【真题】2017年辽宁省本溪市中考数学试卷含答案
辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题 3 分,共 30 分)1、一次数学考题考生约 12 万名,从中抽取 5000 名考生的数学成绩进行解析,在这个问题中样本指的是( )A5000 B5000 名考生的数学成绩 C12 万考生的数学成绩 D5000 名考生2、用配方法解一元二次方程 x 2-4x-1=0,配方后得到的方程是( )A(x―2) 2 =1 B(x―2) 2 =4 C(x―2) 2 =5 D(x―2) 2 =33、已知⊙O l与⊙O2的半径分别为 3cm和 4cm,圆心距为 8cm,则两圆的位置关系是( )A内含 B内切 C相交 D外离4、用下列同一种正多边形不能作平面镶嵌的是( )A正三角形 B正四边形 C正六边形 D正七边形6、如图,在⊙O 中,∠B=37º,则劣弧 AB 的度数为( )A106º B126º C74º D53º7、函数中自变量 x 的取值范围是( )8、如图,AB 是⊙O 的直径,C、D 是 AB 的三等分点,如果⊙O的半径为l,P 是线段 AB 上的任意—点,则图中阴影部分的面积为( )9、式子有意义,则点 P(a,b)在( )A第一象限 B第二象限 C第三象限 D第四象限10、如图,PA 切⊙O于点A,割线 PBC 经过圆心O,OB=PB=1,OA绕点O逆时针方向转60º到 OD,则 PD 的长为( )二、填空题(每小题 3 分共 24 分)11、如果―4 是关于 x 的一元二次方程 2x2+7x―k=0 的一个根,则 k 的值为______。
12、已知⊙O 的弦 AB 的长为 6cm,圆心 O 到 AB 的距离为 3cm,则⊙O 的半径为___cm。
13、用换元法解方程那么原方程可变形为_________。
14、已知正六边形的半径为 20cm,则它的外接圆与内切圆组成的圆环的面积是______cm 2。
2017年辽宁省14市中考数学真题汇编(含参考答案与解析)

2017年辽宁省14市中考数学真汇编(含参考答案)目录1.辽宁省沈阳市中考数学试题及参考答案 (2)2.辽宁省大连市中考数学试题及参考答案 (22)3.辽宁省营口市中考数学试题及参考答案 (38)4.辽宁省葫芦岛市中考数学试题及参考答案 (64)5.辽宁省锦州市中考数学试题及参考答案 (86)6.辽宁省辽阳市中考数学试题及参考答案 (109)7.辽宁省抚顺市中考数学试题及参考答案 (133)8.辽宁省盘锦市中考数学试题及参考答案 (158)9.辽宁省铁岭市中考数学试题及参考答案 (181)10.辽宁省阜新市中考数学试题及参考答案 (202)11.辽宁省鞍山市中考数学试题及参考答案 (220)12.辽宁省本溪市中考数学试题及参考答案 (247)13.辽宁省朝阳市中考数学试题及参考答案 (259)14.辽宁省丹东市中考数学试题及参考答案 (283)2017年辽宁省沈阳市中考数学试题及参考答案一、选择题(本大题共10小题,每小题2分,共20分) 1.7的相反数是( ) A.﹣7B.﹣47C.17D.72.如图所示的几何体的左视图( )A. B. C. D.3.“弘扬雷锋精神,共建幸福沈阳”,幸福沈阳需要830万沈阳人共同缔造,将数据830万用科学记数法可以表示为( )万. A.83×10 B.8.3×102 C.8.3×103 D.0.83×1034.如图,AB ∥CD ,∠1=50°,∠2的度数是( )A.50°B.100°C.130°D.140°5.点A (﹣2,5)在反比例函数y=k x(k≠0)的图象上,则k 的值是( )A.10 B .5 C.﹣5 D.﹣10 6.在平面直角坐标系中,点A ,点B 关于y 轴对称,点A 的坐标是(2,﹣8),则点B 的坐标是( ) A.(﹣2,﹣8)B.(2,8)C.(﹣2,8) D .(8,2) 7.下列运算正确的是( )A.x 3+x 5=x 8B.x 3+x 5=x 15C.(x+1)(x ﹣1)=x 2﹣1D.(2x )5=2x 5 8.下列事件中,是必然事件的是( )A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a 2=b 2,那么a=bD.掷一枚质地均匀的硬币,一定正面向上 9.在平面直角坐标系中,一次函数y=x ﹣1的图象是( )A.B. C.D.10.正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是( )A. 3B.2C.2 2D.2 3二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解3a 2+a= .12.一组数2,3,5,5,6,7的中位数是 .13.x +1x •xx 2+2x +1= . 14.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S 甲2=0.53,S 乙2=0.51,S 丙2=0.43,则三人中成绩最稳定的是 (填“甲”或“乙”或“丙”)15.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元/时,才能在半月内获得最大利润. 16.如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .三、解答题(本大题共22分)17.(6分)计算| 2﹣1|+3﹣2﹣2sin45°+(3﹣π)0.18.(8分)如图,在菱形ABCD 中,过点D 作DE ⊥AB 于点E ,作DF ⊥BC 于点F ,连接EF. 求证:(1)△ADE ≌△CDF ; (2)∠BEF=∠BFE.19.(8分)把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率. 四、解答题(每题8分,共16分)20.(8分)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)m= ,n= ;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度; (3)请根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书.21.(8分)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?五、解答题(共10分)22.(10分)如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作EF ⊥AB 于点F ,延长EF 交CB 的延长线于点G ,且∠ABG=2∠C. (1)求证:EF 是⊙O 的切线;(2)若sin ∠EGC=35,⊙O 的半径是3,求AF 的长.六、解答题(共10分)23.(10分)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 的坐标为(6,0),点B 的坐标为(0,8),点C 的坐标为(﹣2 5,4),点M ,N 分别为四边形OABC 边上的动点,动点M 从点O 开始,以每秒1个单位长度的速度沿O→A→B 路线向中点B 匀速运动,动点N 从O 点开始,以每秒两个单位长度的速度沿O→C→B→A 路线向终点A 匀速运动,点M ,N 同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t 秒(t >0),△OMN 的面积为S.