大学《数据结构》ppt
《数据结构》课件

查找操作
顺序查找
二分查找
链表查找
在顺序存储结构的线性表中,查找操 作需要从线性表的第一个节点开始, 逐个比较节点的数据域,直到找到目 标数据或遍历完整个线性表。时间复 杂度为O(n)。
在有序的顺序存储结构的线性表中, 查找操作可以采用二分查找算法。每 次比较目标数据与中间节点的数据域 ,如果目标数据大于中间节点,则在 右半部分继续查找;否则在左半部分 查找。时间复杂度为O(log n)。
数据结构是算法的基础。许多算法的实现需要依赖于特定的数据结构, 因此掌握常见的数据结构是编写高效算法的关键。
数据结构在解决实际问题中具有广泛应用。无论是操作系统、数据库系 统、网络通信还是人工智能等领域,数据结构都发挥着重要的作用。
数据结构的分类
根据数据的逻辑关系,数据结构可以分为线性结构和非线 性结构。线性结构如数组、链表、栈和队列等,非线性结 构如树形结构和图形结构等。
04
数据结构操作
插入操作
顺序插入
在顺序存储结构的线性表中,插入操作 需要找到插入位置的前驱节点,修改前 驱节点的指针,使其指向新节点,然后 让新节点指向后继节点。如果线性表的 第一个节点是空节点,则将新节点作为 第一个节点。
VS
链式插入
在链式存储结构的线性表中,插入操作需 要找到插入位置的前驱节点,修改前驱节 点的指针,使其指向新节点。如果线性表 的第一个节点是空节点,则将新节点作为 第一个节点。
图
01
02
03
04
图是一种非线性数据结构,由 节点和边组成,其中节点表示 数据元素,边表示节点之间的
关系。
图具有网络结构,节点之间的 关系可以是任意复杂的,包括
双向、单向、无向等。
(2024年)《数据结构》全套课件

30
树形数据结构的查找算法
二叉排序树的查找
从根节点开始,若查找值小于当前节点 值,则在左子树中查找;若大于当前节 点值,则在右子树中查找。
VS
平衡二叉树的查找
在保持二叉排序树特性的基础上,通过旋 转操作使树保持平衡,提高查找效率。
2024/3/26
31
散列表的查找算法
散列函数的设计
将关键字映射为散列表中位置的函数。
过指针来表示。
链式存储的特点
逻辑上相邻的元素在物理位置上 不一定相邻;每个元素都包含数
据域和指针域。
链式存储的优缺点
优点是插入和删除操作不需要移 动元素,只需修改指针;缺点是
存储密度小、空间利用率低。
2024/3/26
11
线性表的基本操作与实现
插入元素
在线性表的指定位 置插入一个元素。
查找元素
在线性表中查找指 定元素并返回其位 置。
自然语言处理的应用
在自然语言处理中,需要处理大量的文本数据,数据结构中的字符 串、链表、树等可以很好地支持文本的处理和分析。
41
数据结构在计算机网络中的应用
2024/3/26
路由算法的实现
计算机网络中的路由算法需要大量的数据结构支持,如最短路径 树、距离向量等。
网络流量的控制
在计算机网络中,需要对网络流量进行控制和管理,数据结构中的 队列、缓冲区等可以很好地支持流量的控制。
37
06
数据结构的应用与拓展
2024/3/26
38
数据结构在算法设计中的应用
01
作为算法设计的基 础
数据结构为算法提供了基本操作 和存储方式,是算法实现的重要 基础。
02
提高算法效率
数据结构ppt教学课件

Data Structure
2021/4/16
Page 21
逻辑结构
❖ 对数据元素之间存在的逻辑关系的描述; ❖ 可以用一个数据元素的集合和定义在此集合上的若干关系表示。
物理结构(存贮结构)
❖ 数据逻辑结构在计算机中的表示和实现。 ❖ 包含数据元素的映象和关系的映象。
非数值计算问题的数学模型正是本课程要讨论的数据结构。
Data Structure
2021/4/16
Page 11
例如
例1-1:图书馆的书目检索自动化问题
Data Structure
书目卡片
登录号: 书名: 作者名: 分类号: 出版单位: 出版时间: 价格:
2021/4/16
Page 12
例如
例1-1:图书馆的书目检索自动化问题
Data Structure
2021/4/16
Page 20
数据结构的形式定义
❖ 数据结构是一个二元组 Data_Structure=(D,S) 其中,D是数据元素的有限集,S是D上关系的有限集。
例如: list=(D,R) 其中:D={1,2,3,4,5,6,7}
R={<1,2>,<2,3>,<3,4>,<4,5>,<5,6>,<6,7>}
第一章 绪论
重点和难点
❖ 重点:了解有关数据结构的各个名词和术语的含义,以及语句频 度和时间复杂度、空间复杂度的估算。
