辽宁省本溪市2014年中考数学试卷(含解析)
中考数学试卷真题本溪

中考数学试卷真题本溪本溪市中考数学试卷真题第一部分:选择题(共15小题,每小题2分,共30分)1.计算:(2/5)^2÷(8/3)2.如果a+b=4,a-b=2,则a的值为多少?3.已知正方形的边长是6cm,求它的周长。
4.已知二次函数y=ax^2+bx+c的图象与x轴相交于A(1,0)、B(3,0),且在点C(-1,6)处有最小值6,求a,b,c的值。
5.某商品原价为3万元,现在打八五折出售,打折后的价格是多少?6.已知AB=3cm,AC=4cm,BC=5cm,求三角形ABC的面积。
7.根据著名的欧拉定理,用到3个数的最小正整数倍数等于这3个数的乘积,而用到5个数的最小正整数倍数等于这5个数的乘积,那么用到2、3、5这三个数的最小正整数倍数等于多少?8.某数的平方是2809,这个数是多少?9.小明的妈妈买了一盒鸡蛋,打碎后剩下3/4,其中有一个完整的蛋壳,剩下的鸡蛋是多少只?10.将0.15写成最简分数。
11.已知三角形ABC中,∠ABC=90°,AB=5cm,BC=12cm,求∠BAC的大小。
12.已知三角形ABC中,AB=AC,∠BAC=100°,求∠ACB的大小。
13.某批货物的零售价是800元,商家按进价的125%出售,则商家的利润是多少元?14.已知函数y=2x^2-4x,求x=3时,y的值。
15.化简:(0.03^4 + 0.04^4)÷(0.03^2 + 0.04^2)第二部分:填空题(共7小题,每小题2分,共14分)16.一个正方形的面积是36平方米,边长是几米?17.计算:55×9÷11-1318.直线y=2x+1与x轴交于点A,与y轴交于点B,交于点C,求三角形ABC的周长。
19.已知等差数列的首项是2,公差是3,求该等差数列的第7项。
20.已知实数a,满足a+1=3,求a的值。
21.已知等差数列的首项是9,公差是2,求该等差数列的前6项和。
辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题 3 分,共 30 分)1、一次数学考题考生约 12 万名,从中抽取 5000 名考生的数学成绩进行解析,在这个问题中样本指的是( )A5000 B5000 名考生的数学成绩 C12 万考生的数学成绩 D5000 名考生2、用配方法解一元二次方程 x 2-4x-1=0,配方后得到的方程是( )A(x―2) 2 =1 B(x―2) 2 =4 C(x―2) 2 =5 D(x―2) 2 =33、已知⊙O l与⊙O2的半径分别为 3cm和 4cm,圆心距为 8cm,则两圆的位置关系是( )A内含 B内切 C相交 D外离4、用下列同一种正多边形不能作平面镶嵌的是( )A正三角形 B正四边形 C正六边形 D正七边形6、如图,在⊙O 中,∠B=37º,则劣弧 AB 的度数为( )A106º B126º C74º D53º7、函数中自变量 x 的取值范围是( )8、如图,AB 是⊙O 的直径,C、D 是 AB 的三等分点,如果⊙O的半径为l,P 是线段 AB 上的任意—点,则图中阴影部分的面积为( )9、式子有意义,则点 P(a,b)在( )A第一象限 B第二象限 C第三象限 D第四象限10、如图,PA 切⊙O于点A,割线 PBC 经过圆心O,OB=PB=1,OA绕点O逆时针方向转60º到 OD,则 PD 的长为( )二、填空题(每小题 3 分共 24 分)11、如果―4 是关于 x 的一元二次方程 2x2+7x―k=0 的一个根,则 k 的值为______。
12、已知⊙O 的弦 AB 的长为 6cm,圆心 O 到 AB 的距离为 3cm,则⊙O 的半径为___cm。
13、用换元法解方程那么原方程可变形为_________。
14、已知正六边形的半径为 20cm,则它的外接圆与内切圆组成的圆环的面积是______cm 2。
辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案一、选择题(共10小题,每小题2分,满分20分)1.(2分)方程x2﹣2x=0的根是()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣22.(2分)已知sina=,且a是锐角,则a=()A.75° B.60° C.45° D.30°3.(2分)下列方程中,有实数根的是()4.(2分)已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣95.(2分)在半径为6cm的圆中,长为2πcm的弧所对的圆周角的度数是()A.30° B.45° C.60° D.90°6.(2分)在同一直角坐标系中,正比例函数y=﹣3x与反比例函数的图象的交点个数()A.3 B.2 C.1 D.07.(2分)如图,⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()8.(2分)样本8,8,9,10,12,12,12,13的中位数和众数分别是()A.11,3 B.10,12 C.12,12 D.11,129.(2分)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1 B.d=5 C.1≤d≤5 D.1<d<510.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()二、填空题(共10小题,每小题2分,满分20分)11.(2分)函数的自变量x的取值范围是_____________.12.(2分)已知x≤1,化简=_____________.13.(2分)设x1,x2是方程2x2﹣4x﹣3=0的两个根,则=_____________.14.(2分)方程的解是___________.15.(2分)已知a<0,那么点P(﹣a2﹣2,2﹣a)关于x轴的对称点P′在第___________象限.16.(2分)已知:如图,⊙O的弦AB平分弦CD,AB=10,CD=8.且PA<PB,则PB﹣PA =__________.17.(2分)半径分别为3cm和4cm的圆,一条内公切线长为7cm,则这条内公切线与连心线所夹的锐角的度数是__________度.18.(2分)小华用一张直径为20cm的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的面积是__________cm2.19.(2分)为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量如下(单位:千克):3.0,3.4,3.1,3.3,3.2,在这个问题中,样本方差是__________.20.(2分)矩形ABCD中,AB=3,AD=2,则以该矩形的一边为轴旋转一周而所得到的圆柱的表面积为__________.三、解答题(共10小题,满分80分)21.(5分)已知,求a3b+ab3的值.22.(5分)已知:如图,P是⊙O外一点,PA切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,PC=1cm,怎样求出图中阴影部分的面积S?写出你的探求过程.23.(6分)解方程:24.(8分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,井定期进行体能测试.下面是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,分成三组,画出的频率分布直方图的一部分.已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数是9.(1)请将频率分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?(4)这次测试中,你能肯定该班学生成绩的众数和中位数各落在哪一个组内吗?(只需写出能或不能,不必说明理由)25.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?26.(8分)为了农田灌溉的需要,某乡利用一土堤修筑条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的上堆在两旁,使土堤高度比原来增加0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.27.(8分)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=)28.(10分)已知如图,抛物线y=ax2+bx+c过点A(﹣1,0),且经过直线y=x﹣3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.29.(10分)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.(1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)30.(12分)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x 轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.(1)求证:PC⊥OA;(2)若△APO为等边三角形,求直线AB的解析式;(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,解析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.。
辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。
辽宁省本溪市中考数学试卷(含答案)

22本溪市初中毕业生学业考试数学试卷(考试时间120分钟 试卷满分150分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分) A .-8 B.8 C.±8 D.-812.在平面直角坐标系中点A (-2,3)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限 3. 不等式2x-4≥0的解集在数轴上表示为A. B. C. D.4.一个正方体的平面展开图如图所示,将它折成正方体后“保”字的对面是 A. 碳 B.低 C.环 D.色(第4题图)5.八边形的内角和是A.360°B. 720°C.1080°D. 1440°6. 一个不透明的布袋中装着只有颜色不同的红、黄、白色三种小球,其中红色小球有8个,黄、白色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,然后放回袋中,再次搅匀……多次试验发现摸到红球的频率是61,则估计黄色小球的数目是A.2个B.20个C.40个D.48个7.如图所示,已知圆锥的母线长6cm ,底面圆的半径为3cm ,则此圆锥侧面展开图的圆心角是 A.30° B.60° C.90° D.180°8.如图所示,若菱形OABC 的顶点O 为坐标原点,点C 在x 轴上,直线y=x 经过点A ,菱形面积是2,则经过点B 的反比例函数表达式为个图形中共有 个三角形三、解答题(17题6分、18题8分,共14分) 17.8 +3³(-31)-2-(2010-π)0-4sin45°18.化简求值:当a=2,求代数式169622-++a a a ÷823-+a a -42+a a 的值.四、解答题(每题10分,共20分)19. 如图所示,在边长为1的小正方形组成的网格中,△ABC 的顶点均在格点上,请按要求完成下列各题:(1)将△ABC 沿着BC 边所在的直线翻折180°,得到△A 1BC ,再将△A 1BC 绕着点B 逆时针旋转90°,得到△A 2BC 1.