(1)填空:AB 的长是 ,BC 的长是 ; (2)当t=3时,求S 的值;(3)当3<t <6时,设点N 的纵坐标为y ,求y 与t 的函数关系式;(4)若S=485,请直接写出此时t 的值.七、解答题(共12分)24.(12分)四边形ABCD 是边长为4的正方形,点E 在边AD 所在直线上,连接CE ,以CE 为边,作正方形CEFG (点D ,点F 在直线CE 的同侧),连接BF. (1)如图1,当点E 与点A 重合时,请直接写出BF 的长; (2)如图2,当点E 在线段AD 上时,AE=1; ①求点F 到AD 的距离; ②求BF 的长;(3)若BF=3 10AE 的长.八、解答题(共12分)25.(12分)如图1,在平面直角坐标系中,O 是坐标原点,抛物线y=﹣312x 2﹣ 33x+8 3与x 轴正半轴交于点A ,与y 轴交于点B ,连接AB ,点M ,N 分别是OA ,AB 的中点,Rt △CDE ≌Rt △ABO ,且△CDE 始终保持边ED 经过点M ,边CD 经过点N ,边DE 与y 轴交于点H ,边CD 与y 轴交于点G.(1)填空:OA 的长是 ,∠ABO 的度数是 度; (2)如图2,当DE ∥AB ,连接HN. ①求证:四边形AMHN 是平行四边形;②判断点D 是否在该抛物线的对称轴上,并说明理由; (3)如图3,当边CD 经过点O 时,(此时点O 与点G 重合),过点D 作DQ ∥OB ,交AB 延长线上于点Q ,延长ED 到点K ,使DK=DN ,过点K 作KI ∥OB ,在KI 上取一点P ,使得∠PDK=45°(点P ,Q 在直线ED 的同侧),连接PQ ,请直接写出PQ 的长.参考答案与解析(沈阳)一、选择题(本大题共10小题,每小题2分,共20分) 1.7的相反数是( ) A.﹣7B.﹣47C.17D.7【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可. 【解答】解:7的相反数是﹣7, 故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆. 2.如图所示的几何体的左视图( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是一个小正方形,第二层是一个小正方形, 故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.“弘扬雷锋精神,共建幸福沈阳”,幸福沈阳需要830万沈阳人共同缔造,将数据830万用科学记数法可以表示为( )万. A.83×10 B.8.3×102 C.8.3×103 D.0.83×103 【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可.【解答】解:830万=8.3×102万.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a 与n的值是解题的关键.4.如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130°D.140°【考点】平行线的性质.【分析】先根据平行线的性质得∠3=∠1=50°,然后根据邻补角的定义,即可求得∠2的度数.【解答】解:∵AB∥CD,∴∠3=∠1=50°,∴∠2=180°﹣∠3=130°.故选C.【点评】本题考查了平行线性质,解题时注意:两直线平行,同位角相等.5.点A(﹣2,5)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.10B.5C.﹣5D.﹣10【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数图象上点的坐标性质得出k的值.【解答】解:∵点A(﹣2,5)在反比例函数y=kx(k≠0)的图象上,∴k的值是:k=xy=﹣2×5=﹣10.故选:D.【点评】此题主要考查了反比例函数图象上点的坐标性质,得出xy=k是解题关键.6.在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8)C.(﹣2,8)D.(8,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:∵点A,点B关于y轴对称,点A的坐标是(2,﹣8),∴点B的坐标是(﹣2,﹣8),故选:A.【点评】此题主要考查了关于y轴的对称点的坐标,关键是掌握点的坐标特点.7.下列运算正确的是()A.x3+x5=x8B.x3+x5=x15C.(x+1)(x﹣1)=x2﹣1D.(2x)5=2x5【考点】平方差公式;合并同类项;幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)x3与x5不是同类项,故不能合并,故A不正确;(B)x3与x5不是同类项,故不能合并,故B不正确;(D)原式=25x5=32x5,故D不正确;故选(C)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型8.下列事件中,是必然事件的是()A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.掷一枚质地均匀的硬币,一定正面向上【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、将油滴入水中,油会浮在水面上是必然事件,故A符合题意;B、车辆随机到达一个路口,遇到红灯是随机事件,故B不符合题意;C、如果a2=b2,那么a=b是随机事件,D、掷一枚质地均匀的硬币,一定正面向上是随机事件,故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.【考点】一次函数的图象.【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.【解答】解:一次函数y=x﹣1,其中k=1,b=﹣1,其图象为,故选B【点评】此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.10.正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A. 3B.2C.2 2D.2 3 【考点】正多边形和圆.【分析】连接OA ,OB ,根据等边三角形的性质可得⊙O 的半径,进而可得出结论. 【解答】解:连接OB ,OC , ∵多边形ABCDEF 是正六边形, ∴∠BOC=60°, ∵OB=OC ,∴△OBC 是等边三角形, ∴OB=BC ,∵正六边形的周长是12, ∴BC=2,∴⊙O 的半径是2, 故选B.【点评】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键. 二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解3a 2+a= a (3a+1) . 【考点】因式分解﹣提公因式法. 【分析】直接提公因式a 即可. 【解答】解:3a 2+a=a (3a+1), 故答案为:a (3a+1).【点评】此题主要考查了提公因式法进行因式分解,关键是正确确定公因式.12.