❖ 难点:无
知识点
❖ 数据、数据元素、数据结构、数据类型、抽象数据类型、算法及 其设计原则、时间复杂度、空间复杂度
Data Structure
数据结构精选课件(ppt 82页)

10.01.2020
11
1.2 数据结构的内容
逻辑结构 存储结构 运算集合
10.01.2020
12
逻辑结构
定义: 数据的逻辑结构是指数据元素之间逻辑关系描述。
形式化描述: Data_Structure=(D,R)其中D是数据元素的
有限集,R是D上关系的有限集。
四类基本的结构 集合结构、线性结构、树型结构、图状结构。
10.01.2020
13
集合结构
定义: 结构中的数据元素之间除了同属于
一个集合的关系外,无任何其它关系。
例如:
集合
10.01.2020
14
线ቤተ መጻሕፍቲ ባይዱ结构
定义: 结构中的数据元素之间存在着一对
一的线性关系。
例如:
线性表
10.01.2020
15
树型结构
定义: 结构中的数据元素之间存在着一对
多的层次关系。
数据结构课件
用C语言描述
西北师范大学经济管理学院
----信息管理系
10.01.2020
1
第1章 绪 论
1.1 数据结构的基本概念(定义) 1.2 数据结构的内容(研究范围) 1.3 算法设计 1.4 算法描述工具 1.5 对算法作性能评价 1.6 数据结构与C语言表示
●1.7 关于学习数据结构
100001 张爱芬 女 345.67 145.45 30.00 451.12
100002 李 林 男 445.90 185.60 45.00 586.50
100003 刘晓峰 男 345.00 130.00 25.00 450.00
100004 赵 俊 女 560.90 225.90 65.00 721.80
数据结构ppt课件

数据结构的定义数据结构是计算机中存储、组织数据的方式,它定义了数据元素之间的逻辑关系以及如何在计算机中表示这些关系。
提高算法效率合适的数据结构可以显著提高算法的执行效率,降低时间复杂度和空间复杂度。
简化程序设计数据结构为程序设计提供了统一的抽象层,使得程序员可以更加专注于问题本身,而不是底层的数据表示和访问细节。
便于数据管理和维护良好的数据结构设计可以使得数据的管理和维护变得更加方便和高效。
数据结构的定义与重要性线性数据结构中的元素之间存在一对一的关系,如数组、链表、栈和队列等。
线性数据结构非线性数据结构中的元素之间存在一对多或多对多的关系,如树、图等。
非线性数据结构静态数据结构在程序运行期间不会发生改变,如数组、静态链表等。
静态数据结构动态数据结构在程序运行期间可以动态地添加或删除元素,如链表、动态数组等。
动态数据结构数据结构的分类01020304在计算机科学中,数据结构是算法设计和分析的基础,广泛应用于操作系统、编译原理、数据库等领域。
计算机科学在软件工程中,数据结构是软件设计和开发的重要组成部分,用于实现各种软件功能和性能优化。
软件工程在人工智能中,数据结构用于表示和处理各种复杂的数据和知识,如神经网络、决策树等。
人工智能在大数据处理中,数据结构用于高效地存储、管理和分析海量数据,如分布式文件系统、NoSQL 数据库等。
大数据处理数据结构的应用领域0102线性表是具有n个数据元素的有限序列创建、销毁、清空、判空、求长度、获取元素、修改元素、插入元素、删除元素等线性表的定义线性表的基本操作线性表的定义与基本操作03用一段地址连续的存储单元依次存储线性表的数据元素顺序存储结构的定义可以随机存取,即可以直接通过下标访问任意元素;存储密度高,每个节点只存储数据元素顺序存储结构的优点插入和删除操作需要移动大量元素;空间利用率不高,需要提前分配存储空间顺序存储结构的缺点链式存储结构的定义01用一组任意的存储单元存储线性表的数据元素,这组存储单元可以是连续的,也可以是不连续的链式存储结构的优点02插入和删除操作不需要移动大量元素,只需要修改指针;空间利用率高,不需要提前分配存储空间链式存储结构的缺点03不能随机存取,只能通过从头节点开始遍历的方式访问元素;存储密度低,每个节点除了存储数据元素外,还需要存储指向下一个节点的指针0102定义栈(Stack)是一种特殊的线性数据结构,其操作只能在一端(称为栈顶)进行,遵循后进先出(LIFO)的原则。
《数据结构》课件

第二章 线性表
1
线性表的顺序存储结构
2
线性表的顺序存储结构使用数组来存储元素,
可以快速随机访问元素。
3
线性表的常见操作
4
线性表支持常见的操作,包括插入、删除、 查找等,可以灵活地操作其中的元素。
线性表的定义和实现
