江苏省扬州市仪征市2020-2021学年九年级上学期期末数学试题

合集下载

江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类

江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类

江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类一.一元二次方程的应用(共1小题)1.(2022秋•常州期末)常州大剧院举办文艺演出.经调研,如果票价定为每张50元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票将会减少20张.要使门票收入达到60500元,票价应定为多少元?二.三角形综合题(共1小题)2.(2022秋•常州期末)如果三角形一个内角的2倍与另一个内角的和等于90°,那么我们称这样的三角形为“类互余”三角形.(1)若△ABC是“类互余”三角形,∠C>90°,∠A=40°,则∠B= ;(2)如图1,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,△ABD是“类互余”三角形吗?请说明理由;(3)如图2,在△ABC中,,tan∠ABC=2,D是CB延长线上的一点.若△ABD 是“类互余”三角形,求BD的长.三.正方形的性质(共1小题)3.(2021秋•常州期末)【问题】老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:【方案一】小明构造了图1,在△ABC中,AC=2,∠B=30°,∠C=45°.第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;第二步:在Rt△ADC中,计算sin75°.【方案二】小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF =30°.第一步:连接AC,过点C作CG⊥EF,垂足为G,用含a的代数式表示AC和CG的长;第二步:在Rt△AGC中,计算sin75°.请分别按照小明和小华的思路,完成解答过程.四.直线与圆的位置关系(共1小题)4.(2021秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.(1)判断DE所在直线与⊙O的位置关系,并说明理由;(2)若AE=4,ED=2,求⊙O的半径.五.圆的综合题(共2小题)5.(2020秋•常州期末)如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是 cm,⊙M与直线CD的位置关系是 ;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是 cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.6.(2021秋•常州期末)如图1,边长为6cm的等边△ABC中,AD是高,点P以cm/s 的速度从点D向A运动,以点P为圆心,1cm为半径作⊙P,设点P的运动时间为ts.(1)当⊙P与边AC相切时,求t的值;(2)如图2,若在点P出发的同一时刻,点Q以1cm/s的速度从点B向点C运动,一个点停止运动时,另一个点也随之停止运动.过点Q作BA的平行线,交AC于点M.当QM 与⊙P相切时,求t的值;(3)在运动过程中,当⊙P与△ABC的边共有两个公共点时,直接写出t的取值范围.六.相似三角形的性质(共2小题)7.(2020秋•常州期末)如图,已知△OAB,点A的坐标为(2,2),点B的坐标为(3,0).(1)求sin∠AOB的值;(2)若点P在y轴上,且△POA与△AOB相似,求点P的坐标.8.(2021秋•常州期末)如果经过一个三角形某个顶点的直线将这个三角形分成两部分,其中一部分与原三角形相似,那么称这条直线被原三角形截得的线段为这个三角形的“形似线段”.(1)在△ABC中,∠A=30°.①如图1,若∠B=100°,请过顶点C画出△ABC的“形似线段”CM,并标注必要度数;②如图2,若∠B=90°,BC=1,则△ABC的“形似线段”的长是 ;(2)如图3,在△DEF中,DE=4,EF=6,DF=8,若EG是DEF的“形似线段”,求EG的长.七.相似三角形的判定(共1小题)9.(2022秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC.(1)过点D作⊙O的切线DE,交AC于点E(用直尺和圆规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接BD,△ADE与△ABD相似吗?为什么?八.作图-相似变换(共1小题)10.(2021秋•常州期末)如图,在平面直角坐标系中,△ABC的三个顶点A、B、C的坐标分别为(0,3)、(2,1)、(4,1).(1)以原点O为位似中心,在第一象限画出△ABC的位似图形△ABC,使△A1B1C1与△ABC的相似比为2:1;(2)借助网格,在图中画出△ABC的外接圆⊙P,并写出圆心P的坐标 ;(3)将△ABC绕(2)中的点P(3)将△ABC绕点P顺时针旋转90°,则点A运动的路线长是 .九.方差(共2小题)11.(2020秋•常州期末)某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲 10 乙10 7(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?12.(2021秋•常州期末)“119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):八年级代表队:80,90,90,100,80,90,100,90,100,80;九年级代表队:90,80,90,90,100,70,100,90,90,100.(1)填表:代表队平均数中位数方差八年级代表队90 60九年级代表队 90 (2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?一十.列表法与树状图法(共3小题)13.(2020秋•常州期末)学校为了丰富学生课余生活,开设了社团课.现有以下社团:A.篮球、B.机器人、C.绘画,学校要求每人只能参加一个社团,甲和乙准备随机报名一个社团.(1)甲选择“机器人”社团的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个社团的概率.14.(2021秋•常州期末)小丽的爸爸积极参加社区志愿服务,根据社区安排,志愿者将被随机分配到以下小组中的一个:A组(交通疏导)、B组(环境消杀)、C组(便民代购),开展服务工作.(1)小丽的爸爸被分配到C组的概率是 ;(2)若小丽的班主任刘老师也参加了该社区的志愿者队伍,那么刘老师和小丽的爸爸被分到同一组的概率是多少?请用画树状图或列表的方法写出分析过程.15.(2022秋•常州期末)学校为了践行“立德树人,实践育人”的目标,开展劳动课程,组织学生走进农业基地,欣赏田园风光,体验劳作的艰辛和乐趣.该劳动课程有以下小组:A.搭豇豆架、B.斩草除根、C.趣挖番薯、D.开垦播种.学校要求每人只能参加一个小组,甲和乙准备随机报名一个小组.(1)甲选择“搭虹豆架”小组的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个小组的概率.江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一元二次方程的应用(共1小题)1.(2022秋•常州期末)常州大剧院举办文艺演出.经调研,如果票价定为每张50元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票将会减少20张.要使门票收入达到60500元,票价应定为多少元?【答案】55元.【解答】解:设票价应定为x元,由题意得:x[1200﹣20(x﹣50)]=60500,解得:x1=x2=55.答:票价应定为55元.二.三角形综合题(共1小题)2.(2022秋•常州期末)如果三角形一个内角的2倍与另一个内角的和等于90°,那么我们称这样的三角形为“类互余”三角形.(1)若△ABC是“类互余”三角形,∠C>90°,∠A=40°,则∠B= 25°或10° ;(2)如图1,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,△ABD是“类互余”三角形吗?请说明理由;(3)如图2,在△ABC中,,tan∠ABC=2,D是CB延长线上的一点.若△ABD 是“类互余”三角形,求BD的长.【答案】(1)25°或10°;(2)是,理由见解析;(3)或6.【解答】解:(1)∵∠C>90°,∴∠A+∠B<90°∵△ABC是“类互余”三角形,∠A=40°,∴∠A+2∠B=90°或2∠A+∠B=90°,∴∠B=25°或∠B=10°,故答案为:25°或10°.(2)△ABD是“类互余”三角形,理由如下,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,∴AC=AD+DC=4,∴,∴=,又∵∠C=∠C,∴△ACB∽△BCD,∴∠CBD=∠A,设∠CBD=∠A=α,则∠ADB=∠ABC﹣∠CBD=(90°﹣α)﹣α=90°﹣2α,∴2∠A+∠ABD=2α+90°﹣2α=90°,∴△ABD是“类互余”三角形;(3)设∠ADB=α,依题意,△ABD是“类互余”三角形,∠ABD>90°,当2∠ADB+∠BAD=90°时,如图所示,过点A作AE⊥BC于点E,则∠BAD=90°﹣α,∴∠EAB=α,∴∠EAB=∠ADB,∵tan∠ABC=2,,设AE=2a,则BE=a,∴,解得:a=2,∴AE=4,BE=2,∵∠EAB=∠ADB,∴,∴ED=8,∴BD=DE﹣BE=8﹣2=6;当∠ADB+2∠BAD=90°,如图所示,过点A作AE⊥BC于点E,过点B作BF⊥AD于点F,则∠BAD=α,∠ADB=90°﹣2α,∴∠EAB=∠BAD=α,∴BF=BE=2,设BD=x,则ED=2+x,∵,∴,即,解得:.即或6.三.正方形的性质(共1小题)3.(2021秋•常州期末)【问题】老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:【方案一】小明构造了图1,在△ABC中,AC=2,∠B=30°,∠C=45°.第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;第二步:在Rt△ADC中,计算sin75°.【方案二】小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF =30°.第一步:连接AC,过点C作CG⊥EF,垂足为G,用含a的代数式表示AC和CG的长;第二步:在Rt△AGC中,计算sin75°.请分别按照小明和小华的思路,完成解答过程.【答案】【方案一】.【方案二】.【解答】解:【方案一】如图1,过点A作AQ⊥BC于点Q,在△ABC中,AC=2,∠B=30°,∵∠C=45°.AC=2,∴AQ=CQ=AC=,∵∠B=30°,∴BQ=AQ=,∴BC=BQ+QC=+,∴CD=BC=,∵∠DAC=∠B+∠ACB=75°,∴sin75°==.【方案二】如图2,延长CB交FE于点H,∵正方形ABCD的边长为a,∴AC=a,∵∠DAF=30°.∴∠BAH=60°,∴∠H=30°,∴AH=2AB=2a,∴BH=AB=a,∴CH=BH+BC=a+a=(+1)a,∴CG=CH=,∵∠GAC=∠CAD+∠DAF=75°,∴sin75°===.四.直线与圆的位置关系(共1小题)4.(2021秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.(1)判断DE所在直线与⊙O的位置关系,并说明理由;(2)若AE=4,ED=2,求⊙O的半径.【答案】(1)直线DE与⊙O相切,理由见解析;(2).【解答】解:(1)直线DE与⊙O相切;理由:连接OD,∵∠CAB的平分线是AD,∴∠CAD=∠DAB.∵OA=OD,∴∠OAD=∠ODA.∴∠EAD=∠ADO,∴AE∥OD,∵∠AED=90°,∴∠ODE=90°.∵OD是⊙O的半径,∴直线DE与⊙O相切;(2)连接BD,∵ED=2,AE=4,∴AD==2,∵AB是⊙O的直径,∴∠ADB=90°,∵∠EAD=∠BAD,∴△ADE∽△ABD,∴=,∴AB=5,∴⊙O的半径为.五.圆的综合题(共2小题)5.(2020秋•常州期末)如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是 cm,⊙M与直线CD的位置关系是 相离 ;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是 5 cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.【答案】见试题解答内容【解答】解:(1)如图1,过M作KN⊥AB于N,交CD于K,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,∴⊙M的直径是PQ,KN⊥CD,当t=1时,AP=3,CQ=4,∵AB=6,BC=8,∴PB=6﹣3=3,BQ=8﹣4=4,∴PQ==5,∴⊙M的半径为cm,∵MN∥BQ,M是PQ的中点,∴PN=BN,∴MN是△PQB的中位线,∴MN=BQ=×4=2,∴MK=8﹣2=6>,∴⊙M与直线CD的位置关系是相离;故答案为:,相离;(2)①如图2,由P、Q运动速度与AB,BC的比相等,∴圆心M在对角线BD上,由图可知:P和Q两点在t=2时在点B重合,当t=0时,直径为对角线AC,M是AC的中点,故M运动路径为OB=BD,由勾股定理得:BD==10,则圆心M的运动路径长是5cm;故答案为:5;②如图3,当⊙M与AD相切时,设切点为F,连接FM并延长交BC于E,则EF⊥AD,EF⊥BC,则BQ=8﹣4t,PB=6﹣3t,∴PQ=10﹣5t,∴PM==FM=5﹣t,△BPQ中,ME=PB=3﹣t,∵EF=FM+ME,∴5﹣t+3﹣t=6,解得:t=;(3)如图4,过D作DG⊥PQ,交PQ的延长线于点G,连接DQ,∵∠APD=∠NBQ,∠NBQ=∠NPQ,∴∠APD=∠NPQ,∵∠A=90°,DG⊥PG,∴AD=DG=8,∵PD=PD,∴Rt△APD≌Rt△GPD(HL),∴PG=AP=3t,∵PQ=10﹣5t,∴QG=3t﹣(10﹣5t)=8t﹣10,∵DC2+CQ2=DQ2=DG2+QG2,∴62+(4t)2=82+(8t﹣10)2,∴3t2﹣10t+8=0,(t﹣2)(3t﹣4)=0,解得:t1=2(舍),t2=.6.(2021秋•常州期末)如图1,边长为6cm的等边△ABC中,AD是高,点P以cm/s 的速度从点D向A运动,以点P为圆心,1cm为半径作⊙P,设点P的运动时间为ts.(1)当⊙P与边AC相切时,求t的值;(2)如图2,若在点P出发的同一时刻,点Q以1cm/s的速度从点B向点C运动,一个点停止运动时,另一个点也随之停止运动.过点Q作BA的平行线,交AC于点M.当QM 与⊙P相切时,求t的值;(3)在运动过程中,当⊙P与△ABC的边共有两个公共点时,直接写出t的取值范围.【答案】(1)t=3﹣;(2)(﹣)或(+);(3)t的取值范围为0≤t<或t=3﹣或3﹣<t≤3.【解答】解:(1)设⊙P与边AC相切点E,连接PE,如图,则PE⊥AC.∵△ABC是边长为6的等边三角形,AD是高,∴BD==3cm,∠DAC=∠BAC=30°.∴AD==3,由题意得:PD=tcm,∴AP=AD﹣PD=(3﹣t)cm.在Rt△APE中,∵sin∠PAE=,∴AP=.∴3﹣t=.解得:t=3﹣.∴当⊙P与边AC相切时,t的值为3﹣.(2)设QM与⊙P相切于点E,①当点E在AD的左侧时,设QM与AD交于点F,如图,连接EP,过点M作MH⊥AD于点H,∵QM与⊙P相切于点E,∴EP⊥QM.∵△ABC是边长为6的等边三角形,AD是高,∴∠DAB=∠DAC=∠BAC=30°.∵QM∥AB,∴∠QFD=∠BAD=30°.∵∠AFM=∠QFD,∴∠AFM=30°.∴∠FAM=∠AFM=30°.∴AM=FM.∵MH⊥AD,∴AH=FH=.由题意得:BQ=t,DP=t,∵∠B=∠BAC=60°,AB∥QM,∴四边形ABQM为等腰梯形,∴AM=BQ=t.∴AH=AM•cos∠DAC=t.∴AF=2AH=2t.∵EP⊥QM,∠EFP=30°,∴FP=2EP=2.∵AF+FP+PD=AD,∴t+2+t=3.解得:t=﹣;②当点P在AD的右侧时,设QM与AD交于点F,如图,连接EP,过点M作MH⊥AD于点H,∵QM与⊙P相切于点E,∴EP⊥QM.∵△ABC是边长为6的等边三角形,AD是高,∴∠DAB=∠DAC=∠BAC=30°.∵QM∥AB,∴∠QFD=∠BAD=30°.∵∠AFM=∠QFD,∴∠AFM=30°.∴∠FAM=∠AFM=30°.∴AM=FM.∵MH⊥AD,∴AH=FH=.由题意得:BQ=t,DP=t,∵∠B=∠BAC=60°,AB∥QM,∴四边形ABQM为等腰梯形,∴AM=BQ=t.∴AH=AM•cos∠DAC=t.∴AF=2AH=2t.∵EP⊥QM,∠EFP=30°,∴FP=2EP=2.∵AF+DP﹣FP=AD,∴t+t﹣2=3.解得:t=+.综上,当QM与⊙P相切时,t的值为(﹣)或(+).(3)①当0≤PD<1时,此时⊙P与BC相交,⊙P与BC边有两个公共点,符合题意,∴此时t的取值范围为0≤t<;②当1<PD<3﹣2时,此时⊙P与△ABC的三边均相离,没有公共点;③当PD=3﹣2时,此时⊙P与AB,AC边相切,此时⊙P与△ABC的边共有两个公共点;∴由(1)知:t=3﹣;④当3﹣2<PD<3﹣1时,此时⊙P与AB,AC边均相交,此时⊙P与△ABC的边共有四个公共点;⑤当3﹣1<PD≤3时,此时⊙P与AB,AC边均相交,但各只有一个交点,符合题意,∴此时t的取值范围为:3﹣<t≤3.综上,当⊙P与△ABC的边共有两个公共点时,t的取值范围为0≤t<或t=3﹣或3﹣<t≤3.六.相似三角形的性质(共2小题)7.(2020秋•常州期末)如图,已知△OAB,点A的坐标为(2,2),点B的坐标为(3,0).(1)求sin∠AOB的值;(2)若点P在y轴上,且△POA与△AOB相似,求点P的坐标.【答案】(1).(2)(0,3)或(0,).【解答】解:(1)如图,过点A作AH⊥OB于H.∵A(2,2),∴AH=OH=2,∴∠AOB=45°,∴sin∠AOB=.(2)由(1)可知,∠AOP=∠AOB=45°,OA=2,当△AOP∽△AOB时,=,可得OP′=OB=3,∴P′(0,3),当△AOP∽△BOA时,=,∴=,∴OP=,∴P(0,),综上所述,满足条件的点P的坐标为(0,3)或(0,).8.(2021秋•常州期末)如果经过一个三角形某个顶点的直线将这个三角形分成两部分,其中一部分与原三角形相似,那么称这条直线被原三角形截得的线段为这个三角形的“形似线段”.(1)在△ABC中,∠A=30°.①如图1,若∠B=100°,请过顶点C画出△ABC的“形似线段”CM,并标注必要度数;②如图2,若∠B=90°,BC=1,则△ABC的“形似线段”的长是 或 ;(2)如图3,在△DEF中,DE=4,EF=6,DF=8,若EG是DEF的“形似线段”,求EG的长.【答案】(1)①作图见解析部分;②或;(2)3.【解答】解:(1)①如图1中,线段CM即为所求;②如图2中,当BH⊥AC时,线段BH是“形似线段”,∵∠ABC=90°,BC=1,∠A=30°,∴AC=2BC=2,AB=BC=,∵•AB•BC=•AC•BH,∴BH==.当CM平分∠BCA时,线段CT是“形似线段”,在Rt△CBT中,CT==.综上所述,△ABC的“形似线段”的长是或;(2)如图3中,当△DEG∽△DFE时,=,∴=,∴EG=3,当△FEG∽△FDE时,=,∴=,∴EG=3,∴EG=3.七.相似三角形的判定(共1小题)9.(2022秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC.(1)过点D作⊙O的切线DE,交AC于点E(用直尺和圆规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接BD,△ADE与△ABD相似吗?为什么?【答案】(1)见解析;(2)△ADE∽△ABD,理由见解析.【解答】解:(1)如图所示,DE即为所求,理由如下,连接OD,∵弦AD平分∠BAC,∴∠CAD=∠BAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(2)△ADE∽△ABD,理由如下,连接BD,如图,∵弦AD平分∠BAC,∴∠CAD=∠BAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴AC⊥DE,∵AB是⊙O的直径,∴∠ADB=90°,∴∠AED=∠ADB,∴△ADE∽△ABD.八.作图-相似变换(共1小题)10.(2021秋•常州期末)如图,在平面直角坐标系中,△ABC的三个顶点A、B、C的坐标分别为(0,3)、(2,1)、(4,1).(1)以原点O为位似中心,在第一象限画出△ABC的位似图形△ABC,使△A1B1C1与△ABC的相似比为2:1;(2)借助网格,在图中画出△ABC的外接圆⊙P,并写出圆心P的坐标 (3,4) ;(3)将△ABC绕(2)中的点P(3)将△ABC绕点P顺时针旋转90°,则点A运动的路线长是 π .【答案】(1)作图见解析部分;(2)作图见解析部分,P(3,4).(3)π.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,点P即为所求,P(3,4),故答案为:(3,4);(3)∵PA==,∴的长==π.故答案为:π.九.方差(共2小题)11.(2020秋•常州期末)某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲 10 10 10 乙10 10.5 7(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?【答案】(1)10、10、10.5;(2)建议商家可多采购甲品牌冰箱,理由见解答.【解答】解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12,所以甲品牌销售数量的平均数为=10(台),众数为10台,乙品牌销售数量从小到大排列为7、7、10、11、12、13,所以乙品牌销售数量的中位数为=10.5(台),补全表格如下:平均数中位数众数甲101010乙1010.57故答案为:10、10、10.5;(2)建议商家可多采购甲品牌冰箱,∵甲品牌冰箱销量的方差=×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S2=,乙∴<S乙2,∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱.12.(2021秋•常州期末)“119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):八年级代表队:80,90,90,100,80,90,100,90,100,80;九年级代表队:90,80,90,90,100,70,100,90,90,100.(1)填表:代表队平均数中位数方差八年级代表队90 90 60九年级代表队 90 90 80 (2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?【答案】(1)90、90、80;(2)八年级代表队的学生竞赛成绩更好,理由见解答;(3)九年级大约有180名学生可以获得奖状.【解答】解:(1)将八年级代表队成绩重新排列为80,80,80,90,90,90,90,100,100,100,所以其中位数为=90,九年级代表队成绩的平均数为=90,所以其方差为×[(70﹣90)2+(80﹣90)2+5×(90﹣90)2+3×(100﹣90)2]=80,故答案为:90、90、80;(2)八年级代表队的学生竞赛成绩更好,理由如下:∵八、九年级代表队的学生的竞赛成绩的平均数相等,而八年级代表队的学生的竞赛成绩的方差小于九年级,成绩更加稳定,∴八年级代表队的学生竞赛成绩更好;(3)600×=180(名),答:九年级大约有180名学生可以获得奖状.一十.列表法与树状图法(共3小题)13.(2020秋•常州期末)学校为了丰富学生课余生活,开设了社团课.现有以下社团:A.篮球、B.机器人、C.绘画,学校要求每人只能参加一个社团,甲和乙准备随机报名一个社团.(1)甲选择“机器人”社团的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个社团的概率.【答案】(1);(2).【解答】解:(1)甲选择“机器人”社团的概率是,故答案为:;(2)画树状图如图:共有9个等可能的结果,甲、乙两人选择同一个社团的结果有3个,∴甲、乙两人选择同一个社团的概率为=.14.(2021秋•常州期末)小丽的爸爸积极参加社区志愿服务,根据社区安排,志愿者将被随机分配到以下小组中的一个:A组(交通疏导)、B组(环境消杀)、C组(便民代购),开展服务工作.(1)小丽的爸爸被分配到C组的概率是 ;(2)若小丽的班主任刘老师也参加了该社区的志愿者队伍,那么刘老师和小丽的爸爸被分到同一组的概率是多少?请用画树状图或列表的方法写出分析过程.【答案】(1);(2).【解答】解:(1)小丽的爸爸被分配到C组的概率是,故答案为:;(2)画树状图如下:共有9种等可能的结果,刘老师和小丽的爸爸被分到同一组的结果有3种,∴刘老师和小丽的爸爸被分到同一组的概率为=.15.(2022秋•常州期末)学校为了践行“立德树人,实践育人”的目标,开展劳动课程,组织学生走进农业基地,欣赏田园风光,体验劳作的艰辛和乐趣.该劳动课程有以下小组:A.搭豇豆架、B.斩草除根、C.趣挖番薯、D.开垦播种.学校要求每人只能参加一个小组,甲和乙准备随机报名一个小组.(1)甲选择“搭虹豆架”小组的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个小组的概率.【答案】(1);(2).【解答】解:(1)甲选择“搭虹豆架”小组的概率是,故答案为:;(2)画树状图如下:共有16种等可能的结果,其中甲、乙两人选择同一个小组的结果有4种,∴甲、乙两人选择同一个小组的概率为=.。

