对动作跳闸的原因进行全面、系统的分析,判断是否属于故障动作,并找出故障原因。

可能的故障原因包括变压器内部短路、过载、绕组接地等。

通过检查,可以排除虚警动作,保证变压器的正常运行。

2.故障修复:一旦确定故障原因,需要及时进行故障修复。

对于短路故障,应排除短路点,修复绕组;对于过载故障,应调整负载,使变压器运行在正常负荷范围内;对于绕组接地故障,应检修绝缘层,排除接地点。

3.冷却处理:当变压器发生过温时,需要采取相应的冷却处理措施。

可以通过增加散热器的风量、使用冷却风扇等方式进行冷却,降低变压器内部温度。

4.环境监测:为了预防类似故障的再次发生,需要对变压器周围的环境进行监测。

如监测变压器输入电流和输出电流的差值,监测变压器运行时的温度等参数,及时发现异常情况并采取相应措施。

5.设备保养:定期对变压器进行保养和检修,检查差动保护、过流保护、过温保护等保护装置的运行情况,保证其可靠性和正常功能。

总之,变压器后备保护分析和动作跳闸处理是保证变压器设备安全运行的重要环节。

变压器后备保护分析与动作跳闸处理原则

变压器后备保护分析与动作跳闸处理原则

变压器后备保护分析与动作跳闸处理原则1. 引言变压器是电力系统中的重要设备,为保障电力系统的运行稳定性和安全性,需要对变压器进行全面的保护和管理。

其中,后备保护是保障变压器安全运行的重要手段之一,本文将对变压器后备保护进行分析,并对动作跳闸处理原则进行探讨。

2. 变压器后备保护概述变压器后备保护是指在主保护失灵或运行异常时,为防止变压器继续运行而采取的保护措施。

其目的是保障变压器运行安全,防止事故的发生。

变压器后备保护通常包括以下几种类型:2.1 奇数次谐波保护奇数次谐波保护是通过测量变压器两侧电压的奇数次谐波电压,来判断是否发生故障。

当变压器内部发生故障时,会产生奇数次谐波电流,从而导致两侧电压的奇数次谐波电压不等。

此时,保护装置会发出动作信号,切断变压器的电源,以防止事故的进一步扩大。

2.2 过电压保护过电压保护是指在变压器出现过电压时,通过切断电源,以保护变压器安全运行。

过电压保护通常分为瞬变过电压保护和持续过电压保护两种,其中瞬变过电压保护是指对高压侧电压瞬间剧烈波动所采取的保护措施,而持续过电压保护则是指对发生长时间过电压的情况所采取的保护措施。

2.3 欠电压保护欠电压保护是指在变压器出现欠电压时,通过切断电源,以保护变压器安全运行。

欠电压保护可以有效避免变压器在电网电压异常下继续工作,从而导致事故。

2.4 瞬时过流保护瞬时过流保护是指通过测量变压器两侧电流的波形和幅值来判断变压器是否出现故障。

当变压器内部出现短路等故障时,会产生高幅值的电流,从而导致保护装置动作,切断电源,以保护变压器安全运行。

3. 变压器后备保护动作跳闸处理原则变压器后备保护动作跳闸时,需要对保护装置和变压器进行检查和处理,以确定动作原因和故障位置,全面保障变压器安全运行。

变压器后备保护动作跳闸处理原则主要包括以下几点:3.1 处理动作跳闸信号当变压器后备保护装置发出动作跳闸信号时,需要及时处理,以确定动作原因和故障位置。

变压器后备保护动作原理和事故处理..

变压器后备保护动作原理和事故处理..