一组数2,3,5,5,6,7的中位数是 5 . 【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:2,3,5,5,6,7, 则中位数为:5+52=5.故答案是:5.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.x +1x•x x 2+2x +1= 1x +1. 【考点】分式的乘除法.【分析】原式约分即可得到结果. 【解答】解:原式=x +1x•x(x +1)=1x +1,故答案为:1x +1【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.14.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S 甲2=0.53,S 乙2=0.51,S 丙2=0.43,则三人中成绩最稳定的是 丙 (填“甲”或“乙”或“丙”) 【考点】方差;算术平均数.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【解答】解:∵S 甲2=0.53,S 乙2=0.51,S 丙2=0.43, ∴S 甲2>S 乙2>S 丙2,∴三人中成绩最稳定的是丙; 故答案为:丙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 35 元/时,才能在半月内获得最大利润. 【考点】二次函数的应用.【分析】设销售单价为x 元,销售利润为y 元,求得函数关系式,利用二次函数的性质即可解决问题.【解答】解:设销售单价为x 元,销售利润为y 元. 根据题意,得:y=(x ﹣20)[400﹣20(x ﹣30)] =(x ﹣20)(1000﹣20x ) =﹣20x 2+1400x ﹣20000 =﹣20(x ﹣35)2+4500, ∵﹣20<0,∴x=35时,y 有最大值, 故答案为35.【点评】本题考查了二次函数的应用,解题的关键是学会构建二次函数解决最值问题 16.如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是3 105.【考点】旋转的性质;矩形的性质.【分析】连接AG ,根据旋转变换的性质得到,∠ABG=∠CBE ,BA=BG ,根据勾股定理求出CG 、AD ,根据相似三角形的性质列出比例式,计算即可. 【解答】解:连接AG ,由旋转变换的性质可知,∠ABG=∠CBE ,BA=BG=5,BC=BE ,由勾股定理得,CG= BG 2−BC 2=4,∴DG=DC ﹣CG=1,则AG= AD 2+DG 2= 10,∵BA BC =BG BE,∠ABG=∠CBE ,∴△ABG ∽△CBE , ∴CE AG =BC AB =35,解得,CE=3 105,故答案为:3 105.【点评】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键. 三、解答题(本大题共22分)17.(6分)(2017•沈阳)计算| 2﹣1|+3﹣2﹣2sin45°+(3﹣π)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:| 2﹣1|+3﹣2﹣2sin45°+(3﹣π)0= 2﹣1+19﹣2× 22+1 =19【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 18.(8分)(2017•沈阳)如图,在菱形ABCD 中,过点D 作DE ⊥AB 于点E ,作DF ⊥BC 于点F ,连接EF. 求证:(1)△ADE ≌△CDF ; (2)∠BEF=∠BFE.【考点】菱形的性质;全等三角形的判定与性质. 【分析】(1)利用菱形的性质得到AD=CD ,∠A=∠C ,进而利用AAS 证明两三角形全等; (2)根据△ADE ≌△CDF 得到AE=CF ,结合菱形的四条边相等即可得到结论. 【解答】证明:(1)∵四边形ABCD 是菱形, ∴AD=CD ,∠A=∠C , ∵DE ⊥BA ,DF ⊥CB , ∴∠AED=∠CFD=90°, 在△ADE 和△CDE ,∵ AD =CD∠A =∠C∠AED =∠CFD =90°, ∴△ADE ≌△CDE ;(2)∵四边形ABCD 是菱形, ∴AB=CB ,∵△ADE ≌△CDF , ∴AE=CF , ∴BE=BF ,∴∠BEF=∠BFE.【点评】本题主要考查了菱形的性质以及全等三角形的判定与性质,解题的关键是掌握菱形的性质以及AAS 证明两三角形全等,此题难度一般. 19.(8分)(2017•沈阳)把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好都是奇数的情况,再利用概率公式即可求得答案. 【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次抽取的卡片上的数字都是奇数的有4种结果, ∴两次抽取的卡片上的数字都是奇数的概率为49.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率. 四、解答题(每题8分,共16分) 20.(8分)(2017•沈阳)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)m= 50 ,n= 30 ;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 72 度; (3)请根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书. 【考点】条形统计图;用样本估计总体;扇形统计图. 【分析】(1)根据其他的人数和所占的百分比即可求得m 的值,从而可以求得n 的值; (2)根据扇形统计图中的数据可以求得“艺术”所对应的扇形的圆心角度数; (3)根据题意可以求得喜爱文学的人数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以估计该校600名学生中有多少学生最喜欢科普类图书. 【解答】解:(1)m=5÷10%=50,n%=15÷50=30%, 故答案为:50,30; (2)由题意可得,“艺术”所对应的扇形的圆心角度数是:360°×1050=72°,故答案为:72;(3)文学有:50﹣10﹣15﹣5=20, 补全的条形统计图如右图所示; (4)由题意可得, 600×1550=180,即该校600名学生中有180名学生最喜欢科普类图书.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 21.(8分)(2017•沈阳)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?【考点】一元一次不等式的应用.【分析】在这次竞赛中,小明获得优秀(90分以上),即小明的得分>90分,设小明答对了x ,就可以列出不等式,求出x 的值即可.【解答】解:设小明答对了x 题,根据题意可得: (25﹣x )×(﹣2)+6x >90, 解得:x >1712,∵x 为非负整数, ∴x 至少为18,答:小明至少答对18道题才能获得奖品.【点评】此题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分. 五、解答题(共10分) 22.