2020-2021学年江苏省镇江市九年级上学期期末数学模拟试卷及答案解析

2020-2021学年江苏省镇江市九年级上学期期末数学模拟试卷及答案解析

第 1 页 共 29 页
2020-2021学年江苏省镇江市九年级上学期期末数学模拟试卷
一.填空题(共12小题,满分24分,每小题2分)
1.若a b =c d =e f =12,则a+c+e b+d+f = .
2.某校八年级同学2020年4月平均每天自主学习时间统计如图所示,则这组数据的众数
是 .
3.如图,在四边形ABCD 中,AD ∥BC ∥EF ,EF 分别与AB ,AC ,CD 相交于点E ,M ,F ,
若EM :BC =2:5,则FC :CD 的值是 .
4.关于x 的一元二次方程x 2﹣2x +m =0有两个实数根,则m 的取值范围是 .
5.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD = °.
6.已知关于x 的元二次方程x 2﹣2kx ﹣8=0的一个根是2,则此方程的另一个根是 .
7.用一个半径为10cm 半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高
为 .
8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:
①b 2﹣4ac >0;②abc >0;③8a +c >0;④9a +3b +c <0. 其中,正确结论的有 .。

江苏省扬州市邗江区梅岭中学2020-2021学年九年级上学期数学12月月考试卷

江苏省扬州市邗江区梅岭中学2020-2021学年九年级上学期数学12月月考试卷

江苏省扬州市邗江区梅岭中学2020-2021学年九年级上学期数学12月月考试卷一、单选题1.下列函数中,是二次函数的为()A. y=2x+1B. y=(x−2)2−x2C. y=2x2D. y=2x(x+1)2.已知P是线段AB的黄金分割点,且AP>BP,那么下列比例式能成立的是( )A. AB AP=AP BPB. AB AP=BP ABC. BP AP=AB BPD.AB AP=5−123.如图所示,在半径为10的⊙O中,弦AB=16,OC⊥AB于点C,则OC的长为()A. 5B. 6C. 7D. 84.如图,△ABC与△DEF是位似图形,位似比为2:3,已知DF=4,则AC的长为()A. 23B. 43C. 83D. 1635.如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m,门宽为2m.若饲养室长为xm,占地面积为y m2,则y关于x的函数表达式为()A. y=﹣12 x2+26x(2≤x<52)B. y=﹣12 x2+50x(2≤x<52)C. y=﹣x2+52x(2≤x<52)D. y=﹣12 x2+27x﹣52(2≤x<52)6.在同一坐标系中,一次函数y=−mx+n2与二次函数y=x2+m的图象可能是().A. B. C. D.7.已知函数y=(k−3)x2+2x+1的图象与x轴有交点.则k的取值范围是( )A. k<4B. k≤4C. k<4且k≠3D. k≤4且k≠38.如图,已知点A是第一象限内横坐标为2 3的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动,求当点P从点O运动到点N时,点B运动的路径长为().A. 3B. 22C. 4D. 23二、填空题9.抛物线y=2x2-bx+3的对称轴是直线x=−1,则b的值为 .10.若函数y=(m−3)x m2−3m+2+mx+1是二次函数,则m的值为11.用一个半径为6,圆心角为150°的扇形纸片,做成一个圆锥模型的侧面,则这个模型的底面半径为 .12.将抛物线y=2(x﹣1)2+2向下平移4个单位,那么得到的抛物线的表达式为 .13.如图,AB是⊙O的直径,点C、D在⊙O上.∠BDC=21°,则∠AOC的度数是14.等边△ABC的边长为4cm,内切圆的半径为 cm15.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=时,△CPQ与△CBA相似.16.二次函数y=a x2+bx+c的部分对应值如下表:x …-3 -2 0 1 3 5 …y …7 1 -8 -9 -5 7 …当x=2时,对应的函数值y= .17.如图,△ABC中,AB=BC,AC=8,点F是△ABC的重心(即点F是△ABC的两条中线AD、BE的交点),BF=6,则DF= .18.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4 2,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为________.三、解答题19.若直线y=x+3与二次函数的图象y=−x2+2x+3与交A、B两点(A在B的左侧)(1).求A、B两点的坐标;(2).求三角形ABO的面积.20.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为多少?21.已知二次函数y=−x2+(m−2)x+m+1.试证明:不论m取何值,这个二次函数的图象必与x轴有两个交点22.如图,已知点A,B,C,D均在已知圆上,AD∥BC,CA平分∠BCD,∠ADC=120°,四边形ABCD的周长为10.(1).求此圆的半径;(2).求图中阴影部分的面积.23.抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1).求该抛物线的解析式.(2).一动点P在(1)中抛物线上滑动且满足S△ABP=10,求此时P点的坐标.24.如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O交边BC于点D,过点D作DE⊥AC交AC于点E,延长ED交AB的延长线于点F,(1).求证:DE是⊙O的切线;(2).若AB=8,AE=6,求BF的长25.如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠B=∠ADE=∠C.(1)证明:△BDA∽△CED;(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),且△ADE是等腰三角形,求此时BD的长.26.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元) 15 20 30 …y(袋) 25 20 10 …若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?27.如图,抛物线y=ax2+bx﹣4a(a≠0)经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1).求抛物线的解析式;(2).过点C作x轴的平行线交抛物线于另一点D,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标;(3).在抛物线的对称轴上是否存在点M,使得由点M,A,C构成的△MAC是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.28.如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD内作半圆,点M为圆心.设过A、B两点抛物线的解析式为y=ax2+bx+c,顶点为点N.(1).求过A、C两点直线的解析式;(2).当点N在半圆M内时,求a的取值范围;(3).过点A作⊙M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形与以C、N、M为顶点的三角形相似时,求点N的坐标.答案解析部分一、单选题1.【答案】 D2.【答案】 A3.【答案】 B4.【答案】 C5.【答案】 A6.【答案】 D7.【答案】 B8.【答案】 B二、填空题9.【答案】 -410.【答案】 011.【答案】 2.512.【答案】 y=2(x-1)2-213.【答案】 138°14.【答案】23315.【答案】 4.8或641116.【答案】 -817.【答案】5218.【答案】25﹣2三、解答题19.【答案】(1)解:由题意得:{y=x+3y=−x2+2x+3解得:{x=0y=3或{x=1y=4又A在B的左侧∴A(0,3),B(1,4);(2)解:如图所示:A(0,3),B(1,4);∴OA=3,OA边上的高为1,∴S△AOB=12·AO×1=12×3×1=3220.【答案】解:∵DE⊥EF,BC⊥CD,DF=50cm,EF=30cm,∴DE= D F2−E F2=502−302=40cm又∠EDF=∠CDB,∴△DEF∽DCB,∴DE EF=CD BC,即0.40.3=20BC,解得BC=15m,∵小明同学和树AB都垂直于底面,∴AC=1.5m,∴AB=BC+AC=16.5m,答:树高AB为16.5m.21.【答案】证明:由题意,知二次函数对应的方程−x2+(m−2)x+m+1=0的判别式为b2−4ac=(m−2)2−4×(−1)×(m+1)=m2−4m+4+4m+4=m2+8 .因为m2≥0,所以m2+8>0,即b2−4ac>0,所以不论m取何值,这个二次函数的图象必与x轴有两个交点.22.【答案】(1)解:∵AC平分∠BCD,∴∠ACD=∠ACB,又∵AD∥BC,∴∠ACB=∠DAC=∠ACD,而∠ADC=120°,∴∠ACB=∠DAC=∠ACD =30°,∠B=60°,∴AB=AD=DC,且∠BAC=90°,∴BC为直径,设AB=x,则BC=2AB=2x,又∵四边形ABCD的周长为10cm,∴x+x+x+2x=10,解得x=2,即⊙O的半径为2;(2)解:设圆心为O,连接OA、OD,由(1)可知OA=OD=AD=2,∴△AOD为等边三角形,∴∠AOD=60°;∵AD∥BC,∴SΔAOD=SΔACD34×22=3,∴S阴影=S扇形AOD−S△AOD=60π×22360−3=2π3−3 .23.【答案】(1)解:根据题意得:{1−b+c=09+3b+c=0解得:{b=−2c=−3,则方程的解析式是:y=x2﹣2x﹣3;(2)解:AB=3+1=4,设P的纵坐标是m,则12 ×4|m|=10,解得:|m|=5,则m=5或﹣5.当m=5时,x2-2x-3=5,x=-2或4,则P的坐标是(-2,5)或(4,5);当m=-5时,x2-2x-3=-5,方程无解.故P的坐标是(-2,5)或(4,5).24.【答案】(1)证明:连接OD,∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,又DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵OD∥AC,∴△FOD∽△FAE,∴OD AE=FO FA,即46=BF+4BF+8,解得,BF=4.25.【答案】(1)证明:如图可知:∠ADE+∠ADB+∠EDC=180°在△ABD中,∴∠B+∠ADB+∠DAB=180°又∵∠B=∠ADE=∠C∴∠EDC=∠DAB∴△BDA∽△CED.(2)解:∵∠B=∠ADE=∠C,∠B=45°∴△ABC是等腰直角三角形∴∠BAC=90°∵ BC=2,∴ AB=AC= 22 BC= 2①当AD=AE时,∴∠ADE=∠AED∵∠B=45°,∴∠B=∠ADE=∠AED=45°∴∠DAE=90°∴∠DAE=∠BAC=90°∵点D在BC上运动时(点D不与B、C重合),点E在AC上∴此情况不符合题意.②当AD=DE时,∴∠DAE=∠DEA∴由(1)结论可知:△BDA≌△CED∴ AB=DC= 2∴BD=2−2.③当AE=DE时,∠ADE=∠DAE=45°∴△AED是等腰直角三角形∵∠B=45°,∴∠B=∠C=∠DAE=45°∴∠ADC=90°,即AD⊥BC∴BD=12BC=1.综上所诉:BD=2−2或1.26.【答案】(1)解:依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得{25=15k+b20=20k+b,解得{k=−1b=40,故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)解:依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400,整理得w=﹣(x﹣25)2+225,∵﹣1<0,∴当x=2时,w取得最大值,最大值为225,故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元27.【答案】(1)解:﹣4a=4,解得:a=﹣1,则抛物线的表达式为:y=﹣x2+bx+4,将点A的坐标代入上式并解得:b=3,故抛物线的表达式为:y=﹣x2+3x+4…①;(2)解:抛物线的对称轴为:x=32,点D(3,4),过点D作x轴的垂线交BP于点H,交x轴于点G,过点H作HR⊥BD与点R,则BG=1,GD=4,tan∠BDG=14,∠DBP=45°,设:HR=BR=x,则DR=4x, BD=5x=1+16=17,x=175, BH=2 x,BG=1,则GH=2x2−1=35,故点H(3,35),而点B(4,0),同理可得直线HB的表达式为:y=﹣35 x+ 125…②,联立①②并解得:x=4或﹣25(舍去4),故点P(﹣25,6625);(3)解:设点M(32,m),而点A(﹣1,0)、点C(0,4),则AM2=254 +m2, CM2=94 +(m﹣4)2, AC2=17,①当AM是斜边时,254 +m2=94 +(m﹣4)2+17,解得:m=298;②当CM是斜边时,同理可得:m=﹣58;③当AC是斜边时,同理可得:m=52或32;综上,点M的坐标为:(32,298)或(32,﹣58)或(32,52)或(32,32).28.【答案】(1)解:在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),所以B(4,0),C(4,2)设过A、C两点直线解析式为y=kx+b,则{k+b=04k+b=2解得{k=23b=−23,故过A、C两点直线解析式为y=23x−23;(2)解:设过A、B两点抛物线的解析式为y=a(x−1)(x−4)整理得y=a x2−5ax+4a则顶点N的坐标为(52,−9a4),由抛物线、半圆的轴对称可知,抛物线的顶点在过点M且与CD垂直的直线上,又点N在半圆内,所以12<−9a4<2解得−89<a<−29;(3)解:设EF=x,则CF=x,BF=2−x,AF=2+x,AB=3在Rt△ABF中,由勾股定理得A B2+B F2=A F2,得x=98,BF=78①由△ABF∼△CMN得AB CM=BF MN,即MN=BF⋅CM AB=716当点N在CD的下方时,由−9a4=2−716=2516,得N1(52,2516)当点N在CD的上方时,由−9a4=2+716=3916,得N2(52,3916)②由△ABF∼△NMC得AB MN=BF CM,即MN=AB⋅CM BF=367当点N在CD的下方时,由−9a4=2−367=−227,得N3(52,−227)当点N在CD的上方时,由−9a4=2+367=507,得N4(52,507)综上点N的坐标为N1(52,2516),N2(52,3916),N3(52,−227),N4(52,507) .。

2020-2021学年九年级上学期期末考试数学试卷(有答案)

2020-2021学年九年级上学期期末考试数学试卷(有答案)