请依次画出△A 1BC 、△A 2BC 1.(2)求△A 1BC 旋转到△A 2BC 1过程中所扫过的面积(计算结果用π表示)(第20题图)20. 甲、乙二人玩抽牌游戏,甲手中的牌是2、2、3、4,乙手中的牌是3、4、5、5,两人分别从对方牌中任意抽取一张(彼此看不到对方的牌面),然后将牌上的数字相加,若和为奇数则甲赢,否则乙赢.(1)请用“列表法”或“树状图法”求出甲赢的概率.(2)这个游戏公平吗?若公平,请说明理由;若不公平,请在甲、乙手中各选择一张牌进行交换使游戏公平,写出一种方案即可(不必说明理由).五、解答题(每题10分,共20分)21. 为了解某地区20万读者对工具书、小说、诗歌、漫画四类图书的喜爱情况,根据老年人、成年人、青少年各年龄段的实际人口比例3:5:2,随机抽取一定数量的读者进行调查(每人只选一类图书),统计结果如下(所绘统计图不完整):(1)本次调查了名读者,其中青少年有名.(2)补全两幅统计图.(3)请估计该地区成年人中喜爱小说的读者大约有多少人?C22. 已知:如图所示,在△ABC 中,∠A=45°,以AB 为直径的⊙O 交AC 于点D ,且AD=DC ,CO 的延长线交⊙O 于点E ,过点E 作弦EF ⊥AB ,垂足为G. (1)求证:BC 是⊙O 的切线.(2)若AB=2,求EF 的长.(第22题图)六、解答题(23题10分,24题12分,共22分)23. 如图所示,一轮船向正东方向航行,在A 处测得灯塔P 在北偏东60°方向,航行40海里后到达B 处,此时测得灯塔P 在北偏东15°方向. (1)求灯塔P 到轮船的航线(直线AB )的距离PD 是多少?(2)当轮船在B 处继续向东航行时,一艘快艇从灯塔P 处 前往D 处,已知快艇的速度是轮船速度的2倍,但轮船比 快艇早15分钟到达D 处,求轮船的速度.(3≈1.73,结果精确到0.1海里/时) (第23题图)A24. 自6月1日起我省开始实施家电以旧换新政策,政府对以旧换新的家电给予补贴,具体要点如下表:100台.这批货的进价和售价如下表:y元,商场所获利润为w元(利润=售价-进价)。
辽宁省本溪中考数学试题及答案()

辽宁省本溪市中考数学试卷一、选择题(每题3分,共24分)1、2-的相反数是( )A 、12-B 、12C 、2D 、±22、如图是某几何体得三视图,则这个几何体是( )A 、球B 、圆锥C 、圆柱D 、三棱体315 )A 、2B 、4C 、15D 、164、一元二次方程2104x x -+=的根( ) A 、121122x x ==-, , B 、1222x x ==-, C 、1212x x ==- D 、1212x x == 5、在一次数学竞赛中,某小组6名同学的成绩(单位:分)分别是69、75、86、92、95、88.这组数据的中位数是( )A 、79B 、86C 、92D 、876、如图,在Rt △ABC 中,∠C=90°,AB=10,BC=8,DE 是△ABC 的中位线,则DE 的长度是( )A 、3B 、4C 、4.8D 、57、反比例函数(0)k y k x=≠的图象如图所示,若点A (11x y ,)、B (22x y ,)、C (33x y ,)是这个函数图象上的三点,且1230x x x >>>,则123y y y 、、的大小关系( )A 、312y y y <<B 、213y y y <<C 、321y y y <<D 、123y y y <<8、如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值( )A 、2B 、4C 、22D 、42 二、填空题(每题3分,共24分)9、函数14y x =-中的自变量x 的取值范围__________。
10、掷一枚质地均匀的正方体骰子,骰子的六个面上分别有1至6的点数,则向上一面的点数是偶数的概率__________。
11、如图:AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠AEF .EG ⊥FG于点G ,若∠BEM=50°,则∠CFG= __________。
辽宁省本溪市中考数学试卷(A卷)
辽宁省本溪市中考数学试卷(A卷)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各数中,最小的实数是()A . -B . -C . -2D .2. (2分)若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,该图中上面左为主视图、右为左视图、下为俯视图,则一堆方便面共有()A . 5桶B . 6桶C . 9桶D . 12桶3. (2分) (2017八上·建昌期末) 已知等腰三角形的一边长5cm,另一边长8cm,则它的周长是()A . 18cmB . 21cmC . 18cm或21cmD . 无法确定4. (2分)(2018·惠山模拟) 如果一个多边形的内角和是外角和的3倍,那么这个多边形是()A . 五边形B . 六边形C . 七边形D . 八边形5. (2分)(2018·河南模拟) 如图,已知,点A(0,0)、B(4 ,0)、C(0,4),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1 ,第2个△B1A2B2 ,第3个△B2A3B3 ,…则第2017个等边三角形的边长等于()A .B .C .D .6. (2分) (2017九上·西湖期中) 下列说法中,正确的是().A . 买一张电影票,座位号一定是奇数B . 投掷一枚均匀的硬币,正面一定朝上C . 从,,,,这五个数字中任意取一个数,取得奇数的可能性大D . 三个点一定可以确定一个圆7. (2分)一个正方形的面积是15,估计它的边长大小在()A . 2与3之间B . 3与4之间C . 4与5之间D . 5与6之间8. (2分)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A .B .C .D .9. (2分) PA、PB切⊙O于A、B,C为上一点,过C作⊙O的切线交PA、PB于M、N,若△PMN的周长为10cm,则切线长PA等于()A . 5cmB . 6cmC . 8cmD . 10cm10. (2分)若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A . m<﹣4B . m>﹣4C . m<4D . m>4二、细心填一填 (共6题;共6分)11. (1分)计算|﹣|+的值是________.12. (1分) (2020八上·昌平期末) 六个正整数的中位数是4.5,众数是7,极差是6,这六个正整数的和为________.13. (1分)(2018·黄梅模拟) 已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=________cm.14. (1分)(2017·开江模拟) 从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x的不等式组有解,且使关于x的一元一次方程 +1= 的解为负数的概率为________.15. (1分) (2020九下·台州月考) 如图,把平面内一条数轴x绕点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:已知点P是平面斜坐标系中任意一点,过点P作y轴的平行线交x轴于点A,过点P作x轴的平行线交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在平面斜坐标系中,若θ=45°,点P的斜坐标为(1,2 ),点G的斜坐标为(7,﹣2 ),连接PG,则线段PG的长度是________.16. (1分) (2018九上·前郭期末) 如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x 轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是________.三、专心解一解 (共9题;共87分)17. (10分) (2017七下·萧山期中) 解方程组(1)(2).18. (5分) (2015九上·重庆期末) 如图,已知:在△AFD和△CEB中,点A,E,F,C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.19. (10分)(2019·鄂尔多斯模拟)(1)解不等式组,并求出其所有整数解的和;(2)先化简,再求值:,其中.20. (5分)如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.(1)求证:直线CD为⊙O的切线;(2)当AB=2BE,且CE=时,求AD的长.21. (16分)如图,△ABC是等边三角形,AB=6.动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D,以PD为边向右作矩形PDEF,且PA=PF,点M为AC中点,连接PM.设矩形PDEF与△ABC重叠部分的面积为S,点P运动的时间为t(t>0)秒.(1)填空:PD=________(用含t的代数式表示).(2)当点F落在BC上时,求t的值.(3)求S与t之间的函数关系式.(4)直接写出直线PM将矩形PDEF分成两部分的面积比为1:3时t的值.22. (10分) (2018八上·建平期末) 某校八年级一班20名女生某次体育测试的成绩统计如下:成绩(分)60708090100人数(人)15x y2(1)如果这20名女生体育成绩的平均分数是82分,求x、y的值;(2)在(1)的条件下,设20名学生测试成绩的众数是a,中位数是b,求的值.23. (6分) (2017九上·柳江期中) 已知函数图象如图所示,根据图象可得:(1)抛物线顶点坐标________;(2)对称轴为________;(3)当x=________时,y有最大值是________;(4)当________时,y随着x得增大而增大。
2014年辽宁省本溪市联合体中考数学二模试卷---