(10分)(2017•沈阳)如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作EF ⊥AB 于点F ,延长EF 交CB 的延长线于点G ,且∠ABG=2∠C. (1)求证:EF 是⊙O 的切线;(2)若sin ∠EGC=35,⊙O 的半径是3,求AF 的长.【考点】切线的判定与性质;解直角三角形. 【分析】(1)连接EO ,由∠EOG=2∠C 、∠ABG=2∠C 知∠EOG=∠ABG ,从而得AB ∥EO ,根据EF ⊥AB 得EF ⊥OE ,即可得证;(2)由∠ABG=2∠C 、∠ABG=∠C+∠A 知∠A=∠C ,即BA=BC=6,在Rt △OEG 中求得OG=OEsin ∠EGO=5、BG=OG ﹣OB=2,在Rt △FGB 中求得BF=BGsin ∠EGO ,根据AF=AB ﹣BF 可得答案.【解答】解:(1)如图,连接EO ,则OE=OC ,∴∠EOG=2∠C , ∵∠ABG=2∠C , ∴∠EOG=∠ABG , ∴AB ∥EO , ∵EF ⊥AB , ∴EF ⊥OE ,又∵OE 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)∵∠ABG=2∠C ,∠ABG=∠C+∠A , ∴∠A=∠C , ∴BA=BC=6,在Rt △OEG 中,∵sin ∠EGO=OEOG,∴OG=OEsin ∠EGO=33=5,∴BG=OG ﹣OB=2,在Rt △FGB 中,∵sin ∠EGO=BFBG,∴BF=BGsin ∠EGO=2×35=65, 则AF=AB ﹣BF=6﹣65=245.【点评】本题主要考查切线的判定与性质及解直角三角形的应用,熟练掌握切线的判定与性质及三角函数的定义是解题的关键. 六、解答题(共10分) 23.(10分)(2017•沈阳)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 的坐标为(6,0),点B 的坐标为(0,8),点C 的坐标为(﹣2 5,4),点M ,N 分别为四边形OABC 边上的动点,动点M 从点O 开始,以每秒1个单位长度的速度沿O→A→B 路线向中点B 匀速运动,动点N 从O 点开始,以每秒两个单位长度的速度沿O→C→B→A 路线向终点A 匀速运动,点M ,N 同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t秒(t >0),△OMN 的面积为S.(1)填空:AB 的长是 10 ,BC 的长是 6 ; (2)当t=3时,求S 的值;(3)当3<t <6时,设点N 的纵坐标为y ,求y 与t 的函数关系式; (4)若S=485,请直接写出此时t 的值.【考点】四边形综合题. 【分析】(1)利用勾股定理即可解决问题; (2)如图1中,作CE ⊥x 轴于E.连接CM.当t=3时,点N 与C 重合,OM=3,易求△OMN 的面积; (3)如图2中,当3<t <6时,点N 在线段BC 上,BN=12﹣2t ,作NG ⊥OB 于G ,CF ⊥OB 于F.则F (0,4).由GN ∥CF ,推出BN BC =BG BF,即12−2t 6=BG 4,可得BG=8﹣43t ,由此即可解决问题;(4)分三种情形①当点N 在边长上,点M 在OA 上时.②如图3中,当M 、N 在线段AB 上,相遇之前.作OE ⊥AB 于E ,则OE=OB⋅OA AB=245,列出方程即可解决问题.③同法当M 、N 在线段AB 上,相遇之后,列出方程即可; 【解答】解:(1)在Rt △AOB 中,∵∠AOB=90°,OA=6,OB=8,∴AB= OA 2+OB 2= 62+82=10. BC= (2 5)2+42=6,故答案为10,6.(2)如图1中,作CE ⊥x 轴于E.连接CM.∵C (﹣2 5,4), ∴CE=4OE=2 5,在Rt △COE 中,OC= OE 2+CE 2= (2 5)2+42=6,当t=3时,点N 与C 重合,OM=3,∴S △ONM =12•OM•CE=12×3×4=6,即S=6.(3)如图2中,当3<t <6时,点N 在线段BC 上,BN=12﹣2t ,作NG ⊥OB 于G ,CF ⊥OB 于F.则F (0,4).∵OF=4,OB=8, ∴BF=8﹣4=4, ∵GN ∥CF , ∴BN BC =BGBF,即12−2t 6=BG 4,∴BG=8﹣43t ,∴y=OB ﹣BG=8﹣(8﹣43t )=43t.(4)①当点N 在边长上,点M 在OA 上时,12•43t•t=485,解得t=6 105(负根已经舍弃).②如图3中,当M 、N 在线段AB 上,相遇之前.作OE ⊥AB 于E ,则OE=OB⋅OA AB=245, 由题意12[10﹣(2t ﹣12)﹣(t ﹣6)]•245=485,解得t=8,同法当M 、N 在线段AB 上,相遇之后. 由题意12•[(2t ﹣12)+(t ﹣6)﹣10]•245=485,解得t=323,综上所述,若S=485,此时t 的值8s 或323s 或6 105s.【点评】本题考查四边形综合题、平行线分线段吧成比例定理、勾股定理、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题. 七、解答题(共12分) 24.(12分)(2017•沈阳)四边形ABCD 是边长为4的正方形,点E 在边AD 所在直线上,连接CE ,以CE 为边,作正方形CEFG (点D ,点F 在直线CE 的同侧),连接BF. (1)如图1,当点E 与点A 重合时,请直接写出BF 的长; (2)如图2,当点E 在线段AD 上时,AE=1; ①求点F 到AD 的距离; ②求BF 的长;(3)若BF=3 10AE 的长.【考点】四边形综合题. 【分析】(1)作FH ⊥AB 于H ,由AAS 证明△EFH ≌△CED ,得出FH=CD=4,AH=AD=4,求出BH=AB+AH=8,由勾股定理即可得出答案;(2)过F 作FH ⊥AD 交AD 的延长线于点H ,作FM ⊥AB 于M ,则FM=AH ,AM=FH ,①同(1)得:△EFH ≌△CED ,得出FH=DE=3,EH=CD=4即可;②求出BM=AB+AM=7,FM=AE+EH=5,由勾股定理即可得出答案;(3)分两种情况:①当点E 在边AD 的左侧时,过F 作FH ⊥AD 交AD 的延长线于点H ,交BC 延长线于K ,同(1)得::△EFH ≌△CED ,得出FH=DE=4+AE ,EH=CD=4,得出FK=8+AE ,在Rt △BFK 中,BK=AH=EH ﹣AE=4﹣AE ,由勾股定理得出方程,解方程即可; ②当点E 在边AD 的右侧时,过F 作FH ⊥AD 交AD 的延长线于点H ,交BC 延长线于K ,同理得:AE=2+ 41. 