2020-2021学年九年级上学期期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.若y=(m﹣1)是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在2.如图,在平面直角坐标系中,A(6,0)、B(0,8),点C在y轴正半轴上,点D在x 轴正半轴上,且CD=6,以CD为直径在第一象限作半圆,交线段AB于E、F,则线段EF的最大值为()A.3.6B.4.8C.3D.33.一次数学测试后,随机抽取九年级三班6名学生的成绩如下:80,85,86,88,88,95.关于这组数据的错误说法是()A.极差是15B.众数是88C.中位数是86D.平均数是87 4.近年来,我国石油对外依存度快速攀升,2017年和2019年石油对外依存度分别为64.2%和70.8%,设2017年到2019年中国石油对外依存度平均年增长率为x,则下列关于x的方程正确的是()A.64.2%(1+x)2=70.8%B.64.2%(1+2x)=70.8%C.(1+64.2%)(1+x)2=1+70.8%D.(1+64.2%)(1+2x)=1+70.8%5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰Rt△CDE,连接AD,下列说法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为.其中,正确的结论是()A.①②④B.①③⑤C.②③④D.①④⑤7.如图,△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,则cos∠BPC=()A.B.C.D.8.设max{m,n}表示m,n(m≠n)两个数中的最大值.例如max{﹣1,2}=2,max{12,8}=12,则max{2x,x2+2}的结果为()A.2x﹣x2﹣2B.2x+x2+2C.2x D.x2+2二.填空题(共10小题,满分30分,每小题3分)9.方程x2=4的解为.10.已知点P是线段AB的黄金分割点(AP>PB),AB=6,那么AP的长是.11.若,则的值为.12.已知二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y之间满足下列数量关系:x0123y75713则代数式(4a+2b+c)(a﹣b+c)的值为.13.如图,某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是cm2.14.直角三角形中,两直角边分别是12和5,则斜边上的中线长是.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.16.如图,小明为了测量楼房MN的高,在离N点20m的A处放了一个平面镜,小明沿NA 方向后退到C点,正好从镜子中看到楼顶M点.若AC=1.6m,小明的眼睛B点离地面的高度BC为1.5m,则楼高MN=m.17.如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.在一块直角三角形铁皮上截一块正方形铁皮,如图,已有的铁皮是Rt△ABC,∠C=90°,要截得的正方形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,如果AF=4,GB=9,那么正方形铁皮的边长为.三.解答题(共10小题,满分96分)19.(1)计算:(π﹣2019)0+2sin60°﹣+|1﹣|(2)解方程:x2﹣2x﹣3=020.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边BC、AB于点D、E,联结AD.(1)如果∠CAD:∠DAB=1:2,求∠CAD的度数;(2)如果AC=1,tan B=,求∠CAD的正弦值.21.如图,在平面直角坐标系中,点A、点B的坐标分别为(1,3),(3,2).(1)画出△OAB绕点B顺时针旋转90°后的△O′A′B;(2)以点B为位似中心,相似比为2:1,在x轴的上方画出△O′A′B放大后的△O ″A″B;(3)点M是OA的中点,在(1)和(2)的条件下,M的对应点M′的坐标为.22.“共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士,如图是四位院士(依次记为A、B、C、D)为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上A、B、C、D四个标号,然后背面朝上放置,搅匀后每个同学可以从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料制作小报,求小明和小华查找同一位院士资料的概率.23.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”24.如图所示,已知:∠AOB=120°,PT切⊙O于T,A,B,P三点共线,∠APT的平分线依次交AT,BT于C,D.(1)求证:△CDT为等边三角形.(2)若AC=4,BD=1,求PC的长.25.已知函数y1=x2﹣(m+2)x+2m+3,y2=nx+k﹣2n(m,n,k为常数且n≠0).(1)若函数y1的图象经过点A(2,5),B(﹣1,3)两个点中的其中一个点,求该函数的表达式.(2)若函数y1,y2的图象始终经过同一定点M.①求点M的坐标和k的值.②若m≤2,当﹣1≤x≤2时,总有y1≤y2,求m+n的取值范围.26.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.27.如图,△ABC中,以AB为直径作⊙O,交BC于点D,E为弧BD上一点,连接AD、DE、AE,交BD于点F.(1)若∠CAD=∠AED,求证:AC为⊙O的切线;(2)若DE2=EF•EA,求证:AE平分∠BAD;(3)在(2)的条件下,若AD=4,DF=2,求⊙O的半径.28.如图,已知抛物线y=ax2+bx﹣3的图象与x轴交于点A(1,0)和B(3,0),与y轴交于点C.D是抛物线的顶点,对称轴与x轴交于E.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴DE上求作一点M,使△AMC的周长最小,并求出点M 的坐标和周长的最小值.(3)如图2,点P是x轴上的动点,过P点作x轴的垂线分别交抛物线和直线BC于F、G.设点P的横坐标为m.是否存在点P,使△FCG是等腰三角形?若存在,直接写出m的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:若y=(m﹣1)是关于x的二次函数,则,解得:m=﹣2.2.解:过CD的中点作EF的垂线与AB交于点M,连接GF,∵GM⊥EF,∴EF=2FM=2=2,当GM的值最小时,EF的值最小,根据垂线段最短可知,当直线过O点时,EF的值最大,∵A(6,0),B(0,8),∴AB=10,∵sin∠OAB==,∴OM=4.8,∵CD=6,∴OG=3,∴GM=1.8,∴FM=2.4,∴EF=4.8;故选:B.3.解:A、极差是15,故A正确;B、众数是88,故B正确;C、中位数是87,故C错误;D、平均数是87,故D正确.故选:C.4.解:设2017年到2019年中国石油对外依存度平均年增长率为x,由题意,得64.2%(1+x)2=70.8%.5.解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠ABO=(180°﹣120°)÷2=30°,故选:A.6.解:∵△ABC、△DCE都是等腰Rt△,∴AB=AC=BC=,CD=DE=CE;∠B=∠ACB=∠DEC=∠DCE=45°;①∵∠ACB=∠DCE=45°,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE;即∠ECB=∠DCA;故①正确;②当B、E重合时,A、D重合,此时DE⊥AC;当B、E不重合时,A、D也不重合,由于∠BAC、∠EDC都是直角,则∠AFE、∠DFC 必为锐角;故②不完全正确;④∵,∴;由①知∠ECB=∠DCA,∴△BEC∽△ADC;∴∠DAC=∠B=45°;∴∠DAC=∠BCA=45°,即AD∥BC,故④正确;③由④知:∠DAC=45°,则∠EAD=135°;∠BEC=∠EAC+∠ECA=90°+∠ECA;∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;因此△EAD与△BEC不相似,故③错误;⑤△A BC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;由④的△BEC∽△ADC知:当AD最长时,BE也最长;故梯形ABCD面积最大时,E、A重合,此时EC=AC=,AD=1;故S=(1+2)×1=,故⑤正确;梯形ABCD因此本题正确的结论是①④⑤,故选D.7.解:过点A作AE⊥BC于点E,如图所示:∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE===3,∴cos∠BPC=cos∠BAE==.故选:C.8.解:∵x2+2﹣2x=(x﹣1)2+1,(x﹣1)2≥0,∴(x﹣1)2+1>0,∴x2+2>2x,∴max{2x,x2+2}的结果为:x2+2.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:开方得,x=±2,即x1=2,x2=﹣2.故答案为,x1=2,x2=﹣2.10.解:由于P为线段AB=6的黄金分割点,且AP是较长线段;则AP=6×=3﹣3.故答案为:3﹣3.11.解:∵=,∴b=a,∴==.故答案为:.12.解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x==1,∵x=3时,y=13,∴x=﹣1时,y=13,∴4a+2b+c=7,a﹣b+c=13,∴(4a+2b+c)(a﹣b+c)的值为91,故答案为91.13.解:圆锥侧面积公式为:s侧面积=πrR=π×10×40=400π.故答案为:400π.14.解:∵直角三角形中,两直角边分别是12和5,∴斜边为=13,∴斜边上中线长为×13=6.5.故答案为:6.5.15.解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为:.16.解:∵BC⊥CA,MN⊥AN,∴∠C=∠N=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴,即,∴MN=(m),答:楼房MN的高度为m,故答案为:.17.解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+x2=(8﹣x)2,解得:x=3,即OE=5,DE=3,过D作DF⊥OA,∵S=OD•DE=OE•DF,△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)18.解:根据题意知,∠AFE=∠BDG=∠C=90°,∴∠A=BDG(同角的余角相等).∴△AEF∽△DBG,∴=.又∵EF=DG,AF=4,GB=9,∴=.∴EF=6.即正方形铁皮的边长为6.故答案是:6.三.解答题(共10小题,满分96分)19.解:(1)原式=1+2×﹣2+﹣1=1+﹣2+﹣1=0;(2)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x=3或x=﹣1.20.解:(1)∵∠CAD:∠DAB=1:2∴∠DAB=2∠CAD在Rt△ABC中,∠CAD+∠DAB+∠DBA=90°∵DE垂直平分AB交边BC、AB于点D、E∴∠DAB=∠DBA∴∠CAD+∠DAB+∠DBA=∠CAD+2∠CAD+2∠CAD=90°解得,∠CAD=18°(2)在Rt△ABC中,AC=1,tan∠B==,∴BC=2由勾股定理得,AB===∵DE垂直平分AB交边BC、AB于点D、E∴BE=AE=∵∠DAE=∠DBE∴在Rt△ADE中tan∠B=tan∠DAE==∴DE=∴由勾股定理得AD===∴cos∠CAD===∴sin∠CAD===则∠CAD的正弦值为21.解:(1)如图,△O′A′B即为所求;(2)如图,△O″A″B即为所求;(3)如图,∵点M是OA的中点,∴M的对应点M′的坐标为(2,7).故答案为:(2,7).22.解:根据题意画树状图如下:共有16种等可能的结果数,其中小明和小华查找同一位院士资料的有4种结果,∴小明和小华查找同一位院士资料的概率为=.23.解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴=,∴=,x=<,∴该直角三角形能容纳的正方形边长最大是(步).24.(1)证明:∵∠AOB=120°,∴∠ATB==60°,∵PT切⊙O于T,∴∠BTP=∠TAP,∵PC平分∠APT,∴∠APC=∠CPT,∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT,∴∠TCD=∠CDT==60°,∴△CDT为等边三角形;(2)解:设CT=DT=x,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB,∴,∵∠DTP=∠PAC,∠APC=∠DPT,∴△ACP∽△TDP,∴,∴,即,∴x2=4,∴x=±2,∵x>0,∴x=2,∴,PC=4.25.解:(1)对于函数y1=x2﹣(m+2)x+2m+3,当x=2时,y=3,∴点A不在抛物线上,把B(﹣1,3)代入y1=x2﹣(m+2)x+2m+3,得到3=1+3m+5,解得m=﹣1,∴抛物线的解析式为y=x2﹣x+1.(2)①∵函数y1经过定点(2,3),对于函数y2=nx+k﹣2n,当x=2时,y2=k,∴当k=3时,两个函数过定点M(2,3).②∵m≤2,∴抛物线的对称轴x=≤2,∴抛物线的对称轴在定点M(2,3)的左侧,由题意当1+(m+2)+2m+3≤﹣n+3﹣2n时,满足当﹣1≤x≤2时,总有y1≤y2,∴3m+3n≤﹣3,∴m+n≤﹣1.26.(1)证明:连接OD.∵O为AB中点,D为BC中点,∴OD∥AC.∵DF为⊙O的切线,∴DF⊥OD.∴DF⊥AC.(2)过O作OE⊥BD,则BE=ED.在Rt△BEO中,∠B=30°,∴OE=OB,BE=OB.∵BD=DC,BE=ED,∴EC=3BE=OB.在Rt△OEC中,tan∠BCO=.27.证明:(1)∵AB是直径,∴∠BDA=90°,∴∠DBA+∠DAB=90°,∵∠CAD=∠AED,∠AED=∠ABD,∴∠CAD=∠ABD,∴∠CAD+∠DAB=90°,∴∠BAC=90°,即AB⊥AC,且AO是半径,∴AC为⊙O的切线;(2)∵DE2=EF•EA,∴,且∠DEF=∠DEA,∴△DEF∽△AED,∴∠EDF=∠DAE,∵∠EDF=∠BAE,∴∠BAE=∠DAE,∴AE平分∠BAD;(3)如图,过点F作FH⊥AB,垂足为H,∵AE平分∠BAD,FH⊥AB,∠BDA=90°,∴DF=FH=2,=AB×FH=×BF×AD,∵S△ABF∴2AB=4BF,∴AB=2BF,在Rt△ABD中,AB2=BD2+AD2,∴(2BF)2=(2+BF)2+16,∴BF=,BF=﹣2(不合题意舍去)∴AB=,∴⊙O的半径为.28.解:(1)将点A、B的坐标代入抛物线表达式得:,解得,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)如下图,连接BC交DE于点M,此时MA+MC最小,又因为AC是定值,所以此时△AMC的周长最小.由题意可知OB=OC=3,OA=1,∴BC==3,同理AC=,∴此时△AMC的周长=AC+AM+MC=AC+BC=+3;∵DE是抛物线的对称轴,与x轴交点A(1,0)和B(3,0),∴AE=BE=1,对称轴为x=2,由OB=OC,∠BOC=90°得∠OBC=45°,∴EB=EM=1,又∵点M在第四象限,在抛物线的对称轴上,∴M(2,﹣1);(3)存在这样的点P,使△FCG是等腰三角形.∵点P的横坐标为m,故点F(m,﹣m2+4m﹣3),点G(m,m﹣3),则FG2=(﹣m2+4m﹣3+3﹣m)2,CF2=(m2﹣4m)2+m2,GC2=2m2,当FG=FC时,则(﹣m2+4m﹣3+3﹣m)2=m2+(m2﹣4m)2,解得m=0(舍去)或4;当GF=GC时,同理可得m=0(舍去)或3;当FC=GC时,同理可得m=0(舍去)或5或3(舍去),综上,m=5或m=4或或3.。