变压器后备保护动作原理
零序方向过流保护原理图
注:TV断线时,方向元件退出
零序过流保护原理图
变压器后备保护动作原理
中性点直接接地运行时零序保护原理图
中性点直接接地运行变压器零序电流 保护工作原理 零序电流保护I段作为变压器及母线 的接地故障后备保护,其起动电流和延 时t1应与相邻元件单相接地保护I段相 配合,通常以较短延时t1=0.5~1.0S 动作于母线解列;以较长的延时t2=t1 +Δt有选择地动作于断开变压器高压侧 断路器。 零序电流保护II段作为引出线接地故 障的后备保护,其动作电流和延时t3 应与相邻元件接地后备段相配合。通常 t3应比相邻元件零序保护后备段最大 延时大一个Δt,以断开母联断路器或 分段断路器,t4=t3+Δt动作于断开变 压器高压侧断路器。
变电站事故处理系列
变压器后备保护动作原理及事故处理
威虎山公司
座山雕
变压器后备保护动作原理及事故处理
变压器后备保护的配置及原理 变压器后备保护的保护范围 变压器各后备保护动作原因分析
目录
变压器后备保护动作后故障范围的检查 变压器后备保护动作跳闸后的处理
220KV主变电量保护配置图
220KV主变后备保护的配置
主变后备保护动作跳闸,主保护 未动作一般应视为外部故障即母 线故障或线路故障越级使主变后 备保护动作跳闸
主变后备保 护动作原因 分析
零序方向过流:方向指向母 线时,动作后一般是母线或 者线路接地后保护装置拒动 ,方向指向主变时动作后一 般是下一级母线或者线路接 地后保护拒动,主变主保护 拒动的几率很小
经检查,线路 没有保护动作信号 掉牌时有两种可能 :一是故障时保护 没动作,二是母线 故障
分路上有保护动 作信号掉牌时应将 掉牌的线路开关断 开,并检查母线及 变压器跳闸开关无 问题,重点检查线 路开关拒跳原因

变压器后备保护整定计算方法 数据降维

变压器后备保护整定计算方法 数据降维

变压器后备保护整定计算方法数据降维随着电力系统发展和电网规模的不断扩大,变压器在电力系统中的重要性日益凸显。

为了确保变压器的安全运行,后备保护的整定成为必要的工作。

本文将介绍变压器后备保护整定的计算方法,并探讨数据降维在此过程中的应用。

一、变压器后备保护整定计算方法1. 整定背景变压器是电力系统中的重要设备,主要用于电能的传输和变压变流。

为了保证变压器的安全运行,需要设置后备保护。

后备保护的整定涉及到多个参数,包括电压、电流、温度等。

2. 整定原则变压器后备保护的整定原则是根据变压器的额定容量、短路容量以及运行条件等因素进行综合考虑,确保其灵敏度和可靠性。

3. 整定步骤(1)收集和分析数据整定前需要收集变压器运行过程中的相关数据,包括电流、电压、温度等参数。

通过对数据的分析,可以了解变压器的负载情况和可能出现的故障。

(2)确定整定参数根据数据分析的结果,确定后备保护的整定参数。

例如,根据变压器的额定容量和运行条件,确定巡检超过额定电流值的保护参数。

(3)计算整定值根据确定的整定参数,进行计算以得到具体的整定值。

例如,根据变压器短路容量和负载情况,计算巡检超过短路电流的保护整定值。

(4)验证整定结果将计算得到的整定值配置到变压器保护设备中,进行实际验证。

通过实际验证,可以判断整定结果是否符合要求,并进行必要的调整。

二、数据降维在变压器后备保护整定中的应用1. 数据降维的概念数据降维是指通过一系列方法将原始数据映射到低维度的空间中,从而减少数据维度的过程。

数据降维不仅可以简化数据处理过程,还可以提高数据分析的效率和准确性。

2. 数据降维在整定计算中的应用(1)降低计算复杂性变压器的运行数据通常包含大量的参数,降维可以将这些参数转化为更少的维度,从而降低整定计算的复杂性。

(2)提高计算效率通过降维可以减少计算的量,从而提高整定计算的效率。

例如,使用主成分分析等方法可以将大量的数据特征降低到较少的维度,并保留原始数据的主要信息。

主变后备保护原理和保护范围

主变后备保护原理和保护范围
主变后备保护原理和保 护范围
XX,a click to unlimited possibilities
汇报人:XX
目录
01 主 变 后 备 保 护 原 理
02 主 变 后 备 保 护 范 围
Part One
主变后备保护原理
差动保护原理
差动保护原理:利用电流互感器检测主变各侧电流的变化,通过比较主变 各侧电流的大小和相位,实现差动保护。 差动保护的优点:动作速度快,灵敏度高,可靠性高。
距离保护原理
原理:基于电压和电流的相位差来测量短路点到保护装置的距离 优点:不受系统阻抗的影响,可靠性高 局限性:易受系统运行方式的影响,需要校验保护装置的定值 应用场景:适用于长距离输电线路的保护
零序电流保护原理
零序电流的产生:当系统中发生不对称故障时,三相电流的矢量和不为零,形成零序电流。
零序电流保护的原理:通过检测零序电流的大小和方向,判断系统中是否存在故障,进而触 发相应的保护动作。
零序电流保护的优点:结构简单,灵敏度高,能够快速切除故障。
零序电流保护的局限性:易受系统运行方式和接地状况的影响,可能会产生误动作或拒动作。
Part Two
主变后备保护范围
变压器内部故障
变压器内部故障可能引发严 重后果
主变后备保护范围包括变压 器内部故障
主变后备保护能够及时切除 故障,防止事故扩大
差动保护的局限性:易受励磁涌流和变压器充电的影响。
差动保护的应用范围:广泛应用于变压器的保护。
电流保护原理
电流保护原理:通过检测线路中的电流异常变化来触发保护动作,切除故障部分,保证电力 系统安全运行。
动作条件:电流超过整定值,持续时间达到设定时间。
保护类型:过流保护、电流速断保护、差动保护等。