【解答】解:(1)作FH ⊥AB 于H ,如图1所示: 则∠FHE=90°,∵四边形ABCD 和四边形CEFG 是正方形,∴AD=CD=4,EF=CE ,∠ADC=∠DAH=∠BAD=∠CEF=90°, ∴∠FEH=∠CED ,在△EFH 和△CED 中,{∠FHE =∠EDC =90°∠FEH =∠CEDEF =CE,∴△EFH ≌△CED (AAS ), ∴FH=CD=4,AH=AD=4, ∴BH=AB+AH=8,∴BF=BH2+FH2=82+42=45;(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,如图2所示:则FM=AH,AM=FH,①∵AD=4,AE=1,∴DE=3,同(1)得:△EFH≌△CED(AAS),∴FH=DE=3,EH=CD=4,即点F到AD的距离为3;②∴BM=AB+AM=4+3=7,FM=AE+EH=5,∴BF=BM2+FM2=72+52=74;(3)分两种情况:①当点E在边AD的左侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图3所示:同(1)得::△EFH≌△CED,∴FH=DE=4+AE,EH=CD=4,∴FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得:(4﹣AE)2+(8+AE)2=(310)2,解得:AE=1或AE=﹣5(舍去),∴AE=1;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图4所示:同理得:AE=2+41;综上所述:AE的长为1或2+41【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.八、解答题(共12分)25.(12分)(2017•沈阳)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣312x2﹣33x+83与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是8,∠ABO的度数是30度;(2)如图2,当DE∥AB,连接HN.①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.【考点】二次函数综合题.【分析】(1)先求抛物线与两坐标轴的交点坐标,表示OA和OB的长,利用正切值可得∠ABO=30°;(2)①根据三角形的中位线定理证明HN∥AM,由两组对边分别平行的四边形是平行四边形得结论;②如图1,作垂线段DR,根据直角三角形30度角的性质求DR=2,可知:点D的横坐标为﹣2,由抛物线的解析式可计算对称轴是直线:x=﹣b2a=﹣2,所以点D在该抛物线的对称轴上;(3)想办法求出P、Q的坐标即可解决问题;【解答】解:(1)当x=0时,y=83,∴B(0,83),∴OB=83,当y=0时,y=﹣312x2﹣33x+83=0,x2+4x﹣96=0,(x﹣8)(x+12)=0,x1=8,x2=﹣12,∴A(8,0),∴OA=8,在Rt△AOB中,tan∠ABO=OAOB=83=3 3,∴∠ABO=30°, 故答案为:8,30;(2)①证明:∵DE ∥AB , ∴OM AM=OH BH,∵OM=AM , ∴OH=BH , ∵BN=AN , ∴HN ∥AM ,∴四边形AMHN 是平行四边形; ②点D 在该抛物线的对称轴上,理由是:如图1,过点D 作DR ⊥y 轴于R ,∵HN ∥OA ,∴∠NHB=∠AOB=90°, ∵DE ∥AB ,∴∠DHB=∠OBA=30°, ∵Rt △CDE ≌Rt △ABO , ∴∠HDG=∠OBA=30°, ∴∠HGN=2∠HDG=60°, ∴∠HNG=90°﹣∠HGN=90°﹣60°=30°, ∴∠HDN=∠HND , ∴DH=HN=12OA=4,∴Rt △DHR 中,DR=12DH=12×4=2,∴点D 的横坐标为﹣2,∵抛物线的对称轴是直线:x=﹣b2a =﹣−332×(− 3)=﹣2,∴点D 在该抛物线的对称轴上;(3)如图3中,连接PQ ,作DR ⊥PK 于R ,在DR 上取一点T ,使得PT=DT.设PR=a.。
辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案一、选择题(共10小题,每小题2分,满分20分)1.(2分)方程x2﹣2x=0的根是()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣22.(2分)已知sina=,且a是锐角,则a=()A.75° B.60° C.45° D.30°3.(2分)下列方程中,有实数根的是()4.(2分)已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣95.(2分)在半径为6cm的圆中,长为2πcm的弧所对的圆周角的度数是()A.30° B.45° C.60° D.90°6.(2分)在同一直角坐标系中,正比例函数y=﹣3x与反比例函数的图象的交点个数()A.3 B.2 C.1 D.07.(2分)如图,⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()8.(2分)样本8,8,9,10,12,12,12,13的中位数和众数分别是()A.11,3 B.10,12 C.12,12 D.11,129.(2分)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1 B.d=5 C.1≤d≤5 D.1<d<510.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()二、填空题(共10小题,每小题2分,满分20分)11.(2分)函数的自变量x的取值范围是_____________.12.(2分)已知x≤1,化简=_____________.13.(2分)设x1,x2是方程2x2﹣4x﹣3=0的两个根,则=_____________.14.(2分)方程的解是___________.15.(2分)已知a<0,那么点P(﹣a2﹣2,2﹣a)关于x轴的对称点P′在第___________象限.16.(2分)已知:如图,⊙O的弦AB平分弦CD,AB=10,CD=8.且PA<PB,则PB﹣PA =__________.17.(2分)半径分别为3cm和4cm的圆,一条内公切线长为7cm,则这条内公切线与连心线所夹的锐角的度数是__________度.18.(2分)小华用一张直径为20cm的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的面积是__________cm2.19.(2分)为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量如下(单位:千克):3.0,3.4,3.1,3.3,3.2,在这个问题中,样本方差是__________.20.(2分)矩形ABCD中,AB=3,AD=2,则以该矩形的一边为轴旋转一周而所得到的圆柱的表面积为__________.三、解答题(共10小题,满分80分)21.(5分)已知,求a3b+ab3的值.22.(5分)已知:如图,P是⊙O外一点,PA切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,PC=1cm,怎样求出图中阴影部分的面积S?写出你的探求过程.23.(6分)解方程:24.(8分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,井定期进行体能测试.下面是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,分成三组,画出的频率分布直方图的一部分.已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数是9.