苏科版2020-2021学年度九年级数学第一学期期末模拟基础达标测试题3(附答案详解)

苏科版2020-2021学年度九年级数学第一学期期末模拟基础达标测试题3(附答案详解)

苏科版2020-2021学年度九年级数学第一学期期末模拟基础达标测试题3(附答案详解)1.如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是( )A.18°B.36°C.54°D.72°2.如图,已知二次函数y1=23x2﹣43x的图象与正比例函数y2=23x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2B.x<0或x>3C.2<x<3D.0<x<3 3.某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元B.12元C.13元D.14元4.如图,AB是斜靠在墙上的梯子,梯脚距墙2米,梯子上的点D距墙1.8米,BD长0.6米,则梯子的长为( )A.5.6米B.6米C.6.1米D.6.2米5.2005年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是()A.100(1+x)2=250B.100(1+x)+100(1+x)2=250C.100(1-x)2=250D.100(1+x)2=2506.方程x2﹣3x=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根7.下列事件发生的可能性为0的是()A.掷两枚骰子,同时出现数字“6”朝上B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C.今天是星期天,昨天必定是星期六8.1x =是下列哪个方程的解( )A .2111x x x =-- B 2x =-C .2x y +=D .310x +=9.如图,MN 为⊙O 的弦,∠M =50°,则∠MON 等于( )A .50°B .55°C .65°D .80°10.如图,△ABC 内接于⊙O ,连接OA ,OB ,若∠C=35°,则∠OBA 的度数是( )A .60°B .55°C .50°D .45°11.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋楼的影长为50m ,则这栋楼的高度为________m .12.如图,利用成直角的墙角(墙足够长),用10m 长的栅栏围成一个矩形的小花园,花园的面积S (m 2)与它一边长a (m )的函数关系式是__________,面积S 的最大值是__________.13.在实数范围内定义运算“☆”,其规则为:a ☆b=a 2﹣b 2,则方程(4☆3)☆x=13的解为x=______. 14.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题: 已知:∠ACB 是△ABC 的一个内角. 求作:∠APB =∠ACB . 小明的做法如下:①作线段AB 的垂直平分线m ;②作线段BC 的垂直平分线n ,与直线m 交于点O ; ③以点O 为圆心,OA 为半径作△ABC 的外接圆; ④在弧ACB 上取一点P ,连结AP ,BP . 所以∠APB =∠ACB . 老师说:“小明的作法正确.” 请回答:(1)点O 为△ABC 外接圆圆心(即OA =OB =OC )的依据是_____; (2)∠APB =∠ACB 的依据是_____.15.如图为△ABC 与△DEC 重叠的情形,其中E 在BC 上,AC 交DE 于F 点,且AB ∥DE .若△ABC 与△DEC 的面积相等,且EF =2,AB =3,则DF 的长等于_________. 16.一元二次方程x (x ﹣3)=3﹣x 的根是____.17.如图,AB//EF//DC ,DE 2AE =,CF 2BF =,且DC 5=,AB 8=,则EF =________.18.如图①:要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD . 结合以上分析完成填空:如图②:用含x 的代数式表示:AB =________cm ;AD =________cm ;矩形ABCD 的面积为________2cm ;列出方程并完成本题解答.19.如图△ABC 中,∠A=30°,∠C=90°,作△ABC 的外接圆.若弧AB 的长为12cm ,那么弧AC 的长是_____.20.如图,P A ,PB 分别与⊙O 相切于A 、B 两点,点C 为劣弧AB 上任意一点,过点C 的切线分别交AP ,BP 于D ,E 两点.若AP =8,则△PDE 的周长为__________.21.解方程:(x+3)2=2x+6.22.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O 的切线与AC 的延长线交于点E ,且ED ∥BC ,连接AD 交BC 于点F . (1)求证:∠BAD=∠DAE ; (2)若DF=115, AD=5,求⊙O 的半径.23.如图:在ABC 中,5AB =,4AC =,P 是AB 上一点,且3AP =,若Q 在AC 上,试确定Q 点的位置,使以A 、P 、Q 为顶点的三角形与ABC 相似.下表,试问这两种鸡哪个产蛋量比较稳定?25.教材的《课题学习》要求同学们用一张正三角形纸片折叠成正六边形,小明同学按照如下步骤折叠:请你根据小明同学的折叠方法,回答以下问题:()1如果设正三角形ABC的边长为a,那么CO=______ (用含a的式子表示);()2根据折叠性质可以知道CDE△的形状为______ 三角形;()3请同学们利用()1、()2的结论,证明六边形KHGFED是一个六边形.26.某品牌童装平均每天可售出40件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出4件.(1)要想平均每天销售这种童装上盈利2400元,那么每件童装应降价多少元?(2)用配方法说明:要想盈利最多,每件童装应降价多少元?27.任意作一个等边三角形,它的高与边长的比是多少?28.如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG 于点F.(1) 求证:DE-BF = EF;(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.参考答案1.B【解析】试题分析:∵AB是直径,AB⊥CD,∴BC=BD,∴∠BCD=∠CAB=36°,故选B.2.D【解析】直接利用已知函数图象得出y1在y2下方时,x的取值范围即可.解:如图所示:若y1<y2,则二次函数图象在一次函数图象的下面,此时x的取值范围是:0<x<3.故选D.点睛:此题主要考查了二次函数与不等式,正确利用数形结合求出是解题关键.3.D【解析】设利润为w,由题意得,每天利润为:w=(2+x)(20–2x)=–2x2+16x+40=–2(x–4)2+72.所以当涨价4元(即售价为14元)时,每天利润最大,最大利润为72元.故选D.4.B【解析】分析:由题意易得DE∥BC,那么可得△ADE∽△ABC,利用对应边成比例可得AB的长.详解:如图:∵DE⊥AC,BC⊥AC,∴DE∥BC,∴△ADE∽△ABC,∴AB BCAD DE,且DE=1.8,BC=2,AB-AD=0.6.∴AB=6.故选B.点睛:本题考查了相似三角形的应用:三边对应成比例.5.B【解析】【分析】设平均每月的增长率为x,根据一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,可列出方程.【详解】解:设平均每月的增长率为x,100(1+x)+100(1+x)2=250.故选:B.【点睛】本题考查的是一个增长率问题,关键是知道一月份的,和增长两个月后三月份的,列出方程.6.A【解析】【分析】根据∆=b2﹣4ac求出∆的值,然后根据根的判别式与根的关系判断即可.【详解】∵∆=b2﹣4ac=9-4=5>0,∴方程x2﹣3x=0有两个不相等的实数根.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 7.D【解析】对于A,掷两枚骰子,同时出现数字“6”朝上,可能性为1 36;对于B,小明从家里到学校用了10分钟,从学校回到家里却用了15分钟是可能是,比如去学校时下坡,则回家时上坡,当然回家比去学校用时多;对于C,今天是星期天,昨天必定是星期六这是一个必然发生的事件,可能性为1;对于D,小明步行的速度是每小时40千米,是不存在的.一般人步行的速度为3-5公里每小时,所以D发生的可能性为0.故选D.8.B【解析】【分析】可以把x=1,逐个代入到每项的方程中进行检验,x=1不但使方程左边=右边,而且必须使分式和根式有意义.【详解】A. 当x=1时,原方程的最简公分母x−1=0,所以x=1不是原方程的解,故本选项错误,B. 当x=1时,方程的左边=1,右边=1,所以x=1是原方程的解,故本选项正确,C. 当x=1时,x+y=2整理为,1+y=2,y的值不确定,所以x=1不一定是原方程的解,故本选项错误,D. 当x=1时,原方程的左边=2,右边=0,左边≠右边,所以x=1不是原方程的解,故本选项错误,故选:B.【点睛】考查方程的解的概念,使方程左右两边相等的未知数的值就是方程的解.9.D【解析】因为∠M=50°,∠N=50°,所以∠MON=80°.故选D.10.B【解析】【分析】由圆周角定理得出∠AOB=70°,然后由OA=OB,根据等边对等角的性质和三角形内角和定理,可求得∠OBA的度数.【详解】解:∵∠C=35°,∴∠AOB=70°,∵OA=OB,∴∠OAB=∠OBA=55°.故选:B.【点睛】此题考查了圆周角定理与等腰三角形的性质.注意掌握数形结合思想的应用.11.30【解析】【分析】根据同时同地物高与影长成正比列式计算即可得解.【详解】解:设这栋楼的高度为x米,由题意得,1.8350x,解得x=30.故答案为30.【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.12.210=-+25S a a【解析】S=a(10-a)=-a2+10a=-(a-5)2+25,所以函数关系式为:S=-a2+10a,面积的最大值是25,故答案为S= -a2+10a,25.13.±6【解析】【分析】运用题目中所给的运算规则列出方程,解方程即可解答.【详解】其规则为:a☆b=a2-b2,则方程(4☆3)☆x=13解的步骤为:(42-32)☆x=13,7☆x=13,49-x2=13,x2=36,∴x=±6.故答案为:±6.【点睛】本题是典型的新定义题型,解题的关键是要根据所给的规则把数或字母代入相应的位置,进行计算.解决本题用到了直接开平方法解方程,熟记直接开平方法解方程的方法是解决问题的关键.14.①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换同弧所对的圆周角相等【解析】(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.(2)根据同弧所对的圆周角相等即可得出结论.【详解】(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案是:(2)∵AB AB,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.【点睛】考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.15.2.5【解析】解:∵△ABC与△DEC的面积相等,∴△CDF与四边形AFEB的面积相等.∵AB∥DE,∴△CEF∽△CBA.∵EF=2,AB=3,∴EF:AB=2:3,∴△CEF和△CBA的面积比=4:9,设△CEF的面积为4k,则四边形AFEB的面积=5k.∵△CDF与四边形AFEB的面积相等,∴△CDF的面积=5k.∵△CDF与△CEF是同高不同底的三角形,∴面积比等于底之比,∴DF:EF=5k:4k,∴DF=2.5.故答案为:2.5.16.x1=3,x2=﹣1.【解析】整体移项后,利用因式分解法进行求解即可.【详解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案为x1=3,x2=﹣1.17.7【解析】【分析】延长AD、BC交于G,根据相似三角形的性质可得GD:GA=5:8,进一步得到DC:EF=5:7,依此即可求解.【详解】延长AD、BC交于G.∵AB∥EF∥DC,∴△GDC∽△GAB,△GDC∽△GEF,∴GD:GA=DC:AB=5:8.∵DE=2AE,∴GD:GE=5:7,∴DC:EF=5:7,解得:EF=7.故答案为:7.【点睛】本题考查了相似三角形的判定与性质.解题的关键是构造相似三角形.18.()206x - ()304x - ()224x 260x 600-+ 【解析】【分析】因为每个竖彩条的宽为3x ,图中有两个竖条,得到2023206AB x x =-⨯=-,又每个横彩条的宽为2x ,图中有两个横条,所以3022304BC x x =-⨯=-,然后用AB•BC 即为矩形ABCD 的面积,从题中已知可知矩形ABCD 的面积等于总体面积的23,根据题中的等量关系:矩形ABCD 的面积1130203⎛⎫=-⨯⨯ ⎪⎝⎭,列出方程求解,再根据条件取值. 【详解】 2023206AB x x =-⨯=-,3022304BC x x =-⨯=-矩形ABCD 的面积为:()()220630424260600,AB BC x x x x ⋅=--=-+ 根据题意,得2124260600120303x x ⎛⎫-+=-⨯⨯ ⎪⎝⎭,整理,得2665500x x -+=, 解方程,得125,106x x == (不合题意,舍去), 则552,332x x ==, 每个横、竖彩条的宽度分别为55cm,cm.32 故答案为(1). ()206x - (2). ()304x - (3). ()224x 260x 600-+ 【点睛】考查一元二次方程的实际问题,难度适中,是常考题型,用含x 的代数式表示出矩形的面积是解题的关键.19.8cm .【解析】【分析】根据圆周角定理以及弧AB 与弧AC 所对圆周角度数即可得出弧长比与圆周角比相等,即可得出结论.【详解】解:∵ABC 中,3090A C ∠=︒∠=︒,,∴60B ∠=︒,AB 是直径,∵12cm AB = ∴6012890AC =⨯=(cm ), 故答案为:8cm .【点睛】此题考查了圆周角定理以及弧长与圆周角的关系.利用弧长比与圆周角比相等是解题的关键. 20.16【解析】解:∵DA 、DC 、EB 、EC 分别是⊙O 的切线,∴DA =DC ,EB =EC ,∴DE =DA +EB ,∴PD +PE +DE =PD +DA +PE +BE =P A +PB .∵P A 、PB 分别是⊙O 的切线,∴P A =PB =8,∴△PDE 的周长=16.故答案为16.21.x 1=﹣3,x 2=﹣1.【解析】【分析】利用因式分解法解方程即可.【详解】(x+3)2=2(x+3) ,(x+3)2﹣2(x+3)=0 ,(x+3)(x+3﹣2)=0,(x+3)(x+1)=0 ,∴x 1=﹣3,x 2=﹣1.22.(1)证明见解析(2)3【解析】【分析】(1)连接OD ,由ED 为⊙O 的切线,根据切线的性质得到OD ⊥ED ,由AB 为⊙O 的直径,得到∠ACB=90°,根据平行线的判定和性质得到角之间的关系,又因为OA=OD ,得到∠BAD=∠ADO ,推出结论∠BAD=∠DAE ;(2)连接BD ,得到∠ADB=90°,证明△DBF ∽△DAB ,可得BD AD =DF BD,从而得BD2=DF•AD=115×5=11,在Rt△ADB中,利用勾股定理求得AB=6,即可得⊙O的半径为3.【详解】(1)连接OD,∵ED为⊙O的切线,∴OD⊥ED,∵AB为⊙O的直径,∴∠ACB=90°,∵BC∥ED,∴∠ACB=∠E=∠EDO=90°,∴AE∥OD,∴∠DAE=∠ADO,∵OA=OD,∴∠BAD=∠ADO,∴∠BAD=∠DAE;(2)连接BD,∴∠ADB=90°,∵∠BAD=∠DAE=∠CBD ,∠ADB=∠ADB,∴△DBF∽△DAB,∴BDAD=DFBD,∴BD2=DF×AD=115×5=11,在Rt△ADB中,==6,∴⊙O的半径为3.【点睛】本题考查了切线的性质、相似三角形的判定与性质等,结合图形、已知条件恰当地添加辅助线是解题的关键.23.当125AQ=或154时,以A、P、Q为顶点的三角形与ABC相似.【解析】【分析】由∠A是公共角,可得当AP:AB=AQ:AC时,△APQ∽△ABC,当AP:AC=AQ:AB时,△APQ∽△ACB,继而求得答案.【详解】A∠是公共角,∴当AP:AB AQ=:AC时,APQ∽ABC,即3:5AQ=:4,解得:125 AQ=;当AP:AC AQ=:AB时,APQ∽ACB,即3:4AQ=:5,解得:154 AQ=;∴当125AQ=或154时,以A、P、Q为顶点的三角形与ABC相似.【点睛】此题考查了相似三角形的判定.注意掌握分类讨论思想的应用是解此题的关键.24.乙种鸡比甲种鸡产蛋量稳定【解析】【分析】分别计算甲乙两组数据的方差,比较即可.【详解】∵S甲2=0.84,S乙2=0.61,S甲2>S乙2,∴可以估计,乙种鸡比甲种鸡产蛋量稳定.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定;25a等边【解析】试题分析:(1)根据折叠的性质即可得到结论;(2)根据折叠的性质即可得到结论;(3)由(2)知△CDE为等边三角形,根据等边三角形的性质得到CD=CE=DE=12CO÷cos30°=1 3a,求得∠ADE=∠BED=120°,同理可得,AH=AK=KH=13a,BG=BF=GF=13a,∠CKH=∠BHK=120°,由于AB=BC=AC=a,于是得到结论.试题解析:(1)∵正三角形ABC的边长为a,由折叠的性质可知,点O是三角形的重心,∴CO=3a;故答案为3a;(2)△CDE为等边三角形;故答案为等边;(3)由(2)知△CDE为等边三角形,∴CD=CE=DE=12CO÷cos30°=13a,∠ADE=∠BED=120°,同理可得,AH=AK=KH=13a,BG=BF=GF=13a,∠CKH=∠BHK=120°,∵AB=BC=AC=a,∴DE=DK=KH=HG=GF=FE=13a,∠ADE=∠BED=∠CKH=∠BHK=∠CFG=∠AGF=120°,∴六边形KHGFED是一个正六边形.26.(1)20;(2)15.【解析】【分析】(1)设每件童装应降价x元,根据每件童装降价1元,那么平均每天就可多售出4件,分别表示出降价后的利润与销量,列出方程,求出方程的解即可得到结果;(2)设利润为y,列出y与x的二次函数解析式,配方即可确定出y最多时x的值.【详解】(1)设每件童装应降价x元,根据题意得:(40﹣x)(40+4x)=2400,整理得:x2﹣30x+200=0,即(x﹣20)(x﹣10)=0,解得:x=20或x=10(不合题意,舍去),则每件童装应降价20元;(2)根据题意得:利润y=(40﹣x)(40+4x)=﹣4x2+120x+1600=﹣4(x﹣15)2+2500,当x=15时,利润y最多,即要想利润最多,每件童装应降价15元.【点睛】本题考查了配方法的应用,以及一元二次方程的应用,熟练掌握完全平方公式是解答本题的关键.272【解析】【分析】设等边三角形的边长为a,根据等边三角形的性质求出等边三角形的高即可得答案. 【详解】解:如图,△ABC是等边三角形,AD⊥BC,AB=a,∵△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BC,∴∠BAD=30°,∠ADB=90°,∴BD=12AB=12a,∴,∴ AD::a:2,:2.【点睛】本题考查了等边三角形的性质、勾股定理、线段的比,熟练掌握等边三角形的性质以及灵活应用勾股定理是解题的关键.28.(1)证明见解析;(2)EF = 2FG,理由见解析.【解析】分析:(1)本题的关键是求△ADE≌△ABF,以此来得出DE=AF=AE+EF=BE+EF,这两个三角形中已知的条件有AD=BA,一组直角,关键是再找出一组对应角相等,可通过证明∠DAF 和∠ABF 来实现.(通过平行和等角的余角相等来证得)(2)通过证明△AFB ∽△BFG ∽△ABG ,得出AB ,BG ;AF ,BF ;BF ,BG 之间的比例关系,根据点G 为BC 边中点,来得出AF ,BF ,BF ,FG 之间的比例关系,然后根据(1)中得出的结果来求BF ,FG 的大小关系.详解:(1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥AG∴ DA=AB , ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90°∴ ∠BAF = ∠ADE ∴ △ABF ≌ △DAE∴ BF = AE , AF = DE∴ DE -BF = AF -AE = EF(2)EF = 2FG 理由如下:∵ AB ⊥BC , BF ⊥AG , AB =2 BG∴ △AFB ∽△BFG ∽△ABG∴2AB AF BF BG BF FG=== ∴ AF = 2BF , BF =2FG由(1)知, AE = BF ,∴ EF = BF = 2 FG点睛:本题中通过全等三角形得出简单的线段相等以及利用相似三角形的对应边成比例是解题的关键所在.。