主变后备保护原理和保护范围

主变后备保护原理和保护范围

5、负序电流和单相式低压过电流保护
对于大容量的发电机变压器组,由于额定电流大,电流元件往往不能满足远后备灵敏度的要求,可采用负序电流保护。负序电流元件和反应对称短路故障的单相式低压过电流保护组成。 负序电流保护灵敏度较高,且在星、三角接线的变压器另一侧发生不对称短路故障时,灵敏度不受影响,接线也较简单。
多台变压器并联运行时的接地后备保护
对于多台变压器并联运行的变电所,通常采用一部分变压器中性点接地运行,而另一部分变压器中性点不接地运行的方式。这样可以将接地故障电流水平限制在合理范围内,同时也使整个电力系统零序电流的大小和分布情况尽量不受运行方式的变化,提高系统零序电流保护的灵敏度。
如图5-23所示,T2和T3中性点接地运行,T1中性点不接地运行,K2点发生单相接地故障时,T2和T3由零序电流保护动作而被切除,T1由于无零序电流,仍将带故障运行,此时由于接地中性点失去,变成了中性点不接地系统单相接地故障的情况,将产生接近额定相电压的零序电压,危及变压器和其它电力设备的绝缘,因此需要装设中性点不接地运行方式下的接地保护将T1切除。
过负荷保护反应变压器对称过负荷引起的过电流。保护用一个电流继电器接于一相电流,经延时动作于信号。 过负荷保护的安装侧,应根据保护能反应变压器各侧绕组可能过负荷情况来选择: (1)对双绕组升压变压器,装于发电机电压侧。 (2)对一侧无电源的三绕组升压变压器,装于发电机电压侧和无电源侧。 (3)对三侧有电源的三绕组升压变压器,三侧均应装设。 (4)对于双绕组降压变压器,装于高压侧。 (5)仅一侧电源的三绕组降压变压器,若三侧的容量相等,只装于电源侧;若三侧的容量不等,则装于电源侧及容量较小侧。 (6)对两侧有电源的三绕组降压变压器,三侧均应装设。
后备低阻抗保护对发电机定子绕组和变压器高、低压绕组内部短路的后备保护作用问题: 发电机三相定子绕组内部发生相间短路或匝间短路时,纵然故障点电流很大,机端三相电流有可能并不大,机端二相电压也可能并不显著降低,因此装在发电机机端的阻抗保护反应就很灵敏。 所以阻抗保护不能胜任变压器或发电机绕组内部短路的后备保护作用,只能作为发电机或变压器引线、母线和相邻线路的相间短路后备保护。

变压器后备保护原理与应用

变压器后备保护原理与应用
变压器和容量较大的降压变压器 1.动作电流 按变压器额定电流In整定,不必考虑电动 机自起动和并列运行变压器跳闸引起的最 大负荷电流。 2.动作电压整定 (1)按正常运行时可能出现的最低电压整定 (2)按电动机自起动时的电压整定
低压过流逻辑框图
U ab < Ul
U bc< Ul
+
t1
信号
出口 信号

变压器接地后备保护
变压器接地后备保护
变压器接地后备保护
相间故障后备保护故障时间整定
单侧电源的双绕组降压变压器 单侧电源的三绕组降压变压器,相间故障后备保

护一般在低压侧和电源侧。 高压及中压侧均有电源的三绕组降压变压器 双绕组升压变压器,相间故陈后备保护装在变压 器的低压侧 中压侧无电源的三绕组升压变压器,相间故障后 备保护装于低压侧和中压侧 三侧均有电源的三绕组升压变压器
后备低阻杭保护
后备低阻杭保护对发电机定子绕组和变压器高、
低压绕组内部短路的后备保护作用问题 发电机三相定子绕组内部发生相间短路或匝间短 路时,纵然故障点电流很大,机端三相电流有可 能并不大,机端二相电压也可能并不显著降低, 因此装在发电机机端的阻抗保护反应就很不灵敏。 教材p72 所以阻抗保护不能胜任变压器或发电机绕组内部 短路的后备保护作用,只能作为发电机或变压器 引线、母线和相邻线路的相间短路后备保护。
K 低压元件灵敏度 : sen U K . max > 1.2 U op K re
3)负序电压元件 U 2op (0.06 ~ 0.12)U N 负序电压元件灵敏度
K sen U k 2. min U 2 op
> 1.2
相间短路后备保护
负序电流和单相式低电压起动的过电流保护