(1)请将频率分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?(4)这次测试中,你能肯定该班学生成绩的众数和中位数各落在哪一个组内吗?(只需写出能或不能,不必说明理由)25.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?26.(8分)为了农田灌溉的需要,某乡利用一土堤修筑条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的上堆在两旁,使土堤高度比原来增加0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.27.(8分)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=)28.(10分)已知如图,抛物线y=ax2+bx+c过点A(﹣1,0),且经过直线y=x﹣3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.29.(10分)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.(1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)30.(12分)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x 轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.(1)求证:PC⊥OA;(2)若△APO为等边三角形,求直线AB的解析式;(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,解析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.。
辽宁省本溪市中考数学试卷及答案

辽宁省本溪市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。
辽宁省本溪市中考数学试卷(含答案)

22本溪市初中毕业生学业考试数学试卷(考试时间120分钟 试卷满分150分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分) A .-8 B.8 C.±8 D.-812.在平面直角坐标系中点A (-2,3)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限 3. 不等式2x-4≥0的解集在数轴上表示为A. B. C. D.4.一个正方体的平面展开图如图所示,将它折成正方体后“保”字的对面是 A. 碳 B.低 C.环 D.色(第4题图)5.八边形的内角和是A.360°B. 720°C.1080°D. 1440°6. 一个不透明的布袋中装着只有颜色不同的红、黄、白色三种小球,其中红色小球有8个,黄、白色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,然后放回袋中,再次搅匀……多次试验发现摸到红球的频率是61,则估计黄色小球的数目是A.2个B.20个C.40个D.48个7.如图所示,已知圆锥的母线长6cm ,底面圆的半径为3cm ,则此圆锥侧面展开图的圆心角是 A.30° B.60° C.90° D.180°8.如图所示,若菱形OABC 的顶点O 为坐标原点,点C 在x 轴上,直线y=x 经过点A ,菱形面积是2,则经过点B 的反比例函数表达式为个图形中共有 个三角形三、解答题(17题6分、18题8分,共14分) 17.8 +3³(-31)-2-(2010-π)0-4sin45°18.化简求值:当a=2,求代数式169622-++a a a ÷823-+a a -42+a a 的值.四、解答题(每题10分,共20分)19. 如图所示,在边长为1的小正方形组成的网格中,△ABC 的顶点均在格点上,请按要求完成下列各题:(1)将△ABC 沿着BC 边所在的直线翻折180°,得到△A 1BC ,再将△A 1BC 绕着点B 逆时针旋转90°,得到△A 2BC 1.请依次画出△A 1BC 、△A 2BC 1.(2)求△A 1BC 旋转到△A 2BC 1过程中所扫过的面积(计算结果用π表示)(第20题图)20. 甲、乙二人玩抽牌游戏,甲手中的牌是2、2、3、4,乙手中的牌是3、4、5、5,两人分别从对方牌中任意抽取一张(彼此看不到对方的牌面),然后将牌上的数字相加,若和为奇数则甲赢,否则乙赢.(1)请用“列表法”或“树状图法”求出甲赢的概率.(2)这个游戏公平吗?若公平,请说明理由;若不公平,请在甲、乙手中各选择一张牌进行交换使游戏公平,写出一种方案即可(不必说明理由).五、解答题(每题10分,共20分)21. 为了解某地区20万读者对工具书、小说、诗歌、漫画四类图书的喜爱情况,根据老年人、成年人、青少年各年龄段的实际人口比例3:5:2,随机抽取一定数量的读者进行调查(每人只选一类图书),统计结果如下(所绘统计图不完整):(1)本次调查了名读者,其中青少年有名.(2)补全两幅统计图.(3)请估计该地区成年人中喜爱小说的读者大约有多少人?C22. 已知:如图所示,在△ABC 中,∠A=45°,以AB 为直径的⊙O 交AC 于点D ,且AD=DC ,CO 的延长线交⊙O 于点E ,过点E 作弦EF ⊥AB ,垂足为G. (1)求证:BC 是⊙O 的切线.(2)若AB=2,求EF 的长.(第22题图)六、解答题(23题10分,24题12分,共22分)23. 如图所示,一轮船向正东方向航行,在A 处测得灯塔P 在北偏东60°方向,航行40海里后到达B 处,此时测得灯塔P 在北偏东15°方向. (1)求灯塔P 到轮船的航线(直线AB )的距离PD 是多少?(2)当轮船在B 处继续向东航行时,一艘快艇从灯塔P 处 前往D 处,已知快艇的速度是轮船速度的2倍,但轮船比 快艇早15分钟到达D 处,求轮船的速度.(3≈1.73,结果精确到0.1海里/时) (第23题图)A24. 自6月1日起我省开始实施家电以旧换新政策,政府对以旧换新的家电给予补贴,具体要点如下表:100台.这批货的进价和售价如下表:y元,商场所获利润为w元(利润=售价-进价)。
2017年辽宁省本溪市中考数学试卷(解析版)