2014年辽宁省本溪市联合体中考数学二模试卷2014年辽宁省本溪市联合体中考数学二模试卷一、选择题(各题的被选的答案中只有一个是正确的,选出正确答案,每小题3分,共30分)1.(3分)(2012•深圳)﹣3的倒数是()A.3B.﹣3 C.D.2.(3分)(2014•本溪二模)某种细胞的直径为0.0000007m,用科学记数法表示为(保留两个有效数字)()A.0.70×10﹣4m B.7×10﹣7m C.7.0×10﹣7m D.0.7×10﹣6m3.(3分)(2014•本溪二模)下列计算正确的是()A.x3+x3=2x6B.x2﹣x3=x6C.x6÷x3=x2D.(﹣x3)2=x64.(3分)(2012•扬州)如图是由几个相同的小立方块搭成的几何体的三视图,则这个几何体的小立方块的个数是()A.4个B.5个C.6个D.7个5.(3分)(2006•深圳)下列不等式组的解集,在数轴上表示为如图所示的是()A.B.C.D.6.(3分)(2014•本溪二模)下列说法正确的是()A.要了解一批灯泡的使用寿命,采用普查的方式B.平均数相同的甲、乙两组数据,若甲组数据的方差S=0.2,S=0.01,则乙组数据比甲组数据稳定C.某次抽奖,中奖概率为1%,小李抽取了100张彩票,一定有两张中奖D.随机掷一枚质地均匀的硬币,若第一次正面朝上,则第二次一定反面朝上7.(3分)(2014•本溪二模)数据21,21,26,25,21,25,26,27的众数、中位数分别是()A.21,23 B.21,21 C.23,21 D.21,258.(3分)(2014•本溪二模)小丁和同学一起去书店买书,他们先用48元买了同一种史学书若干本,又用48元买了同一种天文书若干本,史学书的单价是天文书的1.5倍,因此他们所买的史学书比天文书少一本,若设天文书的单价为x元,则可列方程为()A.B.C.D.9.(3分)(2014•本溪二模)二次函数y=ax2+bx+c的图象如图所示,有下列结论:①b2﹣4ac<0;②ab>0;③a﹣b+c=0;④4a+b=0;⑤当y=2时,x只能等于0,其中正确的有()A.3个B.2个C.1个D.4个10.(3分)(2014•本溪二模)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定二、填空题(每题3分,共24分)11.(3分)(2014•本溪二模)函数的自变量x的取值范围是_________.12.(3分)(2014•本溪二模)一组数据4,6,3,x,5的平均数是2x,则这组数据的方差为_________.13.(3分)(2014•本溪二模)在一个不透明的袋中装有除颜色不同外其余都相同的红球6个,白球若干个,从袋中随机摸出一球,摸到白球的概率为,则袋中有_________个白球.14.(3分)(2014•本溪二模)如图,正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕点D顺时针方向旋转90°后,点B旋转到点B′的位置,则OB′的长为_________.15.(3分)(2012•攀枝花)底面半径为1,高为的圆锥的侧面积等于_________.16.(3分)(2014•本溪二模)如图,在直角坐标系中,已知平行四边形ABCD的面积为6,顶点A在双曲线y=上,CD 与y轴重合,点B在x轴上,则k的值为_________.17.(3分)(2014•本溪二模)如图,Rt△ACB,∠ACB=90°,∠B=30°,DE是中位线,将△DBE绕点D逆时针旋转180°,E到了点E′的位置,则四边形ACE′E的形状是_________.18.(3分)(2014•本溪二模)如图,已知AB∥CD,∠A=α,∠C=β,∠ABC和∠CDA的平分线交于E1,∠E1BC和∠E1DA 的平分线交于E2,∠E2BC和∠E2DA的平分线交于E3,按如此方式继续下去…,用α,β的代数式表示∠BE n D的度数为_________.三、解答题(本题满分22分)19.(12分)(2014•本溪二模)(1)计算:|﹣3|﹣×(π﹣3)0+cos60°+(﹣)﹣2;(2)先化简,再求值:(﹣a+1)÷,其中a=﹣3.20.(10分)(2013•烟台)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有_________人,m=_________,n=_________;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是_________度;(3)请补全图1示数的条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.四、解答题21.(12分)(2014•本溪二模)如图,线段AB、DC分别表示甲、乙两建筑物的高,AB⊥BC于B,DC⊥BC于C,从B 点测得D点的仰角α为60°从A点测得D点的仰角β为15°,已知甲建筑物AB的高为36米.(1)求∠ADC的度数为_________;(2)求乙建筑物的高.22.(12分)(2014•本溪二模)如图,BC是⊙O的直径,A是⊙O上一点,AD⊥BC于D,连接AC,∠DAC=∠CAP.AP 交BC的延长线于P.(1)求证:PA是⊙O的切线;(2)若DC=3cm,CP=5cm,求⊙O的直径BC的长.五、(满分12分)23.(12分)(2014•本溪二模)甲、乙两车分别从A、B两地沿直线同时匀速前往C地,最终到达C地(A、B、C三地顺次在同一直线上).设甲、乙两车行驶x(时)后,与B地相距的距离分别为y1(千米)和y2(千米),y1、y2与x的函数关系如图.(1)A、B两地距离为_________;(2)点P的坐标为_________;点P表示的实际意义是_________;(3)两车行驶几小时,甲车遇到乙车?六、(满分12分)24.(12分)(2014•本溪二模)某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件.若该店零售A、B两种文具的日销量y(件)与零售价x(元/件)均成如图的一次函数关系.(1)求y与x的函数关系式;(2)该店计划这次选购A、B两种文具的数量共100件,所花资金不超过1000元,并希望全部售完获利不低于296元,若按A种文具每件零售价为16元和B种文具每件可获利2元计算,则该店这次有哪几种进货方案?(3)若A种文具的零售价比B种文具的零售价高2元/件,求两种文具每天的销售利润W(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天的销售利润最大?七、解答题(满分12分)25.(12分)(2014•本溪二模)如图,已知四边形ABCD是菱形,∠B=60°,点P是直线BC上一点,作∠APQ=60°,PQ 交DC所在直线于Q,连接AQ.(1)当点P在线段BC上时,如图1,则△APQ的形状是_________;(2)当点P在线段BC的延长线上,如图2,(1)的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)当点P在线段BC的反向延长线上时,(1)中的结论是否成立?请在备用图上画出图形,直接写出结论.八、解答题(满分14分)26.(14分)(2014•本溪二模)如图,抛物线y=﹣x2+bx+c经过A(﹣2,0),B(0,4)两点,过点B作BC∥x轴交抛物线于C,连接AC.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的一个动点,设点P的横坐标为t,△PAC的面积为S,求S与t的函数关系式;(3)连接OC,在直线OC的右侧的坐标平面上是否存在点M,使△MOC与△AOB相似?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.2014年辽宁省本溪市联合体中考数学二模试卷参考答案与试题解析一、选择题(各题的被选的答案中只有一个是正确的,选出正确答案,每小题3分,共30分)1.(3分)(2012•深圳)﹣3的倒数是()A.3B.﹣3 C.D.考点:倒数.分析:直接根据倒数的定义进行解答即可.解答:解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选D.点评:本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.(3分)(2014•本溪二模)某种细胞的直径为0.0000007m,用科学记数法表示为(保留两个有效数字)()A.0.70×10﹣4m B.7×10﹣7m C.7.0×10﹣7m D.0.7×10﹣6m考点:科学记数法与有效数字.分析:将一个绝对值小于1的数表示成a×10n的形式.其规律如下:a是整数数位只有一位的数,n为该数第一个非零数字前面所有零的个数(包括小数点前面的那个零).有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.解答:解:0.0000007=7.0×10﹣7.故选:C.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3.(3分)(2014•本溪二模)下列计算正确的是()A.x3+x3=2x6B.x2﹣x3=x6C.x6÷x3=x2D.(﹣x3)2=x6考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项对A进行判断;根据同底数幂的乘法法则对B进行判断;根据同底数幂的除法法则对C进行判断;根据幂的乘方与积的乘方对D进行判断.解答:解:A、x3+x3=2x3,所以A选项不正确;B、x2•x3=x5,所以B选项不正确;C、x6÷x3=x3,所以C选项不正确;D、(﹣x3)2=x6,所以D选项正确.故选D.点评:本题考查了同底数幂的除法:a m÷a n=m m﹣n(m、n为正整数,m>n).也考查了同底数幂的乘法、幂的乘方与积的乘方以及合并同类项.4.(3分)(2012•扬州)如图是由几个相同的小立方块搭成的几何体的三视图,则这个几何体的小立方块的个数是()A.4个B.5个C.6个D.7个考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.(3分)(2006•深圳)下列不等式组的解集,在数轴上表示为如图所示的是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:分别解出各个不等式组,进行检验就可以.解答:解:由A得,∴不等式组无解;由B得,∴不等式组的解集为x<﹣2;由C得,∴不等式组无解;由D得,∴不等式组的解集为﹣1<x≤2.故选D.点评:命题立意:考查不等式组的解法.求不等式组解集的规律:同大取大,同小取小,大小、小大取中间,大大、小小是无解.6.(3分)(2014•本溪二模)下列说法正确的是()A.要了解一批灯泡的使用寿命,采用普查的方式B.平均数相同的甲、乙两组数据,若甲组数据的方差S=0.2,S=0.01,则乙组数据比甲组数据稳定C.某次抽奖,中奖概率为1%,小李抽取了100张彩票,一定有两张中奖D.随机掷一枚质地均匀的硬币,若第一次正面朝上,则第二次一定反面朝上考点:全面调查与抽样调查;方差;随机事件;概率的意义.分析:根据全面调查和抽样调查得意义可得A应采用抽样调查;根据方差的意义:方差小,数据波动小可得B正确;再根据概率的意义可得C、D错误.解答:解:A、要了解一批灯泡的使用寿命,采用普查的方式不合适,破坏性较强,应采用抽样调查,故此选项错误;B、平均数相同的甲、乙两组数据,若甲组数据的方差S=0.2,S=0.01,则乙组数据比甲组数据稳定,说法正确;C、某次抽奖,中奖概率为1%,小李抽取了100张彩票,一定有两张中奖,说法错误;D、随机掷一枚质地均匀的硬币,若第一次正面朝上,则第二次一定反面朝上,说法错误;故选:B.点评:此题主要考查了抽样调查、全面调查、方差以及概率,关键是熟练掌握各知识点.7.(3分)(2014•本溪二模)数据21,21,26,25,21,25,26,27的众数、中位数分别是()A.21,23 B.21,21 C.23,21 D.21,25考点:众数;中位数.分析:根据众数及中位数的定义,进行求解即可.解答:解:将数据从小到大排列为:21,21,21,25,25,26,26,27,众数为21;中位数为25.故选D.点评:本题考查了众数及中位数的定义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).8.(3分)(2014•本溪二模)小丁和同学一起去书店买书,他们先用48元买了同一种史学书若干本,又用48元买了同一种天文书若干本,史学书的单价是天文书的1.5倍,因此他们所买的史学书比天文书少一本,若设天文书的单价为x元,则可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:根据题意可得天文书的单价为x元,则史学书的单价1.5x元,根据题意可得等量关系:48元买的天文书的数量=48元买的史学书的数量+1,根据等量关系列出方程即可.解答:解:设天文书的单价为x元,则史学书的单价1.5x元,由题意得:=+1,故选:A.点评:此题主要考查了由实际问题抽象出分式方程,解决问题的关键是分析题意找出相等关系.9.(3分)(2014•本溪二模)二次函数y=ax2+bx+c的图象如图所示,有下列结论:①b2﹣4ac<0;②ab>0;③a﹣b+c=0;④4a+b=0;⑤当y=2时,x只能等于0,其中正确的有()A.3个B.2个C.1个D.4个考点:二次函数图象与系数的关系.