变压器主保护与后备保护知识

变压器主保护与后备保护知识

变压器是连续运行的静止设备,运行比较可靠,故障机会较少。

但由于绝大部分变压器安装在户外,并且受到运行时承受负荷的影响以及电力系统短路故障的影响,在运行过程中不可避免的出现各类故障和异常情况。

1、变压器的常见故障和异常变压器的故障可分为内部故障和外部故障。

内部故障指的是箱壳内部发生的故障,有绕组的相间短路故障、一相绕组的匝间短路故障、绕组与铁芯间的短路故障、绕组的断线故障等。

外部故障指的是变压器外部引出线间的各种相间短路故障、引出线绝缘套管闪络通过箱壳发生的单相接地故障。

变压器发生故障危害很大。

特别是发生内部故障时,短路电流所产生的高温电弧不仅会烧坏变压器绕组的绝缘和铁芯,而且会使变压器油受热分解产生大量气体,引起变压器外壳变形甚至爆炸。

因此变压器故障时必须将其切除。

变压器的异常情况主要有过负荷、油面降低、外部短路引起的过电流,运行中的变压器油温过高、绕组温度过高、变压器压力过高、以及冷却系统故障等。

当变压器处于异常运行状态时,应给出告警信号。

2、变压器保护的配置短路故障的主保护:主要有纵差保护、重瓦斯保护等。

短路故障的后备保护:主要有复合电压闭锁过流保护、零序(方向)过流保护、低阻抗保护等。

异常运行保护:主要有过负荷保护、过励磁保护、轻瓦斯保护、中性点间隙保护、温度油位及冷却系统故障保护等。

3、非电量保护利用变压器的油、气、温度等非电气量构成的变压器保护称为非电量保护。

主要有瓦斯保护、压力保护、温度保护、油位保护及冷却器全停保护。

非电量保护根据现场需要动作于跳闸或发信。

(1)瓦斯保护当变压器内部发生故障时,由于短路电流和短路点电弧的作用,变压器内部会产生大量气体,同时变压器油流速度加快,利用气体和油流来实现的保护称为瓦斯保护。

轻瓦斯保护:当变压器内部发生轻微故障或异常时,故障点局部过热,引起部分油膨胀,油内气体形成气泡进入气体继电器,轻瓦斯保护动作,发出轻瓦斯信号。

重瓦斯保护:当变压器油箱内发生严重故障时,故障电流较大,电弧使变压器油大量分解,产生大量气体和油流,冲击档板使重瓦斯继保护动作,发出重瓦斯信号并出口跳闸,切除变压器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器后备保护原理与应用
变压器后备保护概述
作用:电力变压器应装设外部接地、相间短路 引起的过电流保护及中性点过电压保护装置, 以作为相邻元件及变压器内部故障的后备保 护。 类型:过电流保护、低压闭锁过流保护、复压 闭锁方向过流保护、零序过流保护、间隙过 流保护、阻抗保护、过激励保护 变压器保护实现双重化后应简化后备保护 “强化主保护,简化后备保护”
相间短路后备保护方向设置
(1)三侧有电源的三绕组升压变压器,相间故障后 备保护为了满足选择性要求,在高压侧或中压侧 要加功率方向元件,其方向可指向该侧母线。方 向元件的设置,有利于加速跳开小电源侧的断路 器,避免小系统影响大系统。 . (2)高压及中压侧有电源或三侧均有电源的三绕组 降压变压器和联络变压器,相间故障后备保护为 了满足选择性要求,在高压或中压侧要加功率方 向元件,其方向宜指向变压器。 (3)反应相间故障的功率方向继电器,通常由两只 功率方向继电器构成,接入功率方向继电器的电 流和电压应按90。接线的要求。为了消除三相短 路时功率方向继电器的死区,功率方向继电器的 电压回路可由另一侧电压互感器供电。
U ca< U l
&
t2
出口
Ia > I g
Ib > Ig
+
0
t0
Ic > Ig
相间短路后备保护
复合电压起动(闭锁)的过电流保护
复合电压起动的过电流保护宜用于1Mw以上的 发电机和升压变压器、系统联络变压器和过电流 保护不能满足灵敏度要求的降压变压器。 作为变压器短路故障的后备保护应主要作为相邻 元件及变压器内部故障的后备保护。常常因灵敏 度不足而增加复合电压闭锁回路。也就是说,在 不对称性故障时,出现负序电压以及在对称性故 障保护安装处三相电压低于某一值时,才可开放 过电流保护,这样使复合电压闭锁过流的电流定 值大大下降,也就提高了灵敏度。