2017年辽宁省本溪市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在﹣,1,0,﹣3中,最大的数是()A.﹣B.1C.0D.﹣32.(3分)下列运算正确的是()A.a4÷a3=a B.(a2)4=a6C.2a2﹣a2=1D.3a3•2a2=6a63.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)关于x的一元二次方程x2﹣3x﹣a=0有一个实数根为﹣1,则a的值()A.2B.﹣2C.4D.﹣45.(3分)小明同学中考前为了给自己加油,课余时间制作了一个六个面分别写有“17”“中”“考”“必”“胜”“!”的正方体模型,这个模型的表面展开图如图所示,与“胜”相对的一面写的()A.17B.!C.中D.考6.(3分)已知一组数据1,2,4,3,x的众数是2,则这组数据的中位数是()A.2B.2.5C.3D.47.(3分)下列事件为确定事件的是()A.一个不透明的口袋中装有除颜色以外完全相同的3个红球和1个白球,均匀混合后,从中任意摸出1个球是红球B.长度分别是4,6,9的三条线段能围成一个三角形C.本钢篮球队运动员韩德君投篮一次命中D.掷1枚质地均匀的硬币,落地时正面朝上8.(3分)四月是辽宁省“全面阅读月”,学校阅览室将对学生的开放时间由每天的4.5h延长到每天6h,这样每天可以多安排2个班级阅读.如果每个班级每天阅读时间相同,且每个时间段只能安排一个班级阅读.设原来每天可以安排x个班级阅读,根据题意列出的方程正确的为()A.=B.=C.=D.=9.(3分)如图,点A在第二象限,点B在x轴的负半轴上,AB=AO=13,线段OA的垂直平分线交线段AB于点C,连接OC,△BOC的周长为23,若反比例函数y=的图象经过点A,则k的值为()A.30B.﹣30C.60D.﹣6010.(3分)如图,等腰直角三角形ABC,∠BAC=90°,AB=AC=4,以点A为中心的正方形EFGH边长为x(x>0),EF∥AB,正方形EFGH与等腰直角三角形ABC重叠部分的面积为y,则大致能反映y与x之间的函数关系的图象为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)3月18日,本溪市首条地下综合管理廊项目在咸宁大街开建,工程总投资560000000元.将数据560000000用科学记数法表示为.12.(3分)如图,两张矩形纸条交叉重叠在一起,若∠1=50°,则∠2的度数为.13.(3分)分解因式:m3n﹣4mn3=.14.(3分)有甲、乙两段高度相等的山坡,分别修建了阶数相同的两段台阶.甲段台阶各级台阶高度的方差s甲2=4.6,乙段台阶各级台阶高度的方差s乙2=2.2,当每级台阶高度接近时走起来比较舒适,则甲、乙两段台阶走起来更舒适的是(填“甲”或“乙”).15.(3分)电影《速度与激情8》上映,小亮同学准备买票观看,在选择座位时,他发现理想的位置只剩下了第九排的3个座位和第十排的4个座位.他从这7个座位中随机选了1个座位是第九排座位的概率为.16.(3分)直线y=kx+b是由直线y=﹣2x平移得到的,且经过点P(2,0),则k+b的值为.17.(3分)菱形ABCD中,AB=5,AE是BC边上的高,AE=4,则对角线BD的长为.18.(3分)如图,∠AOB=60°,点O1是∠AOB平分线上一点,OO1=2,作O1A1⊥OA,O1B1⊥OB,垂足分别为点A1,B1,以A1B1为边作等边三角形A1B1O2;作O2A2⊥OA,O2B2⊥OB,垂足分别为点A2,B2,以A2B2为边作等边三角形A2B2O3;作O3A3⊥OA,O3B3⊥OB,垂足分别为点A3,B3,以A3B3为边作等边三角形A3B3O4;…按这样的方法继续下去,则△A n B n O n的面积为(用含正整数n的代数式表示).三、解答题(本大题共2小题,共22分)19.(10分)先化简,再求值:(x﹣2﹣)•,其中x=(1﹣π)0﹣|﹣|.20.(12分)随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,本溪市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查.调查结果整理后,将这部分同学的态度划分为四个类别:A.积极参与;B.一定参与;C.可以参与;D.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表请你根据以上信息,解答下列问题:(1)a=,b=.(2)请求出m的值并将条形统计图补充完整.(3)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(4)“朗读”活动中,七年一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率.四、解答题(本大题共2小题,共24分)21.(12分)某校九年级有三个班,其中九年一班和九年二班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九年一班的满分率为70%,九年二班的满分率为80%.(1)求九年一班和九年二班各有多少名学生.(2)该校九年三班有45名学生,若九年级体育成绩的总满分率超过75%,求九年三班至少有多少名学生体育成绩是满分.22.(12分)如图,△P AB内接于⊙O,▱ABCD的边AD是⊙O的直径,且∠C=∠APB,连接BD.(1)求证:BC是⊙O的切线.(2)若BC=2,∠PBD=60°,求与弦AP围成的阴影部分的面积.五、解答题(本大题共1小题,共12分)23.(12分)近年来随着人们生活方式的改变,租车出行成为一种新选择,本溪某租车公司根据去年运营经验得出:每天租车的车辆数y(辆)与每辆车每天的租金x(元)满足关系式y=﹣x+36(500≤x≤1800,且x为50的整数倍),公司需要为每辆租出的车每天支出各种费用共200元,设租车公司每天的利润为w元.(1)求w与x的函数关系式.(利润=租金﹣支出)(2)公司在“十一黄金周”的前3天每天都获得了最大利润,但是后4天执行了物价局的新规定:每辆车每天的租金不超过800元.请确定这7天公司获得的总利润最多为多少元?六、解答题(本大题共1小题,共12分)24.(12分)如图1,一种折叠式小刀由刀片和刀鞘两部分组成.现将小刀打开成如图2位置,刀片部分是四边形ABCD,其中AD∥BC,AB⊥BC,CD=15mm,∠C=53°,刀鞘的边缘MN∥PQ,刀刃BC与刀鞘边缘PQ相交于点O,点A恰好落在刀鞘另一边缘MN 上时,∠COP=37°,OC=50mm,(1)求刀片宽度h.(2)若刀鞘宽度为14mm,求刀刃BC的长度.(结果精确到0.1mm)(参考数据:sin37°≈,cos37°≈,tan37°≈)七、解答题(本大题共1小题,共12分)25.(12分)△ABC中,AB=AC,∠ABC=α,过点A作直线MN,使MN∥BC,点D在直线MN上,作射线BD,将射线BD绕点B顺时针旋转角α后交直线AC于点E.(1)如图①,当α=60°,且点D在射线AN上时,直接写出线段AB,AD,AE的数量关系.(2)如图②,当α=45°,且点D在射线AN上时,直写出线段AB、AD、AE的数量关系,并说明理由.(3)当α=30°时,若点D在射线AM上,∠ABE=15°,AD=﹣1,请直接写出线段AE的长度.八、解答题(本大题共1小题,共14分)26.(14分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,点B(3,0),经过点A的直线AC与抛物线的另一交点为C(4,),与y轴交点为D,点P是直线AC下方的抛物线上的一个动点(不与点A,C重合).(1)求该抛物线的解析式.(2)过点P作PE⊥AC,垂足为点E,作PF∥y轴交直线AC于点F,设点P的横坐标为t,线段EF的长度为m,求m与t的函数关系式.(3)点Q在抛物线的对称轴上运动,当△OPQ是以OP为直角边的等腰直角三角形时,请直接写出符合条件的点P的坐标.2017年辽宁省本溪市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:因为在﹣,1,0,﹣3中,最大是1,故选:B.2.【解答】解:A、a4÷a3=a,正确;B、(a2)4=a8,故此选项错误;C、2a2﹣a2=a2,故此选项错误;D、3a3•2a2=6a5,故此选项错误;故选:A.3.