菁优网版权所有分析:由抛物线的开口方向判断a与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①如图,∵抛物线与x轴有2个交点,∴b2﹣4ac>0.故①错误;②如图,∵抛物线的开口方向向下,∴a<0.∵对称轴x=﹣=2,∴b=﹣4a>0,∴ab<0.故②错误;③如图,∵当x=﹣1时,y=0,∴a﹣b+c=0.故③正确;④如图,∵对称轴x=﹣=2,∴b=﹣4a,∴4a+b=0.故④正确;⑤如图,当y=2时,根据抛物线的对称性,x有2个值.故⑤错误.综上所述,正确的结论有③④,共2个.故选B.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.10.(3分)(2014•本溪二模)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定考点:等边三角形的判定与性质;全等三角形的判定与性质.分析:过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.解答:解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选B.点评:本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.二、填空题(每题3分,共24分)11.(3分)(2014•本溪二模)函数的自变量x的取值范围是x≤1.考点:二次根式有意义的条件;函数自变量的取值范围.分析:根据二次根式的意义,列不等式求x的取值范围.解答:解:根据二次根式的意义,1﹣x≥0,解得x≤1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.(3分)(2014•本溪二模)一组数据4,6,3,x,5的平均数是2x,则这组数据的方差为2.考点:方差.分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.解答:解:由平均数的公式得:(4+6+3+x+5)÷5=2x,解得x=2;则方差=[(4﹣2)2+(6﹣2)2+(3﹣2)2+(2﹣2)2+(5﹣2)2]÷5=2.故答案为:2.点评:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.13.(3分)(2014•本溪二模)在一个不透明的袋中装有除颜色不同外其余都相同的红球6个,白球若干个,从袋中随机摸出一球,摸到白球的概率为,则袋中有3个白球.考点:概率公式.分析:首先设白球有x个,根据题意,利用概率公式即可得方程:=,解此方程即可求得答案.解答:解:设白球有x个,根据题意得:=,解得:x=3.故答案为3.点评:此题考查了概率公式的应用.此题难度不大,注意掌握方程思想的应用,概率=所求情况数与总情况数之比.14.(3分)(2014•本溪二模)如图,正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕点D顺时针方向旋转90°后,点B旋转到点B′的位置,则OB′的长为4.考点:坐标与图形变化-旋转.分析:利用旋转的性质得出B′位置,进而利用坐标系直接得出OB′的长.解答:解:如图所示:将正方形ABCD绕点D顺时针方向旋转90°后,点B旋转到点B′的位置,则OB′的长为:4.故答案为:4.点评:此题主要考查了坐标与图形的变化,利用旋转的性质得出B′位置是解题关键.15.(3分)(2012•攀枝花)底面半径为1,高为的圆锥的侧面积等于2π.考点:圆锥的计算.分析:由于高线,底面的半径,母线正好组成直角三角形,故母线长可由勾股定理求得,再由圆锥侧面积=底面周长×母线长计算.解答:解:∵高线长为,底面的半径是1,∴由勾股定理知:母线长==2,∴圆锥侧面积=底面周长×母线长=×2π×2=2π.故答案为:2π.点评:本题考查圆锥的侧面积表达公式应用,需注意应先算出母线长.16.(3分)(2014•本溪二模)如图,在直角坐标系中,已知平行四边形ABCD的面积为6,顶点A在双曲线y=上,CD 与y轴重合,点B在x轴上,则k的值为﹣6.考点:平行四边形的性质;反比例函数图象上点的坐标特征.分析:设点A的坐标为:(x,y),由平行四边形ABCD的面积为6,CD与y轴重合,点B在x轴上,可得}xy}=6,继而求得答案.解答:解:∵平行四边形ABCD的面积为6,CD与y轴重合,点B在x轴上,∴S▱ABCD=AB•CD=6,设点A的坐标为:(x,y),∴|xy|=6,∵点A在第二象限,∴xy=﹣6,∵顶点A在双曲线y=上,∴k=﹣6.故答案为:﹣6.点评:此题考查了平行西四边形的性质以及反比例函数的性质.此题难度适中,注意掌握数形结合思想的应用.17.(3分)(2014•本溪二模)如图,Rt△ACB,∠ACB=90°,∠B=30°,DE是中位线,将△DBE绕点D逆时针旋转180°,E到了点E′的位置,则四边形ACE′E的形状是菱形.考点:旋转的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥AC且DE=AC,根据性质的性质可得DE=DE′,从而得到EE′=BC,根据一组对边平行且相等的四边形是平行四边形可得四边形ACE′E是平行四边形,根据直角三角形30°角所对的直角边等于斜边的一半可得AC=AB,从而得到AC=AE,然后根据邻边相等的四边形是菱形解答.解答:解:∵DE是中位线,∴DE∥AC且DE=AC,由旋转的性质得,DE=DE′,∴EE′=BC,∴四边形ACE′E是平行四边形,∵∠ACB=90°,∠B=30°,∴AC=AB,∵DE是中位线,∴AE=AB,∴AC=AE,∴四边形ACE′E是菱形.故答案为:菱形.点评:本题考查了旋转的性质,菱形的判定,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质并熟悉平行四边形与菱形的联系是解题的关键.18.(3分)(2014•本溪二模)如图,已知AB∥CD,∠A=α,∠C=β,∠ABC和∠CDA的平分线交于E1,∠E1BC和∠E1DA 的平分线交于E2,∠E2BC和∠E2DA的平分线交于E3,按如此方式继续下去…,用α,β的代数式表示∠BE n D的度数为(α+β).考点:平行线的性质;三角形内角和定理.专题:规律型.分析:根据平行线的性质得∠ABC=β,∠ADC=α,再根据角平分线的定义得∠ABE1=β,∠ADE1=α,然后利用三角形内角和定理得到∠BE1D+∠ADE1=∠A+∠ABE1,即∠BE1D+α=α+β,则∠BE1D=(α+β),同理得∠BE2D=(α+β),∠BE3D=(α+β),再利用前面的结论可得到∠BE n D=(α+β).解答:解:∵AB∥CD,∠A=α,∠C=β,∴∠ABC=β,∠ADC=α,∵∠ABC和∠CDA的平分线交于E1,∴∠ABE1=β,∠ADE1=α∵∠BE1D+∠ADE1=∠A+∠ABE1,即∠BE1D+α=α+β,∴∠BE1D=(α+β),∵∠E1BC和∠E1DA的平分线交于E2,∴∠ABE2=β,∠ADE2=α,∵∠BE2D+∠ADE2=∠A+∠ABE2,即∠BE1D+α=α+β,∴∠BE2D=(α+β),同理得∠BE3D=(α+β),∴∠BE n D=(α+β).故答案为(α+β).点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形内角和定理.三、解答题(本题满分22分)19.(12分)(2014•本溪二模)(1)计算:|﹣3|﹣×(π﹣3)0+cos60°+(﹣)﹣2;(2)先化简,再求值:(﹣a+1)÷,其中a=﹣3.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:(1)分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质、数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合混合运算的法则把原式进行化简,再把a的值代入进行计算即可.解答:解:(1)原式=3﹣8×1++4=﹣;(2)原式=[﹣]•=•=.当a=﹣3时,原式==﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键20.(10分)(2013•烟台)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有400人,m=15%,n=35%;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是126度;(3)请补全图1示数的条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.考点:游戏公平性;扇形统计图;条形统计图;列表法与树状图法.分析:(1)根据“基本了解”的人数以及所占比例,可求得总人数;在根据频数、百分比之间的关系,可得m,n的值;(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D部分扇形所对应的圆心角;(3)根据D等级的人数为:400×35%=140;可得(3)的答案;(4)用树状图列举出所有可能,进而得出答案.解答:解:(1)利用条形图和扇形图可得出:本次参与调查的学生共有:180÷45%=400;m=×100%=15%,n=1﹣5%﹣15%﹣45%=35%;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是:360°×35%=126°;(3)∵D等级的人数为:400×35%=140;如图所示:;(4)列树状图得:所以从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,则小明参加的概率为:P==,小刚参加的概率为:P==,故游戏规则不公平.故答案为:400,15%,35%;126.点评:此题主要考查了游戏公平性,涉及扇形统计图的意义与特点,即可以比较清楚地反映出部分与部分、部分与整体之间的数量关系.四、解答题21.(12分)(2014•本溪二模)如图,线段AB、DC分别表示甲、乙两建筑物的高,AB⊥BC于B,DC⊥BC于C,从B 点测得D点的仰角α为60°从A点测得D点的仰角β为15°,已知甲建筑物AB的高为36米.(1)求∠ADC的度数为75°;(2)求乙建筑物的高.考点:解直角三角形的应用-仰角俯角问题.分析:(1)根据从B点测得D点的仰角α为60°,得出∠ABD和∠BDC的度数,再根据从A点测得D点的仰角β为15°,得出∠BAD和∠ADB的度数,最后根据∠ADC=∠ADB+∠BDC计算即可;(2)先过点A作AE⊥BD于E,在Rt△ABE中,根据∠ABE=30°求出AE、BE,在Rt△AED中,根据∠ADB=45°求出DE、BD,最后根据在Rt△DBC中,DC=BD•sin60°即可得出答案.解答:解:(1)∵从B点测得D点的仰角α为60°,∴∠ABD=30°,∠BDC=30°,∵从A点测得D点的仰角β为15°,∴∠BAD=105°,∴∠ADB=180°﹣30°﹣105°=45°,∴∠ADC=30°+45°=75°;故答案为:75°.(2)过点A作AE⊥BD于E,在Rt△ABE中,∠ABE=30°AE=AB•sin30°=36×=18BE=AB•cos30°=36×=18,在Rt△AED中,∠ADB=45°DE==18,BD=BE+EB=18+18=18(+1),在Rt△DBC中,DC=BD•sin60°=18(+1)•=27+9,则乙建筑物的高为(27+9)米.点评:本题考查了解直角三角形的应用,用到的知识点是仰角的定义,关键是能借助仰角构造直角三角形并解直角三角形.22.