线性表是一种数据结构,它包含一组有序的 元素,可以通过数组和链表来实现。
线性表的链式存储结构
线性表的链式存储结构使用链表来存储元素, 支持动态扩展和插入删除操作。
第三章 栈与队列
栈的定义和实现
栈是一种特殊的线性表,只能在一 端进行插入和删除操作,遵循后进 先出的原则。
队列的定义和实现
队列是一种特殊的线性表,只能在 一端进行插入操作,在另一端进行 删除操作,遵循先进先出的原则。
栈和队列的应用场景和操作
哈希表是一种高效的查找数据结构, 通过哈希函数将关键字映射到数组 中,实现快速查找。
排序算法包括冒泡排序、插入排序 和快速排序等,可以根据数据规模 和性能要求选择合适的算法。
结语
数据结构的学习心得 总结
学习数据结构需要掌握基本概念 和常见操作,通过实践和练习加 深理解和熟练度。
下一步学习计划的安 排
在掌握基本数据结构的基础上, 可以进一步学习高级数据结构和 算法,提升编程技能。
相关学习资源推荐
推荐一些经典的数据结构教材和 在线学习资源,如《算法导论》 和LeetCode等。
栈和队列在计算机科学中有许多应 用,如函数调用、表达式求值和作 业调度等。
第四章 树与二叉树
树的定义和性质
树是由节点和边组成的一种非线性数据结构,每个 节点可以有多个子节点。
二叉树的遍历方式
二叉树的遍历方式包括前序遍历、中序遍历和后序 遍历,可以按不同顺序输出节点的值。
数据结构ppt课件完整版

数据结构分类
根据数据元素之间关系的不同, 数据结构可分为线性结构、树形 结构、图形结构等。
4
数据结构重要性
01
02
03
提高算法效率
合理的数据结构可以大大 提高算法的执行效率,减 少时间和空间复杂度。
33
案例三:最小生成树在通信网络优化中应用
Kruskal算法
基于并查集实现,按照边的权值从小到大依次添加边,直到生成 最小生成树。
Prim算法
从某一顶点开始,每次选择与当前生成树最近的顶点加入,直到 所有顶点都加入生成树。
通信网络优化
最小生成树算法可用于通信网络优化,通过选择最优的通信线路 和节点,降低网络建设和维护成本。
2024/1/28
简化程序设计
数据结构的设计和实现可 以简化程序设计过程,提 高代码的可读性和可维护 性。
解决实际问题
数据结构是解决实际问题 的基础,如排序、查找、 图论等问题都需要依赖于 特定的数据结构。
5
相关术语解析
数据元素
数据元素是数据的基本 单位,通常作为一个整
体进行考虑和处理。
2024/1/28
02
队列的基本操作包括入队(enqueue)、出队( dequeue)、查看队首和队尾元素等。
03
队列的特点
2024/1/28
04
数据从队尾入队,从队首出队。
05
队列中元素的插入和删除操作分别在两端进行,因此也称 为双端操作。
06
队列中没有明显的头尾标记,通常通过计数器或循环数组 等方式实现。
15
栈和队列应用举例
数据结构严蔚敏PPT(完整版)

时间复杂度是衡量算法效率的重要指标,常见的 排序算法的时间复杂度有O(n^2)、O(nlogn)、 O(n)等。
查找的基本概念和算法
查找的基本概念
查找是指在一个已经有序或部分 有序的数据集合中,找到一个特 定的元素或一组元素的过程。
常见查找算法
常见的查找算法包括顺序查找 、二分查找、哈希查找等。
先进先出(FIFO)的数据 处理。
并行计算中的任务调度。
打印机的打印任务管理。
二叉树的层序遍历(宽度 优先搜索,BFS)。
04
树和图
树的基本概念和性质
树的基本概念
树是一种非线性数据结构,由节 点和边组成,其中节点表示实体 ,边表示实体之间的关系。
树的性质
树具有层次结构,节点按照层次 进行排列,每个节点最多只能有 一个父节点,除了根节点外。
isEmpty:判断队列是否为空。
enqueue:向队尾添加一个元素。
front 或 peek:查看队首元素。
dequeue:删除队首的元素。
栈和队列的应用
栈的应用 后进先出(LIFO)的数据处理。
括号匹配问题。
栈和队列的应用
队列的应用
深度优先搜索(DFS)。 表达式求值。
01
03 02
栈和队列的应用
数据结构严蔚敏ppt( 完整版)
contents
目录
• 绪论 • 线性表 • 栈和队列 • 树和图 • 排序和查找 • 数据结构的应用案例分析
01
绪论
数据结构的基本概念
总结词
数据结构是计算机存储和组织数据的方式,是算法和数据操 作的基础。
详细描述
数据结构是计算机科学中研究数据的组织和存储方式的学科 ,它决定了数据在计算机中的表示和关系。数据结构不仅包 括数据的逻辑结构,还涉及到数据的物理存储方式以及数据 的操作方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