K 低压元件灵敏度 : sen U K . max > 1.2 U op K re
3)负序电压元件 U 2op (0.06 ~ 0.12)U N 负序电压元件灵敏度
K sen U k 2. min U 2 op
> 1.2
相间短路后备保护
负序电流和单相式低电压起动的过电流保护
此保护由负序电流继电器和单相式低电压 起动的过电流保护构成。由负序电流继电器 反应两相短路故障,由单相式低电压起动的 过电流保护反应三相短路故障, 负序电流保护灵敏度较高,且在接线的变 压器另一侧发生不对称短路故障时,灵敏度 不受影响,接线也较简单。
后备低阻杭保护
后备低阻杭保护对发电机定子绕组和变压器高、
低压绕组内部短路的后备保护作用问题 发电机三相定子绕组内部发生相间短路或匝间短 路时,纵然故障点电流很大,机端三相电流有可 能并不大,机端二相电压也可能并不显著降低, 因此装在发电机机端的阻抗保护反应就很不灵敏。 教材p72 所以阻抗保护不能胜任变压器或发电机绕组内部 短路的后备保护作用,只能作为发电机或变压器 引线、母线和相邻线路的相间短路后备保护。
变压器和容量较大的降压变压器 1.动作电流 按变压器额定电流In整定,不必考虑电动 机自起动和并列运行变压器跳闸引起的最 大负荷电流。 2.动作电压整定 (1)按正常运行时可能出现的最低电压整定 (2)按电动机自起动时的电压整定
低压过流逻辑框图
U ab < Ul
U bc< Ul
+
t1
信号
出口 信号
相间短路后备保护
过电流保护
变压器各侧的过电流保护过电流元件按相设置,均 按躲过变压器可能出现的最大负荷电流整定,但 不作为短路保护的一级参与选择性配合,其动作 时间应大于所有出线保护最长时间。最大负荷电 流要考虑事故时,可能出现的过负荷,如并列运 行的变压器切除一台后,另一台可能出现的过负 荷,对降压变压器还要考虑电动机自起动时的最 大电流。上述保护动作应跳变压器各侧断路器。
过电流保护
动作电流:
I op
K rel I L. max K re
m IN m 1
最大负荷电流确定
并列变压器
I L. max
降压变压器
I L. max K ss I L. max
灵敏度
K sen
I k . min I op
接线图
信号
相间短路后备保护
低电压启动的过电流保护:主要用于升压
相间故障后备保护故障时间整定
单侧电源的双绕组降压变压器 单侧电源的三绕组降压变压器,相间故障后备保

护一般在低压侧和电源侧。 高压及中压侧均有电源的三绕组降压变压器 双绕组升压变压器,相间故陈后备保护装在变压 器的低压侧 中压侧无电源的三绕组升压变压器,相间故障后 备保护装于低压侧和中压侧 三侧均有电源的三绕组升压变压器

变压器接地后备保护
变压器接地后备保护
变压器接地后备保护
负序方向过流保护
负序功率方向判据与负序过流判据共同构
成负序方向过流保护。保护输入变压器引 出端TA二次三相电流及同侧母线TV二次三 相电压。动作方程为

P2 > 0 I 2> I 2 g
„„„„„„„„„„„„(6-31-1)
相间短路后备保护
低阻抗保护
当电流、电压保护不能满足灵敏度要求或根 据网络保护间配合的要求,发电机和变压器 的相间故障后备保护可采用阻抗保护。阻抗 保护通常用于330一500kV大型升压及降压 变压器,作为变压器引线、母线、相邻线路 相间故障后备保护。
复合电压起动的过电流保护
至电压断线信号 信号 跳QF1 跳QF2
接至电压互感器
原理接线
复压过流逻辑框图
Uca < U l
+
t1
信号
U 2> U 2 g
出口 信号
&
t2
出口
I a > Ig
Ib > Ig
I0
定值确定: 1)电流元件
I op K rel IN K re
2)低压元件 U op 0.7U N
相关文档
最新文档