(12分)(2014•本溪二模)如图,BC是⊙O的直径,A是⊙O上一点,AD⊥BC于D,连接AC,∠DAC=∠CAP.AP 交BC的延长线于P.(1)求证:PA是⊙O的切线;(2)若DC=3cm,CP=5cm,求⊙O的直径BC的长.考点:切线的判定;相似三角形的判定与性质.分析:(1)连接OA,证明OA⊥AP即可;(2)过点C作CE⊥AP于E,证得PEC∽△PAO,设⊙O半径为Rcm,利用相似三角形的对应边的比相等得到后即可求得半径.解答:解:(1)证明:连接OA,∵AD⊥BC于D,∴∠ADC=90°,∴∠DAC+∠ACD=90°,∵OA=OC,∴∠OAC=∠OCA,∵∠DAC=∠CAP,∴∠OAC+∠CAP=90°∴∠OAP=90°,∵OA为半径,∴PA是⊙O的切线;(2)过点C作CE⊥AP于E∵∠DAC=∠CAP,CD⊥AD于D,CE⊥AP于E∴CE=CD=3,∵∠OAP=∠CEP=90°,∠P=∠P,∴△PEC∽△PAO,∴,设⊙O半径为Rcm,,R=∴⊙O的直径BC的长为15cm.点评:本题考查了切线的判定,解决切线问题时,常作的辅助线是连接圆心和切点.五、(满分12分)23.(12分)(2014•本溪二模)甲、乙两车分别从A、B两地沿直线同时匀速前往C地,最终到达C地(A、B、C三地顺次在同一直线上).设甲、乙两车行驶x(时)后,与B地相距的距离分别为y1(千米)和y2(千米),y1、y2与x的函数关系如图.(1)A、B两地距离为50千米;(2)点P的坐标为(,);点P表示的实际意义是甲、乙两车行驶小时,甲、乙两车距B地距离相等均为千米,乙车在甲车前面;(3)两车行驶几小时,甲车遇到乙车?考点:一次函数的应用.分析:(1)根据题意,甲开始时的距离即为A、B两地间的距离;(2)求出0≤x≤0.5时甲的函数解析式,乙的解析式然后联立求解即可,再根据y值相等解答;(3)利用追及问题的等量关系列出方程求解即可.解答:解:(1)由图可知,A、B两地距离为50千米;(2)0≤x≤0.5时,甲:设函数解析式为y=kx+b,则,解得,。
2014年辽宁省本溪市中考数学试题及参考答案(word解析版)
2014年辽宁省本溪市中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.14-的倒数是()A.﹣4 B.4 C.14D.14-2.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a53.如图的几何体的俯视图是()A.B.C.D.4.如图,AB∥CD,AD与BC相交于点O,∠B=30°,∠D=40°,则∠AOC的度数为()A.60°B.70°C.80°D.90°5.如图,在▱ABCD中,AB=4,BC=6,∠B=30°,则此平行四边形的面积是()A.6 B.12 C.18 D.246.某中学排球队则这个队员年龄的众数是()A.12岁B.13岁C.14岁D.15岁7.底面半径为4,高为3的圆锥的侧面积是()A.12πB.15πC.20πD.36π8.若实数a,b满足ab<0,且a<b,则函数y=ax+b的图象可能是()A.B.C.D.9.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A.1 B.2 C.3 D.410.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数kyx=(x>0)的图象上,已知点B的坐标是611,55⎛⎫⎪⎝⎭,则k的值为()A.4 B.6 C.8 D.10二、填空题(本大题共8小题,每小题3分,共24分)11.目前发现一种病毒直径约是0.0000252米,将0.0000252用科学记数法表示为.12.分解因式:a3﹣4a=.13.一个数的算术平方根是2,则这个数是.14.在一个不透明的盒子中放入标号分别为1,2,…,9的形状、大小、质地完全相同的9个球,充分混合后,从中取出一个球,标号能被3整除的概率是.15.在△ABC中,∠B=45°,cosA=12,则∠C的度数是.16.关于x,y的方程组2x y mx my n-=⎧⎨+=⎩的解是13xy=⎧⎨=⎩,则|m+n|的值是.17.已知关于x的一元二次方程x2+bx+c=0,从﹣1,2,3三个数中任取一个数,作为方程中b的值,再从剩下的两个数中任取一个数作为方程中c的值,能使该一元二次方程有实数根的概率是.18.如图,已知∠AOB=90°,点A 绕点O 顺时针旋转后的对应点A 1落在射线OB 上,点A 绕点A 1顺时针旋转后的对应点A 2落在射线OB 上,点A 绕点A 2顺时针旋转后的对应点A 3落在射线OB 上,…,连接AA 1,AA 2,AA 3…,依次作法,则∠AA n A n+1等于 度.(用含n 的代数式表示,n 为正整数)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:2222111x x x x x x x ⎛⎫+-÷ ⎪--+⎝⎭,其中()10112x π-⎛⎫=-- ⎪⎝⎭ 20.(12分)某中学对全校1200名学生进行“校园安全知识”的教育活动,从1200名学生中随机抽取部分学生进行测试,成绩评定按从高分到低分排列分为A 、B 、C 、D 四个等级,绘制了图①、图②两幅不完整的统计图,请结合图中所给信息解答下列问题: (1)求本次抽查的学生共有多少人? (2)将条形统计图和扇形统计图补充完整; (3)求扇形统计图中“A”所在扇形圆心角的度数; (4)估计全校“D”等级的学生有多少人?四、解答题(第21题12分,第22题12分,共24分)21.(12分)晨光文具店用进货款1620元购进A 品牌的文具盒40个,B 品牌的文具盒60个,其中A 品牌文具盒的进货单价比B 品牌文具盒的进货单价多3元. (1)求A 、B 两种文具盒的进货单价?(2)已知A 品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B 品牌文具盒的销售单价最少是多少元?22.(12分)如图,已知在R △ABC 中,∠B=30°,∠ACB=90°,延长CA 到O ,使AO=AC ,以O 为圆心,OA 长为半径作⊙O 交BA 延长线于点D ,连接CD . (1)求证:CD 是⊙O 的切线;(2)若AB=4,求图中阴影部分的面积.五、解答题(满分12分)23.(12分)某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.(1)求∠ABC的度数;(2)A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).)六、解答题(满分12分)24.(12分)国家推行“节能减排\低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相等,销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系式y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系式y B=﹣x+14.(1)求A、B两种型号的汽车的进货单价;(2)已知A型汽车的售价比B型汽车的人售价高2万元/台,设B型汽车售价为t万元/台.每周销售这两种车的总利润为W万元,求W与t的函数关系式,A、B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?七、解答题(满分12分)25.(12分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.八、解答题(满分14分)26.(14分)如图,直线y=x﹣4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B 两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.14-的倒数是()A.﹣4 B.4 C.14D.14-【知识考点】倒数【思路分析】根据负数的倒数是负数,结合倒数的定义直接求解.【解答过程】解:14-的倒数是﹣4,故选:A.【总结归纳】本题考查了倒数的定义,理解定义是关键.2.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a5【知识考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【思路分析】根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.【解答过程】解:A、2a3与a2不是同类项不能合并,本项错误;B、(3a)2=9a2,本项错误;C、(a+b)2=a2+2ab+b2,本项错误;D、2a2•a3=2a5,正确,故选:D.【总结归纳】本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.3.如图的几何体的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答过程】解:从上面看得到右下角少了一部分的正方形,并且右边的边少的与剩下的差不多.故选:D.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.如图,AB∥CD,AD与BC相交于点O,∠B=30°,∠D=40°,则∠AOC的度数为()A.60°B.70°C.80°D.90°【知识考点】平行线的性质;三角形的外角性质.【思路分析】利用平行线的性质和三角形外角等于和它不相邻的两个内角的和的性质就可求出.解答:解:∵AB∥CD,∴∠A=∠D=30°,再由三角形的外角的性质得,∠AOC=∠A+∠B=70°.故选B.【总结归纳】本题考查了平行线的性质以及三角形的外角的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.5.如图,在▱ABCD中,AB=4,BC=6,∠B=30°,则此平行四边形的面积是()A.6 B.12 C.18 D.24【知识考点】平行四边形的性质;含30度角的直角三角形.【思路分析】过点A作AE⊥BC于E,根据含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半可求出AE的长,利用平行四边形的面积根据即可求出其面积.【解答过程】解:过点A作AE⊥BC于E,∵直角△ABE中,∠B=30°,∴AE=AB=×4=2∴平行四边形ABCD面积=BC•AE=6×2=12,故选B.【总结归纳】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.6.某中学排球队12名队员的年龄情况如下表:则这个队员年龄的众数是()A.12岁B.13岁C.14岁D.15岁【知识考点】众数.【思路分析】根据众数定义:一组数据中出现次数最多的数据叫众数,可知15出现的次数最多.【解答过程】解:数据14出现了5次,最多,为众数,故选:C.【总结归纳】此题主要考查了众数,关键是把握众数定义.7.底面半径为4,高为3的圆锥的侧面积是()A.12πB.15πC.20πD.36π【知识考点】圆锥的计算.【思路分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答过程】解:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故选B.【总结归纳】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.8.若实数a,b满足ab<0,且a<b,则函数y=ax+b的图象可能是()A.B.C.D.【知识考点】一次函数图象与系数的关系.