栈
队列
递归
栈 ( Stack )
定义:是限定仅在表尾进行插入或删除操
作的线性表。 允许插入和删除的一端 出栈 称为栈顶(top),另一端 称为栈底(bottom) top
进栈
特点:后进先出 (LIFO)
bottom
an . . . . a1
栈的主要操作
Push (S, x); //进栈 Pop (S); //出栈 Top (S); //取栈顶 Setnull (S); //置空栈 Empty (S); //判栈空否 StackFull (S); //判栈满否 }
若栈不空且栈顶位置尚有其他方向未被探索, 则设定新的当前位置为: 沿顺时针方向旋转 找到的栈顶位置的下一相邻块; 若栈不空但栈顶位置的四周均不可通, 则{ 删去栈顶位置;// 从路径中删去该通道块 若栈不空,则重新测试新的栈顶位置, 直至找到一个可通的相邻块或出栈至栈空; }
表达式求值
限于二元运算符的表达式定义: 表达式 ::= (操作数) + (运算符) + (操作数) 操作数 ::= 简单变量 | 表达式 简单变量 :: = 标识符 | 无符号整数 Exp = S1 + OP + S2 前缀表示法OP + S1 + S2 中缀表示法 S1 + OP + S2 后缀表示法 S1 + S2 + OP
实际有效行为: while (*s)
putchar(*s++);
Seqstack *s ; Void LineEdit() { char ch ; Setnull(s); ch=getchar(); while (ch != EOF ) //EOF为全文结束符 { switch (ch) { case '#' : Pop(S); break; case '@': Setnull(S); break; // 重置S为空栈 default : Push(S, ch); break; } ch = getchar(); // 从终端接收下一个字符 }
//判栈满,满则返回1 else return 0; //否则返回0
}
初始化
void Setnull ( seqstack *S) //置空栈
{ S->top = -1 ; }
入栈
Seqstack *Push (seqstack *S, datatype x) //插入元素x为新的栈顶元素 { if (S->top= =maxsize - 1) { printf (―overflow‖) ; return null ; } else { S->top + + ; S->data[S->top ] = x ; } return s ; }
x
^
^
y
^ 元素y入队
x ^
y
^ 元素x出队
链式队列的定义
typedef int datatype; typedef struct node { datatype data; struct node *next; } linklist; typedef struct { linklist *rear, *front; } linkqueue; linkqueue *q ; //队列结点数据 //结点链指针
从原表达式求得后缀式方法
1) 设立暂存运算符的栈; 2) 设表达式的结束符为“#‖, 予设运算符栈 的栈底为“#‖ 3) 若当前字符是操作数,则直接发送给后缀
式;
4) 若当前运算符的优先数高于栈顶运算符, 则进栈; 5) 否则,退出栈顶运算符发送给后缀式; 6) ―(‖ 对它之前后的运算符起隔离作用,
行编辑程序
在用户输入一行的过程中,允许用户输入 出差错,并在发现有误时可以及时更正。 设立一个输入缓冲区,用以接受用户输入 的一行字符,然后逐行存入用户数据区; 并假设 “#‖为退格符,“@‖为退行符。 假设从终端接受两行字符: whli##ilr#e(s#*s)
outcha@putchar(*s=#++);
取栈顶元素 Datatype Top (seqstack *S )
//若栈空返回0, 否则栈顶元素读到x并返回
{ if ( Empty(S) ) { printf (―stack is empty‖) ; return null; } else return (S->data[S->top ] ); }
“)‖为自左括弧开始的表达式的结束符。
队列
定义:只允许在表的一端进行插入,而在
另一端删除元素的线性表。 在队列中,允许插入的一端叫队尾
(rear),
允许删除的一端称为对头(front)。