人教版2020---2021学年度上学期九年级数学期末考试卷及答案含5套

人教版2020---2021学年度上学期九年级数学期末考试卷及答案含5套

第41页,共90页 第42页,共90页密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级 数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题每小题3分,满分42分) 1.2-的相反数是( )A.21 B.21- C.2- D.22.在实数2、0、1-、2-中,最小的实数是( ) A .2 B .0 C .1- D .2- 3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为( )A. 237×106吨 B. 2.37×107吨 C. 2.37×108吨 D. 0.237×109吨 4.下列运算,正确的是( )A.523a a a =⋅B.ab b a 532=+C.326a a a =÷D.523a a a =+ 5. 下列各图中,是中心对称图形的是( )6. 方程042=-x的根是( )A. 2,221-==x xB. 4=xC. 2=xD. 2-=x7. 不等式组⎩⎨⎧-><-12x x 的解集是( ) A. 1->x B. 2-<x C. 2<x D. 21<<-x 8.函数1-=x y 中,自变量x 的取值范围是( )A. 1≥xB. 1->xC. 0>xD. 1≠x 9.下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)10.一次函数2+=x y 的图象不经过...( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限11. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表: 跳高成绩(m) 1.501.551.601.651.70 1.75跳高人数1 323 5 1这些运动员跳高成绩的中位数和众数分别是( ) A .1.65,1.70 B .1.70,1.65 C .1.70,1.70 D .3,5 12.某农科院对甲、乙两种甜玉米各用10块相同条件的试验题号 一 二 三 总分 得分ABCD第7页,共90页 第8页,共90页田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0.002、s 乙2=0.03,则( ) A .甲比乙的产量稳定 B .乙比甲的产量稳定 C .甲、乙的产量一样稳定D .无法确定哪一品种的产 量更稳定13. 如图1,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A. 80°B. 90°C. 100°D. 110°14. 如图2,正方形ABCD 的边长为2cm ,以B 点为圆心、AB长为半径作⋂AC ,则图中阴影部分的面积为( ) A.2)4(cm π- B. 2)8(cm π- C. 2)42(cm -π D. 2)2(cm -π二、填空题(本大题满分12分,每小题3分) 15. 计算:=-283.16.在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是54,则n = .17.如图3,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6则AE = cm .18. 如图4,∠ABC=90°,O 为射线BC 上一点,以点O 21BO长为半径作⊙O ,当射线BA 绕点B 度时与⊙0相切.三、解答题(本大题满分56分) 19.计算(满分8分,每小题4分)(12314(2)2-⨯+-(2)化简:(a +1)(a -1)-a (a20.(满分8分)某商场正在热销2008年北京奥运会吉祥物A BC图3E DA B CO E1D图1A密封线学校班级姓名学号密封线内不得答题图10“福娃”玩具和一枚徽章的价格各是多少元?21.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度?(3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?22.(本题满分8分)如图的方格纸中,ABC∆的顶点坐标分别为()5,2-A、()1,4-B和()3,1-C(1)作出ABC∆关于x轴对称的111CBA∆,并写出点A、B、C的对称点1A、1B、1C的坐标;(2)作出ABC∆关于原点O对称的222CBA∆,并写出点A、B、C的对称点2A、2B、2C的坐标;(3)试判断:111CBA∆与222CBA∆是否关于y轴对称(只需写出判断结果).23.(本大题满分11分)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;yAOxBC共计145元共计280元第21题图第41页,共90页第42页,共90页第7页,共90页 第8页,共90页(2)求证:AE=FC+EF.24.(13分)如图,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x①求h 与x 之间的函数关系式,并写出自变量x 的取值范围;②线段PE 的长h 是否存在最大值?若存在,求出它的最大值及此时的x 值;若不存在,请说明理由?参考答案一、选择题(本大题每小题3ABCDE FG第41页,共90页 第42页,共90页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题二、填空题(本大题满分12分,每小题3分)15.25 16. 8 17. 6 18. 60°或120 °三、解答题(本大题满分56分) 19.(本题满分8分,每小题4分)(1)原式=3 - 2 +(-8) (2)原式=a 2-1-a 2+a= -7 =a -120.(满分8分)解:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得 ⎩⎨⎧=+=+280321452y x y x 解这个方程组,得 ⎩⎨⎧==10125y x 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元.21、(本题满分8分) 解:(1)∵,∴这次考察中一共调查了60名学生.(2)∵∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3),∴补全统计图如下图(4)∵∴可以估计该校学生喜欢篮球活动的约有450人22.满分(8分)解:(1)111C B A ∆如图,)5,2(1--A 、)1,4(1--B 、)3,1(1--C (2)222C B A ∆如图,)5,2(2-A 、)1,4(2-B 、)3,1(2-C(3)111C B A ∆与222C B A ∆关于y 轴对称23. (满分11分) (1) ΔAED ≌ΔDFC.60%106=%25%20%20%10%251=----︒=⨯︒90%2536012%2060=⨯450%251800=⨯题号 1 2 3 4 5 6 7 选择项 D D C A B A D 题号8 9 10 11 12 13 14 选择项ACDAACAADE FB 2yCAB C 1B 1A 1C 2A 2Ox∵四边形ABCD是正方形,∴ AD=DC,∠ADC=90º.又∵ AE⊥DG,CF∥AE,∴∠AED=∠DFC=90º,…∴∠EAD+∠ADE=∠FDC+∠ADE=90º,∴∠EAD=∠FDC.∴ΔAED≌ΔDFC (AAS).(2) ∵ΔAED≌ΔDFC,∴ AE=DF,ED=FC. …∵ DF=DE+EF,∴ AE=FC+EF. )24. (1) ∵点A(3,4)在直线y=x+m上,∴ 4=3+m.∴ m=1.设所求二次函数的关系式为y=a(x-1)2.∵点A(3,4)在二次函数y=a(x-1)2的图象上,∴ 4=a(3-1)2,∴ a=1.∴所求二次函数的关系式为y=(x-1)2.即y=x2-2x+1.(2) 设P、E两点的纵坐标分别为y P和y E .∴ PE=h=y P-y E=(x+1)-(x2-2x+1)=-x2+3x.…即h=-x2+3x (0<x<3).(3)略图7第7页,共90页第8页,共90页第41页,共90页 第42页,共90页密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分) 1.已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是( )A .1B .﹣1C .D .﹣2.数据1,2,3,3,5,5,5的中位数和众数分别是( ) A .5,4 B .3,5 C .5,5 D .5,33.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S 甲2=0.63,S 乙2=0.51,S 丙2=0.48,S 丁2=0.42,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁4.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A .50°B .80°C .90°D .100°5.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A . B . C . D .6.二次函数y=ax 2+bx+c 图象上部分点的坐标满足表格:x … ﹣3 ﹣2 ﹣1 0 1 …y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 … 则该函数图象的原点坐标为( )A .(﹣3,﹣3)B .(﹣2,﹣2)C .(﹣1,﹣3)D .(0,﹣6) 7.如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A .y=(x ﹣1)2+2B .y=(x+1)2+2C .y=x 2+1D .y=x 2+3 8.如图,函数y=﹣x 与函数的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( )A .2B .4C .6D .8线内不得答二、填空题(共6小题,每小题3分,满分18分)9.已知一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,则x1•x2=______.10.如图,网格图中每个小正方形的边长为1,则弧AB的弧长l=______.11.二次函数y=﹣2(x﹣5)2+3的顶点坐标是______.12.如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为______.(结果保留π)13.如图,点A、B、C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积的和是______.14.如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB线段CD的长度和为______.三、解答题(共10小题,满分78分)15.解方程:x2+4x﹣7=0.16.在一个不透明的箱子中装有3个小球,分别标有A,B,C3第7页,共90页第8页,共90页第41页,共90页 第42页,共90页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题17.为了了解我校开展的“养成好习惯,幸福一辈子”的活动情况,对部分学生进行了调查,其中一个问题是:“对于这个活动你的态度是什么?”共有4个选项: A .非常支持 B .支持 C .无所谓 D .反感根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)计算本次调查的学生人数和图(2)选项C 的圆心角度数; (2)请根据(1)中选项B 的部分补充完整;(3)若我校有5000名学生,你估计我校可能有多少名学生持反感态度.18.为落实国务院房地产调控政策,使“居者有其屋”,长春市加快了廉租房的建设力度,2013年市政府共投资2亿元人民币建设路廉租房8万平方米,预计到2015年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同,试求出市政府投资的增长率.19.如图,已知AB 是⊙O 的直径,P 为⊙O 外一点,且OP ∥BC ,∠P=∠BAC .(1)求证:PA 为⊙O 的切线; (2)若OB=5,OP=,求AC 的长.20.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线y=﹣x+3交AB ,BC 分别于点M ,N ,反比例函数y=的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.密21.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.22.如图,已知抛物线y=ax2+bx(a≠0)经过A(﹣2,0),B(﹣3,3),顶点为C.(1)求抛物线的解析式;(2)求点C的坐标;(3)若点D在抛物线上,点E在抛物线的对称轴上,且以O、D、E为顶点的四边形是平行四边形,直接写出点D23.已知某种水果的批发单价与批发量的函数关系如图(1所示.(1)请说明图(1)中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(之间的函数关系式;在图(2)指出金额在什么范围内,该种水果.(3)经调查,某经销商销售该种水果的日最高销量y(kg零售价x所示,该经销商拟每日售出不低于64kg得日获得的利润z(元)最大.第7页,共90页第8页,共90页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.如图,在菱形ABCD 中,AB=6,∠ABC=60°,动点E 、F 同时从顶点B 出发,其中点E 从点B 向点A 以每秒1个单位的速度运动,点F 从点B 出发沿B ﹣C ﹣A 的路线向终点A 以每秒2个单位的速度运动,以EF 为边向上(或向右)作等边三角形EFG ,AH 是△ABC 中BC 边上的高,两点运动时间为t 秒,△EFG 和△AHC 的重合部分面积为S .(1)用含t 的代数式表示线段CF 的长; (2)求点G 落在AC 上时t 的值; (3)求S 关于t 的函数关系式;(4)动点P 在点E 、F 出发的同时从点A 出发沿A ﹣H ﹣A 以每秒2单位的速度作循环往复运动,当点E 、F 到达终点时,点P 随之运动,直接写出点P 在△EFG 内部时t 的取值范围.参考答案一、选择题(共8小题,每小题3分,满分24分) 1. B .2.B .3.D . 4.D . 5.D .6.B .7C .8.D . 二、填空题(共6小题,每小题3分,满分18分) 9.已知一元二次方程x 2+mx ﹣2=0的两个实数根分别为x 1,x 2,则x 1•x 2= ﹣2 .得 答 题10.如图,网格图中每个小正方形的边长为1,则弧AB 的弧长l=.11.二次函数y=﹣2(x ﹣5)2+3的顶点坐标是 (5,3) . 12.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A=60°,BC=4,则图中阴影部分的面积为 π .(结果保留π)13.如图,点A 、B 、C 在一次函数y=﹣2x+m 的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积的和是 3 .14.如图,在平面直角坐标系中,抛物线y=a (x ﹣1)2+k (a 、k 为常数)与x 轴交于点A 、B ,与y 轴交于点C ,CD ∥x 轴,与抛物线交于点D .若点A 的坐标为(﹣1,0),则线段OB 与线段CD 的长度和为 5 . 三、解答题(共10小题,满分78分) 15.解方程:x 2+4x ﹣7=0. 解:x 2+4x ﹣7=0, 移项得,x 2+4x=7, 配方得,x 2+4x+4=7+4, (x+2)2=11, 解得x+2=±,即x 1=﹣2+,x 2=﹣2﹣16.解:如图所示:P (两次摸出的小球所标字母不同)==.17.解:(1)根据题意得:60÷30%=200(名),30÷200×=54°,则本次调查的学生人数为200名,图(2)选项C 数为54°;(2)选项B 的人数为200﹣(60+30+10)=100(名)形统计图,如图(1)所示,(3)根据题意得:5000×5%=250(名), 则估计我校可能有250名学生持反感态度.密学校 班级 姓名 学号密 封 线 内 不 得 答 题18.解:设每年市政府投资的增长率为x ,根据题意,得:2+2(1+x )+2(1+x )2=9.5, 整理,得:x 2+3x ﹣1.75=0, 解得:x 1=0.5,x 2=﹣3.5(舍去).答:每年市政府投资的增长率为50%. 19.(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°, ∴∠BAC+∠B=90°. 又∵OP ∥BC , ∴∠AOP=∠B , ∴∠BAC+∠AOP=90°. ∵∠P=∠BAC . ∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA ⊥AP . 又∵OA 是的⊙O 的半径, ∴PA 为⊙O 的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5, ∴OA=OB=5. 又∵OP=,∴在直角△APO 中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°. ∵∠BAC=∠P , ∴△ABC ∽△POA , ∴=. ∴=,解得AC=8.即AC 的长度为8.20.解:(1)∵B (4,2),四边形OABC 是矩形, ∴OA=BC=2,将y=2代入y=﹣x+3得:x=2, ∴M (2,2),把M 的坐标代入y=得:k=4, ∴反比例函数的解析式是y=;(2)把x=4代入y=得:y=1, 即CN=1,不 得 答∵S 四边形BMON =S 矩形OABC ﹣S △AOM ﹣S △CON =4×2﹣×2×2﹣×4×1=4, 由题意得: OP ×AM=4, ∵AM=2, ∴OP=4,∴点P 的坐标是(0,4)或(0,﹣4).21.解:(1)设线段BC 所在直线对应的函数关系式为y=k 1x+b 1. ∵图象经过(3,0)、(5,50), ∴∴线段BC 所在直线对应的函数关系式为y=25x ﹣75. 设线段DE 所在直线对应的函数关系式为y=k 2x+b 2. ∵乙队按停工前的工作效率为:50÷(5﹣3)=25, ∴乙队剩下的需要的时间为:÷25=,∴E (,160),∴, 解得:∴线段DE 所在直线对应的函数关系式为y=25x ﹣112.5.(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x ﹣112.5,得y=25×8﹣112.5=87.5. 答:当甲队清理完路面时,乙队铺设完的路面长为87.522.解:(1)根据题意得:,解得:,则抛物线的解析式是y=x 2+2x ; (2)y=x 2+2x=(x+1)2﹣1, 则C 的坐标是(﹣1,﹣1); (3)抛物线的对称轴是x=﹣1,当OA 是平行四边形的一边时,D 和E 一定在x 轴的上方.OA=2,密学校 班级 姓名 学号密 封 线 内 不 得 答 题则设E 的坐标是(﹣1,a ),则D 的坐标是(﹣3,a )或(1,a ).