【思路分析】利用ab<0,且a<b得到a<0,b>0,然后根据一次函数图象与系数的关系进行判断.【解答过程】解:∵ab<0,且a<b,∴a<0,b>0,∴函数y=ax+b的图象经过第二、四象限,且与y轴的交点在x轴上方.故选A.【总结归纳】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).9.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A.1 B.2 C.3 D.4【知识考点】相似三角形的判定与性质;等边三角形的性质.【思路分析】利用两对相似三角形,线段成比例:AB:BD=AE:EF,CD:CF=AE:EF,可得CF=2.【解答过程】解:∵△ABC和△AD E均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.故选:B.【总结归纳】本题考查了相似三角形的判定与性质和等边三角形的性质.此题利用了“两角法”证得两个三角形相似.10.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数kyx=(x>0)的图象上,已知点B的坐标是611,55⎛⎫⎪⎝⎭,则k的值为()A.4 B.6 C.8 D.10【知识考点】正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.【思路分析】过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB=AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k.【解答过程】解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∵正方形的边长为2,B(,),∴BE=,AE==,∴OF=OE+AE+AF=++=5,∴点D的坐标为(,5),∵顶点D在反比例函数y=(x>0)的图象上,∴k=xy=×5=8.故选C.【总结归纳】本题考查了正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.目前发现一种病毒直径约是0.0000252米,将0.0000252用科学记数法表示为.【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=2.52,10的指数为﹣5.【解答过程】解:0.0000252=2.52×10﹣5米.故答案为:2.52×10﹣5.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.分解因式:a3﹣4a=.【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答过程】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【总结归纳】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.13.一个数的算术平方根是2,则这个数是.【知识考点】算术平方根.【思路分析】利用算术平方根的定义计算即可得到结果.【解答过程】解:4的算术平方根为2,故答案为:4【总结归纳】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.14.在一个不透明的盒子中放入标号分别为1,2,…,9的形状、大小、质地完全相同的9个球,充分混合后,从中取出一个球,标号能被3整除的概率是.【知识考点】概率公式.【思路分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答过程】解:根据题意可知,共有9个球,能被3整除的有3个,故标号能被3整除的概率为=,故答案为:.【总结归纳】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.在△ABC中,∠B=45°,cosA=12,则∠C的度数是.【知识考点】特殊角的三角函数值;三角形内角和定理.【思路分析】由条件根据∠A的余弦值求得∠A 的值,再根据三角形的内角和定理求∠C即可.【解答过程】解:∵在△ABC中,cosA=12,∴∠A=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.【总结归纳】本题主要考查特殊角的余弦值以及三角形的内角和定理,属基础题.16.关于x,y的方程组2x y mx my n-=⎧⎨+=⎩的解是13xy=⎧⎨=⎩,则|m+n|的值是.【知识考点】二元一次方程组的解.【思路分析】将x与y的值代入方程组计算求出m与n的值,即可确定出所求式子的值.【解答过程】解:将x=1,y=3代入方程组得:,解得:m=﹣1,n=﹣2,则|m+n|=|﹣1﹣2|=|﹣3|=3.故答案为:3【总结归纳】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.17.已知关于x的一元二次方程x2+bx+c=0,从﹣1,2,3三个数中任取一个数,作为方程中b的值,再从剩下的两个数中任取一个数作为方程中c的值,能使该一元二次方程有实数根的概率是.【知识考点】列表法与树状图法;根的判别式.【思路分析】先利用树状图展示所有6种等可能的结果数,再根据判别式的意义得到当b=2,c=﹣1;b=3,c=﹣1;b=3,c=2时,该一元二次方程有实数根,然后根据概率公式计算.【解答过程】解:画树状图为:,共有6种等可能的结果数,因为b2﹣4c≥0,所以能使该一元二次方程有实数根占3种,即b=2,c=﹣1;b=3,c=﹣1;b=3,c=2,所以能使该一元二次方程有实数根的概率==.故答案为.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了根的判别式.18.如图,已知∠AOB=90°,点A绕点O顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1,AA2,AA3…,依次作法,则∠AA n A n+1等于度.(用含n的代数式表示,n为正整数)【知识考点】旋转的性质;等腰三角形的性质.【思路分析】根据旋转的性质得OA=OA1,则根据等腰三角形的性质得∠AA1O=,同理得到A1A=A1A2,根据等腰三角形的性质和三角形外角性质得到∠AA2A1=∠AA1O=,同样得到∠AA3A2=,于是可推广得到∠AA n A n﹣1=,然后利用邻补角的定义得到∠AA n+1A n=180°﹣.【解答过程】解:∵点A绕点O顺时针旋转后的对应点A1落在射线OB上,∴OA=OA1,∴∠AA1O=,∵点A绕点A1顺时针旋转后的对应点A2落在射线OB上,∴A1A=A1A2,∴∠AA2A1=∠AA1O=,∵点A绕点A2顺时针旋转后的对应点A3落在射线OB上,∴A2A=A2A3,∴∠AA 3A 2=∠AA 2A 1=,∴∠AA n A n ﹣1=,∴∠AA n+1A n =180°﹣. 故答案为:180﹣.【总结归纳】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰三角形的性质. 三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:2222111x x x x x x x ⎛⎫+-÷ ⎪--+⎝⎭,其中()10112x π-⎛⎫=-- ⎪⎝⎭ 【知识考点】分式的化简求值;零指数幂;负整数指数幂.【思路分析】先计算括号内的分式的减 法,把分式除法转化为乘法运算进行化简.最后代入求值. 【解答过程】解:原式=[﹣]÷,=×,=.x=()﹣1﹣(π﹣1)0+,=2﹣1+=1+则原式==+1.【总结归纳】本题考查了分式的化简求值,零指数幂和负整数指数幂.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.(12分)某中学对全校1200名学生进行“校园安全知识”的教育活动,从1200名学生中随机抽取部分学生进行测试,成绩评定按从高分到低分排列分为A 、B 、C 、D 四个等级,绘制了图①、图②两幅不完整的统计图,请结合图中所给信息解答下列问题: (1)求本次抽查的学生共有多少人? (2)将条形统计图和扇形统计图补充完整; (3)求扇形统计图中“A”所在扇形圆心角的度数; (4)估计全校“D”等级的学生有多少人?【知识考点】条形统计图;用样本估计总体;扇形统计图.【思路分析】(1)根据A等级有12人,占20%,即可求得抽查的总人数;(2)根据百分比的定义求得B、D所占的百分比,以及C、D类的人数,即可解答;(3)利用360°乘以对应的百分比即可求解;(4)利用总人数1200乘以对应的百分比.【解答过程】解:(1)12÷20%=60(人);(2)B所占的百分比是:×100%=40%,D所占的百分比是:1﹣20%﹣40%﹣30%=10%.C的个数是:60×30%=18,D的个数是:60×10%=6.(3)360°×20%=72°;(4)1200×10%=120(人).答:估计全校“D”等级的学生有120人.【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题(第21题12分,第22题12分,共24分)21.(12分)晨光文具店用进货款1620元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A品牌文具盒的进货单价比B品牌文具盒的进货单价多3元.(1)求A、B两种文具盒的进货单价?(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少元?【知识考点】一元一次不等式的应用;一元一次方程的应用.【思路分析】(1)设A品牌文具盒的进价为x元/个,根据晨光文具店用进货款1620元,可得出方程,解出即可;(2)设B品牌文具盒的销售单价为y元,根据全部售完后利润不低于500元,可得出不等式,解出即可.【解答过程】解:(1)设A品牌文具盒的进价为x元/个,依题意得:40x+60(x﹣3)=1620,解得:x=18,x﹣3=15.答:A品牌文具盒的进价为18元/个,B品牌文具盒的进价为15元/个.(2)设B品牌文具盒的销售单价为y元,依题意得:(23﹣18)×40+60(y﹣15)≥500,解得:y≥20.答:B品牌文具盒的销售单价最少为20元.【总结归纳】本题考查了一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.(12分)如图,已知在R△ABC中,∠B=30°,∠ACB=90°,延长CA到O,使AO=AC,以O 为圆心,OA长为半径作⊙O交BA延长线于点D,连接CD.(1)求证:CD是⊙O的切线;(2)若AB=4,求图中阴影部分的面积.【知识考点】切线的判定;扇形面积的计算.【思路分析】(1)连接OD,求出∠OAD=60°,得出等边三角形OAD,求出AD=OA=AC,∠ODA=∠O=60°,求出∠ADC=∠ACD=∠OAD=30°,求出∠ODC=90°,根据切线的判定得出即可;(2)求出OD,根据勾股定理求出CD长,分别求出三角形ODC和扇形AOD的面积,相减即可.【解答过程】(1)证明:连接OD,∵∠BCA=90°,∠B=30°,∴∠OAD=∠BAAC=60°,∵OD=OA,∴△OAD是等边三角形,∴AD=OA=AC,∠O DA=∠O=60°,∴∠ADC=∠ACD=∠OAD=30°,∴∠ODC=60°+30°=90°,即OD⊥DC,∵OD为半径,∴CD是⊙O的切线;(2)解:∵AB=4,∠ACB=90°,∠B=30°,∴OD=OA=AC=AB=2,由勾股定理得:CD===2,∴S阴影=S△ODC﹣S扇形AOD=×2×2﹣=2﹣π.