特点:先进先出 (FIFO)
出队列 入队列
a1 ,a2, a3,…,an
队 头 队 尾
链队列:队列的链式表示
顺序栈的基本运算:
判栈空
int Empty (seqstack *S) { if( S->top >=0 ) return 1 //判栈空,空则返回1 else return 0; //否则返回0 }
判栈满
int StackFull (seqstack *S) { if( S->top==maxsize -1 ) return 1 ;
base
e d c b a f 进栈溢出
top
base
d c b a
e 出栈
顺序栈的类型表示:
#define maxsize 64 typedef char datatype; typedef struct { //顺序栈定义 { datatype data[maxsize] ; int top; //栈顶指针 } seqstack; seqstack *s ;
else { p = q->front; q->front= q->front->next; free (p); return (q->front->data ); }
//新队头
循环队列 (Circular queue)
顺序队列—队列的顺序存储表示。用一组
地址连续的存储单元依次存放从队列头到队列 尾的元素,指针front和rear分别指示队头元素 和队尾元素的位置。 插入新的队尾元素,尾指针增1,rear = rear + 1, 删除队头元素,头指针增1, front = front + 1, 因此,在非空队列中,头指针始终指向队列头 元素,而尾指针始终指向队列尾元素的下一个 位置。 队满时再进队将溢出 解决办法:将顺序队列臆造为一个环状的空间, 形成循环(环形)队列
输 出 顺 序
void conversion () { int e ,N ; seqstact *S ; Setnull(S); scanf ("%d",&N); while (N) { Push(S, N % 8); N = N/8; } while (!Empty(S)) { e = Pop(S); printf ( "%d", e ); } } // conversion
//结点 //链指针
链式栈操作实现
入栈 Linkstack * Push ( linkstack *top, datatype x ) { linkstack *p ; *p = malloc( sizeof ( linkstack) ); p->data = x; p->next = top; return p; }
迷宫求解
通常用的是“穷举求解”的方法
# # # # # # # # # # # # # # # # # # # # # $ # # # # $ $ $ # # # # # $ $ # # # # # # # # # # # # # # # # # # # # # $ $ # # # # #
迷宫路径算法的基本思想
• 若当前位置“可通”,则纳入路径,继续 前进; • 若当前位置“不可通”,则后退,换方向 继续探索; • 若四周“均无通路”,则将当前位置从路 径中删除出去。
设定当前位置的初值为入口位置; do{ 若当前位置可通, 则{将当前位置插入栈顶; 若该位置是出口位置,则算法结束; 否则切换当前位置的相邻方块为新的 当前位置; } 否则 { ……….. } }while (栈不空);
取队头元素
int *Front ( Linkqueue *q ) { if ( Empty (q) ) return 0; return (q->front->next->data); }
入队
int Enqueue ( Linkqueue *q, datatype x ) {linklist *p = malloc( sizeof ( linklist ) ); p->data = x; p->next = NULL; if ( q->front == NULL )
//空,创建第一个结点
q->front = q->rear = p; else q->rear->next = p; //入队 q->rear =p; return 1; }
出队
datatype Dequeue ( Linkqueue *q)
//删去队头结点,并返回队头元素的值 { if ( Empty (q) ) return 0; //判队空
链式栈:栈的链接表示
链式栈无栈满问题,空间可扩充 插入与删除仅在栈顶处执行 链式栈的栈顶在链头 适合于多栈操作