把(﹣3,a )代入y=x 2+2x 得a=9﹣6=3,则D 的坐标是(﹣3,3)或(1,3),E 的坐标是(﹣1,3);当OA 是平行四边形的对角线时,D 一定是顶点,坐标是(﹣1,﹣1),则E 的坐标是D 的对称点(﹣1,1).23. 解:(1)当批发量在20kg 到60kg 时,单价为5元/kg 当批发量大于60kg 时,单价为4元/kg … (2)当20≤m ≤60时,w=5m 当m >60时,w=4m …当240<w ≤300时,同样的资金可以批发到更多的水果.… (3)设反比例函数为则,k=480,即反比列函数为∵y ≥64, ∴x ≤7.5, ∴z=(x ﹣4)=480﹣∴当x=7.5时,利润z 最大为224元.24.解:(1)根据题意得:BF=2t , ∵四边形ABCD 是菱形, ∴BC=AB=6,∴CF=BC ﹣BF=6﹣2t ;(2)点G 落在线段AC 上时,如图1所示:∵四边形ABCD 是菱形, ∴AB=BC , ∵∠ABC=60°, ∴△ABC 是等边三角形, ∴∠ACB=60°, ∵△EFG 是等边三角形,密 封 线 内 不 得 答∴∠GFE=60°,GE=EF=BF •sin60°=t , ∵EF ⊥AB ,∴∠BFE=90°﹣60°=30°, ∴∠GFB=90°, ∴∠GFC=90°, ∴CF==t ,∵BF+CF=BC , ∴2t+t=6, 解得:t=2; (3)分三种情况: ①当0<t ≤时,S=0; ②当<t ≤2时,如图2所示,S=S △EFG ﹣S △MEN =×(t )2﹣××(﹣+2)2=t 2+t ﹣3, 即S=t 2+t ﹣3;③当2<t ≤3时,如图3所示:S=t 2+t ﹣3﹣(3t ﹣6)2,即S=﹣t 2+t ﹣;(4)∵AH=AB •sin60°=6×=3,∴3÷2=, ∴3÷2=,∴t=时,点P 与H 重合,E 与H 重合, ∴点P 在△EFG 内部时,﹣<(t ﹣)×2<t ﹣(2t ﹣3)+(2t ﹣3), 解得:<t <;即:点P 在△EFG 内部时t 的取值范围为:<t <.密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分) 1.已知四条线段满足,将它改写成为比例式,下面正确的是( ) A .B .C .D .2.二次函数y=﹣2(x ﹣1)2+3的图象的顶点坐标是( ) A .(1,3) B .(﹣1,3) C .(1,﹣3) D .(﹣1,﹣3) 3.下列事件中,必然事件是( ) A .抛出一枚硬币,落地后正面向上 B .打开电视,正在播放广告C .篮球队员在罚球线投篮一次,未投中D .实心铁球投入水中会沉入水底4.如图,点A ,B ,C ,D 都在⊙O 上,AC ,BD 相交于点E ,则∠ABD=( )A .∠ACDB .∠ADBC .∠AED D .∠ACB5.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( )A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=96.若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为( ) A .1:2 B .2:1 C .1:4 D .4:17.已知函数y=x 2+2x ﹣3,当x=m 时,y <0,则m 的值可能是( )A .﹣4B .0C .2D .38.一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( )A .12πcm 2B .15πcm 2C .20πcm 2D .30πcm 2二、填空题(本大题共有10小题,每小题3分,共30分) 9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 .密封线内不得答题10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.11.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x2+px﹣2=0的一个根为2,则p的值.14.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.15.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)16.二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:(1)x2﹣4x+1=0;(2)x(x﹣2)+x﹣2=0.18.如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC关于点O成中心对称的△A1B1C1(其中A的对称点是A1,B的对称点是B1,C的对称点是C1);(2)直接写出点B1、C1的坐标.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题19.如图,四边形ABCD 内接于⊙O ,E 为AB 延长线上一点,若∠AOC=140°.求∠EBC 的度数.20.一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果; (2)求两次摸出的球都是编号为3的球的概率.四、解答题(本大题共有4小题,共39分)21.如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB 于D .(1)求证:△ACB ∽△ADE ;(2)求AD 的长度.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x 的值.23.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且AC 平分∠BAD ,点E 为AB 的延长线上一点,且∠ECB=∠CAD . (1)①填空:∠ACB= ,理由是 ; ②求证:CE 与⊙O 相切;(2)若AB=6,CE=4,求AD 的长.密封 线 内 不 得五、解答题(本大题共有3小题,共35分)24.如图1,在△ABC 中,∠A=120°,AB=AC ,点P 、Q 同时从点B 出发,以相同的速度分别沿折线B →A →C 、射线BC 运动,连接PQ .当点P 到达点C 时,点P 、Q 同时停止运动.设BQ=x ,△BPQ 与△ABC 重叠部分的面积为S .如图2是S 关于x 的函数图象(其中0≤x ≤8,8<x ≤m ,m <x ≤16时,函数的解析式不同).(1)填空:m 的值为 ;(2)求S 关于x 的函数关系式,并写出x 的取值范围; (3)请直接写出△PCQ 为等腰三角形时x 的值.25.如图(1),将线段AB 绕点A 逆时针旋转2α(0°<α<90°)至AC ,P 是过A ,B ,C 的三点圆上任意一点. (1)当α=30°时,如图(1),求证:PC=PA+PB ;(2)当α=45°时,如图(2),PA ,PB ,PC 它们的数量关系.26.如图,抛物线y=a (x ﹣m )2﹣m (其中m >1)与其对称轴l 相交于点P ,与y 轴相交于点A (0,m ).点A 关于直线l 的对称点为B ,作BC ⊥x 轴于点C ,连接PC 、PB ,与抛物线、x 轴分别相交于点D 、E ,连接DE .将△PBC 沿直线PB 翻折,得到△PBC ′.(1)该抛物线的解析式为 (用含m 的式子表示);(2)探究线段DE 、BC 的关系,并证明你的结论; (3)直接写出C ′点的坐标(用含m 的式子表示).密学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、选择题(共8小题,每小题3分,满分24分) 1.C 2.A .3.D .4.A .5.D .6.C .7.B .8.B . 二、填空题(本大题共有10小题,每小题3分,共30分)9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 c <4 .10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 15 m . 11.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= 70 °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值 ﹣1 .14.如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 3 .15.如图,要使△ABC 与△DBA 相似,则只需添加一个适当的条件是 ∠C=∠BAD (填一个即可)16.二次函数y=ax 2+bx+c 的图象如图所示,其对称轴与x 轴交于点(﹣1,0),图象上有三个点分别为(2,y 1),(﹣3,y 2),(0,y 3),则y 1、y 2、y 3的大小关系是 y 3<y 2<y 1 (用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:解:(1)方程变形得:x 2﹣4x=﹣1,配方得:x 2﹣4x+4=3,即(x ﹣2)2=3, 开方得:x ﹣2=±,得 答 题则x 1=2+,x 2=2﹣;(2)(x+1)(x ﹣2)=0, (x+1)(x ﹣2)=0, 解得x 1=﹣1,x 2=2. 18.解:(1)如图所示:.(2)根据上图可知,B 1(2,2),C 1(5,﹣1).19. 解:由圆周角定理得,∠D=∠AOC=70°,由圆内接四边形的性质得,∠EBC=∠D=70°. 20.解:(1)画树状图如下:由树状图可知所有可能出现的结果共9种;(2)由(1)中考共有9种等可能的结果,两次摸出的球都是编号为3的球的情况数是1种,所以其概率为. 四、解答题(本大题共有4小题,共39分) 21. (1)证明:∵DE ⊥AB ,∠C=90°,∴∠EDA=∠C=90°, ∵∠A=∠A ,∴△ACB ∽△ADE ;(2)解:∵△ACB ∽△ADE ,∴=, ∴=,∴AD=4.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (m 2)与x (m 系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解:(1)由图可得,扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式是:y=(30xm+m )(20xm+m )=600x 2m 2+50xm 2+m 2,即扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式是:y=600x 2m 2+50xm 2+m 2;(2)∵扩充后的绿地面积y 是原矩形面积的2倍, ∴600x 2m 2+50xm 2+m 2=2×30xm ×20xm , 解得(舍去),即扩充后的绿地面积y 是原矩形面积的2倍,x 的值是.23.解:(1)①∵AB 为⊙O 的直径, ∴∠ACB=90°,故答案为90°,直径所对的圆周角是直角; ②连接OC ,则∠CAO=∠ACO , ∵AC 平分∠BAB , ∴∠BAC=∠CAD , ∵∠ECB=∠CAD . ∴∠BAC=∠ECB .∴∠ECB=∠ACO ,∵∠ACO+∠OCB=90°,∴∠ECB+∠OCB=90°,即CE ⊥OC .∴CE 与⊙O 相切; (2)∵CE 与⊙O 相切, ∴CE 2=BE •AE , ∵AB=6,CE=4, ∴42=BE (BE+6), ∴BE=2, ∴AE=6+2=8, ∵△ACE ∽△CBE ,∴=,即=,∴AC=4, ∴AC=CE=4, ∴∠CAB=∠E , ∴∠ECB=∠E ,∴∠ABC=2∠ECB=2∠BAC ,BC=BE=2, ∴∠DAB=∠ABC , ∴AD=BC=2.五、解答题(本大题共有3小题,共35分)24.解:(1)如图1中,作AM ⊥BC ,PN ⊥BC ,垂足分别为M ,N .密 封 线 内 不 得 答 题由题意AB=AC=8,∠A=120°, ∴∠BAM=∠CAM=60°,∠B=∠C=30°, ∴AM=AB=4,BM=CM=4, ∴BC=8, ∴m=BC=8, 故答案为8.(2)①当0≤m ≤8时,如图1中,在RT △PBN 中,∵∠PNB=90°,∠B=30°,PB=x , ∴PN=x . s=•BQ •PN=•x ••x=x 2.②当8<x ≤16,如图2中,在RT △PBN 中,∵PC=16﹣x ,∠PNC=90°,∠C=30°, ∴PN=PC=8﹣x ,∴s=•BQ •PN=•x •(8﹣x )=﹣x 2+4x . ③当8<x ≤16时,s=•8•(8﹣•x )=﹣2x+32.(3)①当点P 在AB 上,点Q 在BC 上时,△PQC 不可能是等腰三角形.②当点P 在AC 上,点Q 在BC 上时,PQ=QC , ∵PC=QC ,∴16﹣x=(8﹣x ), ∴x=4+4.③当点P 在AC 上,点Q 在BC 的延长线时,PC=CQ , 即16﹣x=x ﹣8, ∴x=8+4.∴△PCQ 为等腰三角形时x 的值为4+4或8+4.25.证明:(1)如图(1),在PA 上截取PD=PA , ∵AB=AC ,∠CAB=60°, ∴△ABC 为等边三角形, ∴∠APC=∠CPB=60°, ∴△APD 为等边三角形, ∴AP=AD=PD ,∴∠ADC=∠APB=120°, 在△ACD 和△ABP 中,,∴△ACD ≌△ABP (AAS ),密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴CD=PB ,∵PC=PD+DC , ∴PC=PA+PB ; (2)PC=PA+PB ,如图(2),作AD ⊥AP 与PC 交于一点D , ∵∠BAC=90°,∴∠CAD=∠BAP , 在△ACD 和△ABP 中,,∴△ACD ≌△ABP ,∴CD=PB ,AD=AP , 根据勾股定理PD=PA , ∴PC=PD+CD=PA+PB .26.解:(1)把点A (0,m )代入y=,得:2am 2﹣m=m , am ﹣1=0, ∵am >1,∴a=, ∴y=,故答案为:y=;(2)DE=BC . 理由:又抛物线y=,可得抛物线的顶点坐标P (m ,﹣m ),由l :x=m ,可得:点B (2m ,m ), ∴点C (2m ,0).设直线BP 的解析式为y=kx+b ,点P (m ,﹣m )和点B (2m ,m )在这条直线上, 得:,解得:,∴直线BP 的解析式为:y=x ﹣3m , 令y=0, x ﹣3m=0,解得:x=,∴点D (,0);设直线CP 的解析式为y=k 1x+b 1,点P (m ,﹣m )和点C (2m ,0)在这条直线上,得:,解得:, ∴直线CP 的解析式为:y=x ﹣2m ;密 封 线 内 不 得 答 题抛物线与直线CP 相交于点E ,可得:,解得:,(舍去), ∴点E (,﹣);∵x D =x E , ∴DE ⊥x 轴,∴DE=y D ﹣y E =,BC=y B ﹣y C =m=2DE , 即DE=BC ; (3)C ′(,).连接CC ′,交直线BP 于点F , ∵BC ′=BC ,∠C ′BF=∠CBF , ∴CC ′⊥BP ,CF=C ′F ,设直线BP 的解析式为y=kx+b ,点B (2m ,m ),P (m ,﹣m )在直线上, ∴,解得:,∴直线BP 的解析式为:y=x ﹣3m , ∵CC ′⊥BP ,∴设直线CC ′的解析式为:y=x+b 1,∴,解得:b 1=2m ,联立①②,得:,解得:,∴点F (,),∴CF==, 设点C ′的坐标为(a ,), ∴C ′F==,解得:a=,∴, ∴C ′(,).密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题:每小题3分,共36分. 1.方程x 2=4x 的解是( )A .x=4B .x=2C .x=4或x=0D .x=0 2.在下列事件中,是必然事件的是( ) A .购买一张彩票中奖一百万元B .抛掷两枚硬币,两枚硬币全部正面朝上C .在地球上,上抛出去的篮球会下落D .打开电视机,任选一个频道,正在播新闻3.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1﹣x )=121C .100(1+x )2=121 D .100(1﹣x )2=1214.关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣3m+2=0的常数项为0,则m 等于( )A .1B .2C .1或2D .05.对于抛物线y=﹣(x ﹣5)2+3,下列说法正确的是( )A .开口向下,顶点坐标(5,3)B .开口向上,顶点坐标(5,3)C .开口向下,顶点坐标(﹣5,3)D .开口向上,顶点坐标(﹣5,3)6.二次函数y=kx 2﹣6x+3的图象与x 轴有交点,则k 的取值范围是( )A .k <3 B .k <3且k ≠0 C .k ≤3 D .k ≤3且k ≠0 7.二次函数y=ax 2+bx+c 的图象如图所示,则下列关系式中错误的是( )A .a <0B .c >0C .b 2﹣4ac >0 D .a+b+c >0 8.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为( )封线内不A. B. C. D.9.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是()A.内切 B.相交 C.外切 D.外离10.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25π B.65πC.90π D.130π11.如图,四个边长为2的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为2,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30° B.45° C.60° D.90°12.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形 D.梯形二、填空题:每小题3分,共18分.13.已知关于x的方程x2﹣3x+k=0有一个根为1,个根为.14.抛物线y=3x2向右平移1个单位,再向下平移2所得到的抛物线是.15.如图,⊙O的直径AB=12,弦CD⊥AB于M,且M是半径的中点,则CD的长是(结果保留根号).16.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣•x2= .17.如图,已知以直角梯形ABCD的腰CD为直径的半圆O形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.如图,△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于 .三、解答题:本大题共7小题,19题10分,其余每题6分,共46分. 19.解方程:(1)3x 2﹣2x=4x 2﹣3x ﹣6 (2)3x 2﹣6x ﹣2=0.20.某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.21.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个半圆,每一个扇形或半圆都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,列出所有等可能情况,并求出点(x ,y )落在坐标轴上的概率;(2)直接写出点(x ,y )落在以坐标原点为圆心,2为半径的圆内的概率.。