【总结归纳】本题考查了扇形的面积,切线的判定,含30度角的直角三角形的性质,勾股定理,等边三角形的性质和判定的应用,主要考查学生综合运用性质进行推理和计算的能力,综合性比较强,有一定的难度.五、解答题(满分12分)23.(12分)某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.(1)求∠ABC的度数;(2)A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).)【知识考点】解直角三角形的应用-方向角问题.【思路分析】(1)根据两直线平行,同旁内角互补,即可得到∠DBA的度数,则∠ABC即可求得;(2)作AH⊥BC于点H,分别在直角△ABH和直角△ACH中,利用三角函数求得BH和CH的长,则BC即可求得,进而求得时间.【解答过程】解:(1)∵BD∥AE,∴∠DBA+∠BAE=180°,∴∠DBA=180°﹣72°=108°,∴∠ABC=108°﹣78°=30°;(2)作AH⊥BC于点H,∴∠C=180°﹣72°﹣33°﹣30°=45°,∵∠ABC=30°,∴AH=AB=12,∵sinC=,∴AC===12.则A到出事地点的时间是:≈≈0.57小时.答:约0.57小时能到达出事地点.【总结归纳】本题主要考查了方向角含义,正确记忆三角函数的定义是解决本题的关键.六、解答题(满分12分)24.(12分)国家推行“节能减排\低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相等,销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系式y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系式y B=﹣x+14.(1)求A、B两种型号的汽车的进货单价;(2)已知A型汽车的售价比B型汽车的人售价高2万元/台,设B型汽车售价为t万元/台.每周销售这两种车的总利润为W万元,求W与t的函数关系式,A、B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?【知识考点】二次函数的应用;分式方程的应用.【思路分析】(1)利用花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相等,进而得出等式求出即可;(2)分别表示出两种汽车的利润进而得出函数关系式求出最值即可.【解答过程】解:(1)设A种型号的汽车的进货单价为m万元,依题意得:=,解得:m=10,检验:m=10时,m≠0,m﹣2≠0,故m=10是原分式方程的解,故m﹣2=8.答:A种型号的汽车的进货单价为10万元,B种型号的汽车的进货单价为8万元;(2)根据题意得出:W=(t+2﹣10)[﹣(t+2)+20]+(t﹣8)(﹣t+14)=﹣2t2+48t﹣256=﹣2(t﹣12)2+32,∵a=﹣2<0,抛物线开口向下,∴当t=12时,W有最大值为32,12+2=14,答:A种型号的汽车售价为14万元/台,B种型号的汽车售价为14万元/台时,每周销售这两种车的总利润最大,最大总利润是32万元.【总结归纳】此题主要考查了二次函数的应用以及二次函数最值的求法,得出W与x的函数关系式是解题关键.七、解答题(满分12分)25.(12分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【知识考点】全等三角形的判定与性质;等腰三角形的性质;三角形中位线定理;旋转的性质.【思路分析】(1)因为AF是直角三角形ABE的中线,所以BE=2AF,然后通过△ABE≌△ACD即可求得.(2)延长EA交BC于G,在AG上截取AH=AD,证出△ABH≌△ACD从而证得BH=CD,然后根据三角形的中位线等于底边的一半,求得BH=2AF,即可求得.【解答过程】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在RT△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,在△ABH与△ACD中∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.【总结归纳】本题考查了三角形全等的判定和性质,等腰三角形的性质,三角形中位线的性质等.八、解答题(满分14分)26.(14分)如图,直线y=x﹣4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B 两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.【知识考点】二次函数综合题.【思路分析】(1)首先求出点A、B的坐标,然后利用待定系数法求出抛物线的解析式,进而求出点C的坐标;(2)满足条件的点M有两种情形,需要分类讨论:①当BM⊥BC时,如答图2﹣1所示;②当BM与BC关于y轴对称时,如答图2﹣2所示.(3)△CPQ的三边均可能成为菱形的对角线,以此为基础进行分类讨论:①若以CQ为菱形对角线,如答图3﹣1.此时BQ=t,菱形边长=t;②若以PQ为菱形对角线,如答图3﹣2.此时BQ=t,菱形边长=t;③若以CP为菱形对角线,如答图3﹣3.此时BQ=t,菱形边长=5﹣t.【解答过程】解:(1)直线解析式y=x﹣4,令x=0,得y=﹣4;令y=0,得x=4.∴A(4,0)、B(0,﹣4).∵点A、B在抛物线y=x2+bx+c上,∴,解得,∴抛物线解析式为:y=x2﹣x﹣4.。
辽宁省本溪市中考数学真题试题(含解析)
辽宁省本溪市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数是正数的是()A.0 B.5 C.﹣D.﹣2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列计算正确的是()A.x7÷x=x7B.(﹣3x2)2=﹣9x4C.x3•x3=2x6D.(x3)2=x64.(3分)6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为()A.9.56×106B.95.6×105C.0.956×107D.956×1045.(3分)下表是我市七个县(区)今年某日最高气温(℃)的统计结果:县(区)平山区明山区溪湖区南芬区高新区本溪县恒仁县气温(℃)26 26 25 25 25 23 22 则该日最高气温(℃)的众数和中位数分别是()A.25,25 B.25,26 C.25,23 D.24,256.(3分)不等式组的解集是()A.x>3 B.x≤4 C.x<3 D.3<x≤47.(3分)如图所示,该几何体的左视图是()A.B.C.D.8.(3分)下列事件属于必然事件的是()A.打开电视,正在播出系列专题片“航拍中国”B.若原命题成立,则它的逆命题一定成立C.一组数据的方差越小,则这组数据的波动越小D.在数轴上任取一点,则该点表示的数一定是有理数9.(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140 D.﹣140=10.(3分)如图,点P是以AB为直径的半圆上的动点,CA⊥AB,PD⊥AC于点D,连接AP,设AP=x,PA﹣PD=y,则下列函数图象能反映y与x之间关系的是()A.B.C.D.二、填空题(本題共8小题,每小题3分,共24分)11.(3分)若在实数范围内有意义,则x的取值范围为.12.(3分)函数y=5x的图象经过的象限是.13.(3分)如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是.14.(3分)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相们比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.15.(3分)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG 交AD于点P,若AP=3,则点P到BD的距离为.16.(3分)如图所示的点阵中,相邻的四个点构成正方形,小球只在点阵中的小正方形ABCD 内自由滚动时,则小球停留在阴影区域的概率为.17.(3分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.18.(3分)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n的代数式表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值(﹣)÷,其中a满足a2+3a﹣2=0.20.(12分)某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.22.(12分)小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列向题.(1)求AC的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).五、解答题(满分12分)23.(12分)某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?六、解答题(满分12分)24.(12分)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.七、解答题(满分12分)25.(12分)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O 是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).八、解答题(满分14分)26.(14分)抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.辽宁省本溪市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:0既不是正数,也不是负数;5是正数;和都是负数.故选:B.2.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是中心对称图形,不是轴对称图形,故本选项不符合题意;D、不是中心对称图形,是轴对称图形,故本选项不符合题意.故选:B.3.【解答】解:A、x7÷x=x6,故此选项错误;B、(﹣3x2)2=9x4,故此选项错误;C、x3•x3=x6,故此选项错误;D、(x3)2=x6,故此选项正确;故选:D.4.【解答】解:将数据9560000科学记数法表示为9.56×106.故选:A.5.【解答】解:∵在这7个数中,25(℃)出现了3次,出现的次数最多,∴该日最高气温(℃)的众数是25;把这组数据按照从小到大的顺序排列位于中间位置的数是25,则中位数为:25;故选:A.6.【解答】解:,由①得:x>3,由②得:x≤4,则不等式组的解集为3<x≤4,故选:D.7.【解答】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.8.【解答】解:A、打开电视,正在播出系列专题片“航拍中国”,是随机事件,不合题意;B、若原命题成立,则它的逆命题一定成立,是随机事件,不合题意;C、一组数据的方差越小,则这组数据的波动越小,是必然事件,符合题意;D、在数轴上任取一点,则该点表示的数一定是有理数,是随机事件,不合题意;故选:C.9.【解答】解:设甲型机器人每台x万元,根据题意,可得:,故选:A.10.【解答】设:圆的半径为R,连接PB,则sin∠ABP=,∵CA⊥AB,即AC是圆的切线,则∠PDA=∠PBA=α,则PD=AP sinα=x×=x2,则y=PA﹣PD=﹣x2+x,图象为开口向下的抛物线,故选:C.二、填空题(本題共8小题,每小题3分,共24分)11.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.12.【解答】解:函数y=5x的图象经过一三象限,故答案为:一、三13.【解答】解:根据题意得:△=16﹣4k≥0,解得:k≤4.故答案为:k≤4.14.【解答】解:以点O为位似中心,相们比为,把△ABO缩小,点A的坐标是A(4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).15.【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.16.【解答】解:如图所示,AD与直线的交点为E,AB与直线的交点为F,根据题意可知,AF=,∴=,∴小球停留在阴影区域的概率为:1﹣.故答案为:17.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,∴S△BDO=S△AOD,∵S四边形ABDO=S△ADO+S△ABD=S△BDO+S△AOB,∴S△AOB=S△ABD=,过B作BH⊥OA于H,∴OH=AH,∴S△OBH=,∵反比例函数y=(x>0)的图象经过点B,∴k的值为,故答案为:.18.【解答】解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x轴,C3D3⊥x 轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=故答案为:三、解答题(第19题10分,第20题12分,共22分)19.【解答】解:(﹣)÷=[]=()===,∵a2+3a﹣2=0,∴a2+3a=2,∴原式==1.20.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)1000×=300(人)答:这1000名学生中有300人参加了羽毛球社团;(4)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.四、解答题(第21题12分,第22题12分,共24分)21.【解答】证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=622.【解答】解:(1)过F作FH⊥DE于H,∴∠FHC=∠FHD=90°,∵∠FDC=30°,DF=30,∴FH=DF=15,DH=DF=15,∵∠FCH=45°,∴CH=FH=15,∴,∵CE:CD=1:3,∴DE=CD=20+20,∵AB=BC=DE,∴AC=(40+40)cm;(2)过A作AG⊥ED交ED的延长线于G,∵∠ACG=45°,∴AG=AC=20+20,答:拉杆端点A到水平滑杆ED的距离为(20+20)cm.五、解答题(满分12分)23.【解答】解:(1)当0<x≤20且x为整数时,y=40;当20<x≤60且x为整数时,y=﹣x+50;当x>60且x为整数时,y=20;(2)设所获利润w(元),当0<x≤20且x为整数时,y=40,∴w=(40﹣16)×20=480元,当0<x≤20且x为整数时,y=40,∴当20<x≤60且x为整数时,y=﹣x+50,∴w=(y﹣16)x=(﹣x+50﹣16)x,∴w=﹣x2+34x,∴w=﹣(x﹣34)2+578,∵﹣<0,∴当x=34时,w最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.六、解答题(满分12分)24.【解答】(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP≌△CBP(SAS),∴∠CDP=∠CBP,∵∠BCD=90°,∴∠CBP+∠BEC=90°,∵OD=OE,∴∠ODE=∠OED,∠OED=∠BEC,∴∠BEC=∠OED=∠ODE,∴∠CDP+∠ODE=90°,∴∠ODP=90°,∴DP是⊙O的切线;(2)∵∠CDP=∠CBE,∴tan,∴CE=,∴DE=2,∵∠EDF=90°,∴EF是⊙O的直径,∴∠F+∠DEF=90°,∴∠F=∠CDP,在Rt△DEF中,,∴DF=4,∴==2,∴,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴,设PE=x,则PD=2x,∴,解得x=,∴OP=OE+EP=.七、解答题(满分12分)25.【解答】解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.八、解答题(满分14分)26.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=1,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3(舍去5),故点P(2,﹣3);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m )=()2+4,解得:m=0或(均舍去),②当CP=PF时,(2﹣m)2=()2+m2,解得:m =或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2).21 / 21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.
1
B.
2
C.
3
D.
4
考 相似三角形的判定与性质;等边三角形的性质.
点:
分 利用两对相似三角形,线段成比例: AB:BD=AE: EF,CD:CF=AE: EF,可得
∴CF=2.
AB= 解 答: ×4=2
∴平行四边形 ABCD面积 =BC?AE=×6 2=12, 故选 B.
点 本题考查了平行四边形的以及平行四边形的面积公式的运用和 30 度角的直角 评: 三角形的性质:在直角三角形中, 30°角所对的直角边等于斜边的一半.
6.( 3 分)( 2014?本溪)某中学排球队 12 名队员的年龄情况如下表:
故选 B.
点 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关 评: 系是解决本题的关键.
8.( 3 分)( 2014?本溪)若实数 a,b 满足 ab< 0,且 a<b,则函数 y=ax+b 的图象可能是( )
A.
B.
C.
D.
考 一次函数图象与系数的关系.
点: 专
数形结合. 题: 分 利用 ab< 0,且 a<b 得到 a<0,b>0,然后根据一次函数图象与系数的关系 析: 进行判断.
解:∵ ab< 0,且 a<b, 解 ∴a< 0,b>0, 答: ∴函数 y=ax+b 的图象经过第二、四象限,且与 y 轴的交点在 x 轴上方.
故选 A. 本题考查了一次函数图象与系数的关系:一次函数 y=kx+b( k、b 为常数, 点 k≠0)是一条直线,当 k> 0,图象经过第一、三象限, y 随 x 的增大而增大; 评: 当 k< 0,图象经过第二、四象限, y 随 x 的增大而减小;图象与 y 轴的交点坐 标为( 0,b).
评:
4.( 3 分)( 2014?本溪)如图, AB∥CD, AD与 BC相交于点 O,∠ B=30°, ∠D=40°,则∠ AOC的度数为( )
A. 60°
B. 70°
C. 80°
D. 90°
考 平行线的性质;三角形的外角性质.
点:
分 利用平行线的性质和三角形外角等于和它不相邻的两个内角的和的性质就可求 析: 出.
年龄(岁) 人数(人)
12
13
14
15
1
2
5
4
则这个队员年 岁
C. 14 岁
D. 15 岁
考 众数.
点: 分 根据众数定义:一组数据中出现次数最多的数据叫众数,可知 析: 最多. 解 解:数据 14 出现了 5 次,最多,为众数, 答: 故选: C. 点
此题主要考查了众数,关键是把握众数定义. 评:
2014 年辽宁省本溪市中考数学试卷
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分) 1.( 3 分)( 2014?本溪)﹣
的倒数是( )
A. ﹣4
B.
4
C.
﹣ D.
分析: 解答: 点评:
根据负数的倒数是负数,结合倒数的定义直接求解. 解:﹣
的倒数是﹣ 4, 故选: A. 本题考查了倒数的定义,理解定义是关键.
解:∵ AB∥CD,∴∠ A=∠D=30°,再由三角形的外角的性质得, 解
∠AOC∠= A+∠B=70°. 答:
故选 B.
本题考查了平行线的性质以及三角形的外角的性质,两直线平行时,应该想到 点
它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题 评:
的目的.
5.( 3 分)( 2014?本溪)如图,在 ?ABCD中, AB=4,BC=6,∠ B=30°,则此 平行四边形的面积是( )
解 答:
解: A、2a3 与 a2 不是同类项不能合并,本项错误; B、( 3a) 2=9a2,本项错误; C、( a+b)2=a2+2ab+b2,本项错误;
D、 2a2?a3=2a5,正确, 故选: D. 点 本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式, 评: 熟练掌握法则是解题的关键.
15 出现的次数
7.( 3 分)( 2014?本溪)底面半径为 4,高为 3 的圆锥的侧面积是( )
A. 12π
B. 15π
C. 20π
D. 36π
考 圆锥的计算.
点: 分 首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面 析: 积公式代入求出即可.
解:∵圆锥的底面半径为 3,高为 4, 解 ∴母线长为 5, 答: ∴圆锥的侧面积为: π rl= π×3×5=15π,
A.
6
B.
12
C.
18
D.
24
考 平行四边形的性质;含 30 度角的直角三角形.
点: 过点 A 作 AE⊥BC于 E,根据含 30 度角的直角三角形的性质:在直角三角形
分 中, 30°角所对的直角边等于斜边的一半可求出 AE的长,利用平行四边形的
析: 面积根据即可求出其面积. 解:过点 A 作 AE⊥BC于 E, ∵直角△ ABE中,∠ B=30°, ∴AE=
2.( 3 分)( 2014?本溪)下列计算正确的是( ) A. 2a3+a2=3a5 B. (3a)2=6a2 C. ( a+b)2=a2+b2 D. 2a2?a3=2a5
考 单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.
点:
分 根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即 析: 可.
析: CF=2.
解:如图,∵△ ABC和△ ADE均为等边三角形, ∴∠ B=∠BAC=6°0 ,∠ E=∠EAD=6°0 ,
∴∠ B=∠E,∠ BAD=∠EAF, ∴△ ABD∽△ AEF,
∴AB: BD=AE:EF.
解 答:
同理:△ CDF∽△ EAF, ∴CD: CF=AE:EF, ∴AB: BD=C:D CF,即 9:3=(9﹣3): CF,
3.( 3 分)( 2014?本溪)如图的几何体的俯视图是(
)
A.
B.
C.
D.
考 简单组合体的三视图.
点:
分 找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图 析: 中.
解 答:
解:从上面看得到右下角少了一部分的正方形,并且右边的边少的与剩下的 差不多. 故选: D.
点 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.