江苏省扬州市仪征市2020-2021学年度第一学期二年级数学期末测试卷(苏教版)

江苏省扬州市仪征市2020-2021学年度第一学期二年级数学期末测试卷(苏教版)

小学数学二年级(上册)期末测试卷(2021.1)成绩一、计算(共24分)1.直接写得数。

(每小题1分,共16分)12÷3=4×7=36÷6=43-20=8×2=1×1=5×9=4÷4=50-5=42÷7=8×4=3+27=4×9+3=5×6-7=9×2÷3=56÷7÷4=2.用竖式计算。

(每小题2分,共8分)21+15+36=80-54-19=46+37-38=55-26+30=二、填空(第1、7题每道算式1分,其余每空1分,共28分)1.看图写算式。

(1)()×()=()()÷()=()()÷()=()计算时用到的乘法口诀是()。

(2)跳3次,能跳到多少?()×()=()2.在()里填上“米”或“厘米”。

(1)一支铅笔长约18()。

(2)宁宁从家到学校大约要走400()。

3.小兰家栽了2行桃树,每行7棵;小芳家也栽了2行桃树,一行7棵,一行6棵。

()家栽的桃树多,多()棵。

051015203.在里填上“>”“<”或“=”。

3×44×516+20352×22+22×8+88×3-840÷530÷670厘米1米4.壮壮玩抛硬币的游戏,他用画“正”字的方法记录每次落下后朝上的正面朝上正正正正正反面朝上正正正正正面朝上的有()次,反面朝上的有()次。

5.距学校“六一”艺术节开幕还有35天,再过()个星期艺术节开幕。

6.观察上图,填写下图。

7.想不同..的口诀,填下面的算式。

()×()=1824÷()=()()×()=1824÷()=()8.找规律填数。

(1)9、12、15、18、()、()。

(2)2、5、10、17、26、()、()。

2020-2021学年北师大版九年级上册数学期末复习试卷(有答案)

2020-2021学年北师大版九年级上册数学期末复习试卷(有答案)

2020-2021学年北师大新版九年级上册数学期末复习试卷一.选择题(共10小题,满分20分,每小题2分)1.方程x2﹣6x+5=0较小的根为p,方程5x2﹣4x﹣1=0较大的根为q,则p+q等于()A.3B.2C.1D.22.如图所示几何体的左视图正确的是()A.B.C.D.3.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小时随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,向上的面点数是偶数C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃4.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)2 6.若,则的值为()A.1B.C.D.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB =1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4B.5C.6D.88.如图,在△ABC中,中线AD,BE相交于点F,EG∥BC,交AD于点G,下列说法:①BD =2GE;②AF=2FD;③△AGE与△BDF面积相等;④△ABF与四边形DCEF面积相等,结论正确的是()A.①③④B.②③④C.①②③D.①②④9.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=1610.正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.小明想知道学校旗杆的高,他在某一时刻测得直立的标杆高1米时影长0.9米,此时他测旗杆影长时,因为旗杆靠近建筑物,影子不全落在地面上,有一部分影子在墙上,他测得落在地面上的影长BC为2.7米,又测得墙上影高CD为1.2米,旗杆AB的高度为米.12.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A'B'O.若点A的坐标是(1,2),则点A'的坐标是.13.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.14.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.15.如图,在菱形ABCD中,∠C=60°,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为.16.如图,在△ABC中,AB=AC=9,过点B、C分别作AB、BC的垂线相交于点D,延长AC、BD相交于点E,若tan∠BDC=2,则DE=.三.解答题(共3小题,满分22分)17.计算:2cos45°tan30°cos30°+sin260°.18.如图,是一个可以自由转动的转盘,转盘被分成面积相等的三个扇形,每个扇形上分别标上,1,﹣1三个数字.小明转动转盘,小亮猜结果,如果转盘停止后指针指向的结果与小亮所猜的结果相同,则小亮获胜,否则小明获胜.(1)如果小明转动转盘一次,小亮猜的结果是“正数”,那么小亮获胜的概率是.(2)如果小明连续转动转盘两次,小亮猜两次的结果都是“正数”,请用画树状图或列表法求出小亮获胜的概率.19.如图,在菱形ABCD中,对角线AC和BD交于点O,分别过点B、C作BE∥AC,CE ∥BD,BE与CE交于点E.(1)求证:四边形OBEC是矩形;(2)当∠ABD=60°,AD=2时,求BE的长.四.解答题(共1小题,满分8分,每小题8分)20.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A 和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五.解答题(共1小题,满分10分,每小题10分)21.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?六.解答题(共3小题,满分34分)22.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式及点B的坐标;(2)若点P为x轴上一点,且满足△ACP是等腰三角形,请直接写出符合条件的所有点P的坐标.23.【方法提炼】解答几何问题常常需要添辅助线,其中平移图形是重要的添辅助线策略.【问题情境】如图1,在正方形ABCD中,E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.小明在分析解题思路时想到了两种平移法:方法1:平移线段FG使点F与点B重合,构造全等三角形;方法2:平移线段BC使点B与点F重合,构造全等三角形;【尝试应用】(1)请按照小明的思路,选择其中一种方法进行证明;(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC 的值;(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD 与正方形PBEF,连结DE分别交线段BC,PC于点M,N.①求∠DMC的度数;②连结AC交DE于点H,求的值.24.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:方程x2﹣6x+5=0较小的根为p=1,方程5x2﹣4x﹣1=0较大的根为q=1,则p+q=2,故选:B.2.解:从几何体的左面看所得到的图形是:故选:A.3.解:A、在“石关、剪刀、布”的游戏中,小时随机出的是“剪刀”为,不符合这一结果,故此选项错误;B、掷一个质地均匀的正六面体骰子,向上的面点数是偶数的概率是==0.5,符合这一结果,故此选项正确;C、从一个装有1个红球2个黄球的袋子中任取一球,取到的是黄球的概率为:,不符合这一结果,故此选项错误;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;故选:B.4.解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.5.解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;故选:C.6.解:∵,∴=2=2﹣=;故选:B.7.解:作CE⊥x轴于E,∵AC∥x轴,OA=2,OB=1,∴OA=CE=2,∵∠ABO+∠CBE=90°=∠OAB+∠ABO,∴∠OAB=∠CBE,∵∠AOB=∠BEC,∴△AOB∽△BEC,∴=,即=,∴BE=4,∴OE=5,∵点D是AB的中点,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.解:∵中线AD,BE相交于点F,∴BD=CD,AE=CE,BF=2EF,AF=2FD,②正确;∵EG∥BC,∴△BDF∽△EGF,∴==2,∴BD=2GE,①正确;∵AF=2FD,∴△ABF的面积=2△BDF的面积=△ABD的面积=△ABC的面积,△BDF的面积=△ABC的面积,∵EG∥BC,AE=CE,∴△AGE∽△ADC,=,∴=()2=,∴△AGE的面积=△ADC的面积△ABC的面积,∴△AGE与△BDF面积不相等,③不正确;∵BD=CD,AE=CE,∴△ABD的面积=△ADC的面积=△ABC的面积=△ABE的面积=△BCE的面积,∴△ABD的面积=△BCE的面积,∴△ABD的面积﹣△BDF的面积=△BCE的面积﹣△BDF的面积,即△ABF与四边形DCEF面积相等,④正确;故选:D.9.解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.10.解:∵BF∥AD∴△BNF∽△DNA∴,而BF=BC=1,AF=,∴AN=,又∵AE=BF,∠EAD=∠FBA,AD=AB,∴△DAE≌△ABF(SAS),∴∠AED=∠BFA∴△AME∽△ABF∴,即:,∴AM=,∴MN=AN﹣AM=.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:过点D作DE⊥AB于点E,则BE=CD=1.2m,∵他在某一时刻测得直立的标杆高1米时影长0.9米,∴=,即=,解得:AE=3m,∴AB=AE+BE=3+1.2=4.2(m).故答案为:4.2.12.解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).13.解:根据图表可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.14.解:设人行通道的宽度为xm,则两块矩形绿地可合成长为(30﹣3x)m、宽为(24﹣2x)m的大矩形,根据题意得:(30﹣3x)(24﹣2x)=480.故答案为:(30﹣3x)(24﹣2x)=480.15.解:∵E、F分别是AB、AD的中点,∴EF=BD,∵EF=5,∴BD=10,∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∴AB=BD=10,∴菱形ABCD的周长=4×10=40,故答案为:40.16.解:作CF⊥BD于F,作AG⊥BC于G,如图所示:∵AB=AC=9,AG⊥BC,∴BG=CG,∵BE⊥AB,CD⊥BC,∴∠ABG+∠CBD=90°,∠CBD+∠BDC=90°,∴∠ABG=∠BDC,∴tan∠ABG==tan∠BDC==2,∴AG=2BG,BC=2CD,设BG=x,则AG=2x,在Rt△ABG中,由勾股定理得:x2+(2x)2=92,解得:x=,∴BC=2BG=,CD=BC=,∴BD===9,∵CF⊥BD,∴△BCD的面积=BD×CF=BC×CD,∴CF==,∴DF===,∵AB⊥BD,CF⊥BD,∴CF∥AB,∴△CFE∽△ABE,∴=,即=,解得:DE=3;故答案为:3.三.解答题(共3小题,满分22分)17.解:原式=2×﹣××+()2=﹣+=.18.解:(1)∵每个扇形上分别标上,1,﹣1三个数字,其中是“正数”的有2个数,∴小亮猜的结果是“正数”,那么小亮获胜的概率是;故答案为:;(2)根据题意画图如下:共有9种等情况数,其中两次的结果都是“正数”的有4种,∴小亮获胜的概率是.19.(1)证明:∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC是矩形;(2)解:∵四边形ABCD为菱形,∴AD=AB,OB=OD,OA=OC,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=AD=AB=2,∴OD=OB=,在Rt△AOD中,AO===3∴OC=OA=3,∵四边形OBEC是矩形,∴BE=OC=3.四.解答题(共1小题,满分8分,每小题8分)20.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40,∵AB=57,∴BE=17∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17,∴BC=EF=30﹣17=13.答:教学楼BC高约13米.五.解答题(共1小题,满分10分,每小题10分)21.解:(1)设y与x之间的函数关系式是y=kx+b(k≠0),,得,即y与x之间的函数关系式为y=﹣50x+1100;(2)由题意可得,w=(x﹣10)y=(x﹣10)(﹣50x+1100)=﹣50(x﹣16)2+1800,∵a=﹣50<0∴w有最大值∴当x<16时,w随x的增大而增大,∵12≤x≤15,x为整数,∴当x=15时,w有最大值,此时,w=﹣50(15﹣16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.六.解答题(共3小题,满分34分)22.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2)把A(1,2)代入反比例函数y=,∴k=1×2=2;∴反比例函数的表达式为y=,解得,,,∴B(2,1);(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),∵A(1,2),∴AC==2,过A作AD⊥x轴于D,∴OD=1,CD=AD=2,当AP=AC时,PD=CD=2,∴P(﹣1,0),当AC=CP=2时,△ACP是等腰三角形,∴OP=3﹣2或OP=3+2∴P(3﹣2,0)或(3+2,0),当AP=CP时,△ACP是等腰三角形,此时点P与D重合,∴P(1,0),综上所述,所有点P的坐标为(﹣1,0)或(3﹣2,0)或(3+2,0)或(1,0).23.解:(1)①平移线段FG至BH交AE于点K,如图1﹣1所示:由平移的性质得:FG∥BH,∵四边形ABCD是正方形,∴AB∥CD,AB=BC,∠ABE=∠C=90°,∴四边形BFGH是平行四边形,∴BH=FG,∵FG⊥AE,∴BH⊥AE,∴∠BKE=90°,∴∠KBE+∠BEK=90°,∵∠BEK+∠BAE=90°,∴∠BAE=∠CBH,在△ABE和△CBH中,,∴△ABE≌△CBH(ASA),∴AE=BH,∴AE=FG;②平移线段BC至FH交AE于点K,如图1﹣2所示:则四边形BCHF是矩形,∠AKF=∠AEB,∴FH=BC,∠FHG=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABE=90°,∴AB=FH,∠ABE=∠FHG,∵FG⊥AE,∴∠HFG+∠AKF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠HFG,在△ABE和△FHG中,,∴△ABE≌△FHG(ASA),∴AE=FG;(2)将线段AB向右平移至FD处,使得点B与点D重合,连接CF,如图2所示:∴∠AOC=∠FDC,设正方形网格的边长为单位1,则AC=2,AF=1,CE=2,DE=4,FG=3,DG=4,根据勾股定理可得:CF===,CD===2,DF===5,∵()2+(2)2=52,∴CF2+CD2=DF2,∴∠FCD=90°,∴tan∠AOC=tan∠FDC===;(3)①平移线段BC至DG处,连接GE,如图3﹣1所示:则∠DMC=∠GDE,四边形DGBC是平行四边形,∴DC=GB,∵四边形ADCP与四边形PBEF都是正方形,∴DC=AD=AP,BP=BE,∠DAG=∠GBE=90°∴DC=AD=AP=GB,∴AG=BP=BE,在△AGD和△BEG中,,∴△AGD≌△BEG(SAS),∴DG=EG,∠ADG=∠EGB,∴∠EGB+∠AGD=∠ADG+∠AGD=90°,∴∠EGD=90°,∴∠GDE=∠GED=45°,∴∠DMC=∠GDE=45°;②如图3﹣2所示:∵AC为正方形ADCP的对角线,∴∠DAC=∠PAC=∠DMC=45°,∴AC=AD,∵∠HCM=∠BCA,∴∠AHD=∠CHM=∠ABC,∴△ADH∽△ACB,∴===.24.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,四边形AEBD∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省扬州市仪征市2020-2021学年九年级上学期期末数学试题
一、单选题
1. 抛物线的对称轴是
A.B.
C.D.
码号33 34 35 36
人数7 6 15 2
A.33 B.34 C.35 D.36
3. 视力表用来测量一个人的视力.如图是视力表的一部分,其中开口向下的两个“E”之间的变换是
A.平移B.旋转C.轴对称D.位似
4. 如图,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为()
A.9 B.8 C.7 D.6
5. 新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2016年销量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆.设年平均增长率为x,可列方程为()A.50.7(1+x)2=125.6 B.125.6(1﹣x)2=50.7
C.50.7(1+2x)=125.6 D.50.7(1+x2)=125.6
6. 生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下与全身的高度比值接近0.618,可以增加视觉美感,若图中为2米,则约为()
A.1.24米B.1.38米C.1.42米D.1.62米
7. 如图,四边形OABC是平行四边形,以点O为圆心,OA为半径的⊙O与BC相切于点B,CO的延长线交⊙O于点E,连接AE,若AB=2,则图中阴影的面积为().
A.B.π
C.
D.π
8. 将关于x的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如
…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,则
的值为()
A.3 B.4 C.5 D.6
二、填空题
9. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的的点数大于4的概率是______________.
10. 若△ABC∽△DEF,,且相似比为1:2,则△ABC与△DEF面积比
_____________.
11. 若关于的一元二次方程无实数根,则的取值范围是
_________.
12. 圆锥的母线长为5,圆锥高为3,则该圆锥的侧面积为____.(结果保留π)
13. 如图,AB是⊙O的直径,点C、D在⊙O上,若∠DAB=28°,则∠C的度数是____°.
14. 如图所示,将一量角器放置在一组平行线l1、l2、l3中,AB⊥l1,交l2于点
C、D两点,若BC=1,AC=3,则CD的长为____.
15. 将抛物线沿x轴向左平移2个单位,则平移后抛物线的解析式是__.
16. 《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.8米,BD=1米,BE=0.2米,那么井深AC为
____米.
三、解答题
17. 已知二次函数中,函数与自变量的部分对应值如下表:
…-1 0 1 2 3 4 …
…10 5 2 1 2 5 …
若,两点都在该函数的图象上,若≥,则m的取值范围为______.
四、填空题
18. 如图,已知矩形ABCD中,AB=6,BC=8,点F在边CD上,连接BF,沿BF 折叠矩形使点C落在点E处.连接AE,则AE长度的最小值为___.
五、解答题
19. 解方程
(1)
(2)
20. 为了迎接2021年江苏省“时代杯”数学竞赛,某校要从小孙和小周两名同学中挑选一人参加比赛,在最近的五次选拔测试中,两人的成绩等有关信息如
第一次第二次第三次
第四

第五次平均分方差
小孙75 90 75 90 70 a70
小周70 80 80 90 80 80 b
= = ;
(2)根据以上信息,若你是数学老师,你会选择谁参加比赛,理由是什么?
21. 在一个不透明的布袋中,有个红球,个白球,这些球除颜色外都相同.(1)搅匀后从中任意摸出个球,摸到红球的概率是________;
(2)搅匀后先从中任意摸出个球(不放回),再从余下的球中任意摸出个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)
22. 已知关于的一元二次方程的一根为2.
(1)用含的代数式表示;
(2)试说明:关于的一元二次方程总有两个不相等的实数根.
23. 如图,在阳光下,某一时刻,旗杆AB的影子一部分在地面上,另一部分在建筑物的墙面上.设旗杆AB在地上的影长BC为20m,墙面上的影长CD为4m;同一时刻,竖立于地面长1m的木杆的影长为0.8m,求旗杆AB的高度.
24. 如图,已知二次函数y=-x2+ax+1的图象经过点P(2,1).
(1)求a的值和图象的顶点坐标.
(2)点Q(m,n)在该二次函数图象上,
①当m=3时,求n的值;
②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.
25. 2021年世界园艺博览会在我市枣林湾举行,旅游景点销售一批印有会标的文化衫,平均每天可以售出20件,每件盈利40元,为了扩大销售,增加盈利,景点决定采取降价措施,经过一段时间的销售发现,文化衫的单价每降1元,平均每天可以多售出2件.
(1)若降价后商场销售这批文化衫每天盈利1200元,那么单价降了多少元?(2)当文化衫的单价降多少元时,才能使每天的利润最大?最大利润是多少?
26. 如图1,已知矩形ABCD中,AD=3,点E为射线BC上一点,连接DE,以DE为直径作⊙O
(1)如图2,当BE=1时,求证:AB是⊙O的切线
(2)如图3,当点E为BC的中点时,连接AE交⊙O于点F,连接CF,求证:CF=CD
(3)当点E在射线BC上运动时,整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值;若不存在,请说明理由.
27. 如图1,在△ABC中,AB=AC=10,BC=16,点D为BC边上的动点,以D为顶点作∠ADE=∠B,射线DE交AC边于点E.
(1)求证:△ABD∽△DCE;
(2)当DE∥AB时,求AE的长;
(3)如图2,在点D从点B运动到点C的过程中,过点A作AF⊥AD交射线DE 于点F,请直接写出点F运动的路径长.
28. 如图1,在△ABC中,∠B=30°,AB=4 cm,AC=6 cm,点D从点B出发以2cm/s的速度沿折线B—A—C运动,同时点E也从点B出发以1cm/s的速度沿BC运动,当某一点运动到C点时,两点同时停止运动.设运动时间为x(s),△BDE的面积为y(cm2).
(1)如图2,当点D在AC上运动时,x为何值,△ABD∽△ACB;
(2)求y(cm2)关于x(s)的函数表达式;
(3)当点D在AC上运动时,存在某一时段的△BDE的面积大于D在AB上运动的任意时刻的△BDE的面积,请你求出这一时段x的取值范围.。

相关文档
最新文档