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.【解答】解:∵关于x的一元二次方程x2﹣3x﹣a=0有一个根是﹣1,∴(﹣1)2﹣3×(﹣1)﹣a=0,解得:a=4,故选:C.5.【解答】解:结合展开图可知,与“胜”相对的面上的字是“考”.故选:D.6.【解答】解:∵数据1,2,4,3,x的众数是2,∴2出现的次数是2次,∴x=2,数据重新排列是:1、2、2、3、4,由于5个数中2在正中间,所以中位数是2.故选:A.7.【解答】解:A.一个不透明的口袋中装有除颜色以外完全相同的3个红球和1个白球,均匀混合后,从中任意摸出1个球是红球,是随机事件;B.长度分别是4,6,9的三条线段能围成一个三角形,是必然事件;C.本钢篮球队运动员韩德君投篮一次命中,是随机事件;D.掷1枚质地均匀的硬币,落地时正面朝上,是随机事件;故选:B.8.【解答】解:设原来每天可以安排x个班级阅读,那么现在每天可以安排(x+2)个班级阅读,根据题意,得=.故选:C.9.【解答】解:作AC⊥x轴于D,如图,∵线段OA的垂直平分线交线段AB于点C,∴CA=CO,∵△BOC的周长为23,∴OB+BC+OC=23,∴OB+BC+CA=23,即OB+BA=23,∴OB=23﹣13=10,∵AB=AO,AD⊥OB,∴BD=OD=5,在Rt△AOD中,AD==12,∴A(﹣5,12),∴k=﹣5×12=﹣60.故选:D.10.【解答】解:①当0<x≤4时,y=x2,②当4<x≤8时,y=×4×4﹣2××(4﹣x)2=﹣x2+4x﹣8,③当x>8时,y=8,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.【解答】解:将数据560000000用科学记数法表示为5.6×108.故答案为:5.6×108.12.【解答】解:∵AD∥BC,AB∥CD,∴∠1=∠ABC=50°,∴∠2=180°﹣∠ABC=180°﹣50°=130°,故答案为:130°.13.【解答】解:原式=mn(m2﹣4n2)=mn(m+2n)(m﹣2n),故答案为:mn(m+2n)(m﹣2n).14.【解答】解:因为S甲2=4.6>S乙2=2.2,方差较小的为乙,所以甲、乙两段台阶走起来更舒适的是乙.故答案为乙.15.【解答】解:∵第九排有3个座位,第十排有4个座位,共有7个座位,∴从这7个座位中随机选了1个座位是第九排座位的概率为;故答案为:.16.【解答】解:∵直线y=kx+b是由直线y=﹣2x平移得到的,∴y=kx+b中k=﹣2,∵直线y=kx+b经过点P(2,0),∴当x=2时,y=0,将其代入y=﹣2x+b,解得:b=4.则k+b=﹣2+4=2.故答案为:2.17.【解答】解:当∠B为钝角时,如图1,∵AB=5,AE=4,且AE⊥BC,∴BE=3,∴CE=BC+BE=5+3=8,在Rt△ACE中,由勾股定理可得AC===4,∵S菱形ABCD=BC•AE=BD•AC,∴5×4=×4BD,解得BD=2;当∠B为锐角时,如图2,同理可求得BE=3,则CE=5﹣3=2,在Rt△ACE中,可求得AC==2,同理可求得BD=4,综上可知BD的长为2或4,故答案为:2或4.18.【解答】解:如图,由题意得:∠A1OC1=∠B1OO1=30°,OO1=2,∠OA1O1=∠OB1O1=90°,∴A1O1=B1O1=OO1=1,∴OA1=OB1=,∵∠AOB=60°,∴△A1OB1是等边三角形,∴A1B1=,设OO4分别与A1B1,A2B2,A3B3的交点为C1,C2,C3,∴高OC1=,O1C1=2﹣=,∴△A1B1O1的面积为A1B1×O1C1=,易证得△A1B1O1∽△A2B2O2,∴==,∴==,∴==,同理可得:==×,…,==×=(或).故答案为:或.三、解答题(本大题共2小题,共22分)19.【解答】解:原式=•=•=.∵x=(1﹣π)0﹣|﹣|=1﹣=,∴原式===1420.【解答】解:(1)a=100%﹣8%﹣16%﹣40%=36%,b=18÷36%=50;故答案为36%,50;(2)m=50×16%=8,条形统计图为:(3)1500×8%=120(人),因为120<150,所以这次活动能顺利开展;(4)画树状图为:共有12种等可能的结果数,其中所选两人都是女生的结果数为2,所以所选两人都是女生的概率==.四、解答题(本大题共2小题,共24分)21.【解答】解:(1)设九年一班有x名学生,九年二班有y名学生,根据题意,得:,解得:;答:九年一班有50名学生,九年二班有55名学生.(2)设九年三班有m名学生体育成绩满分,根据题意,得:79+m>(105+45)×75%,解得:m>33.5,∵m为整数,∴m的最小值为34,答:九年三班至少有34名学生体育成绩是满分.22.【解答】解:(1)连结OB,∵四边形ABCD是平行四边形,∴∠C=∠BAD,AD∥BC,∵∠APB=∠ADB,∠C=∠APB,∴∠BAD=∠ADB,∴AB=BD,∵OA=OD,∴OB⊥AD,∴∠AOB=90°,∵AD∥BC,∴∠OBC=∠AOB=90°,∴OB⊥BC,∵OB为半径,∴BC是⊙O的切线.(2)连结OP,作OE⊥AP于E,∵∠P AD=∠PBD=60°,OA=OP,∴P A=OA=OP,∠AOP=60°,在▱ABCD中,AD=BC=2,∴AP=OA=1,在Rt△OAE中,OE=OA•sin60°=,与弦AP围成的阴影部分的面积为:﹣×1×=﹣.五、解答题(本大题共1小题,共12分)23.【解答】解:(1)由题意得:w=(x﹣200)y=(x﹣200)(﹣x+36)=﹣x2+40x﹣7200;(2)w=﹣x2+40x﹣7200=﹣(x﹣1000)2+12800.∵﹣<0,w有最大值,∴当x=1000时,w的最大值为12800,由题可得,后4天时500≤x≤800,∵当x<1000时,w随着x的增大而增大,∴当x=800时,w的最大值为12000,∴3×12800+4×12000=86400,答:这7天公司获得的总利润最多为86400元.六、解答题(本大题共1小题,共12分)24.【解答】解:(1)作DE⊥BC于E,在Rt△DEC中,∠CDE=90°﹣53°=37°,∴DE=DC•cos37°=15×=12,即:刀片的宽度h为12mm;(2)作AF⊥PQ于F,延长AB交PQ于G,∵∠COP=37°,∴∠BOG=∠F AG=37°,在Rt△AFG中,AF=14,∴AG==,BG=AG﹣AB=,AB⊥BC,∴∠OBG=90°,在Rt△BOG中,BO==,∴BC=OC+OB=50+≈57.3.七、解答题(本大题共1小题,共12分)25.【解答】解:(1)∵当α=60°时,∠ABC=∠DBE=60°,∴∠ABD=∠CBE,又∵AB=AC,∴△ABC是等边三角形,∴AB=CB,∠ACB=60°,∴∠BCE=120°,∵MN∥BC,∴∠BAD=180°﹣∠ABC=120°,∴∠BAD=∠BCE,∴△BAD≌△BCE,∴AD=CE,∴AE=AC+CE=AB+AD;(2)AE=AB+AD.理由:当α=45°时,∠ABC=∠DBE=45°,∴∠ABD=∠CBE,∵AB=AC,∴∠ABC=∠ACB=45°,∠BAC=90°,∴△ABC是等腰直角三角形,∴BC=AB,∵MN∥BC,∴∠BAD=180°﹣∠ABC=135°,∵∠BCE=180°﹣∠ACB=135°,∴∠BAD=∠BCE,∴△BAD∽△BCE,∴==,∴CE=AD,∴AE=AC+CE=AB+AD;(3)线段AE的长度为﹣1或2﹣.由题可得,∠ABC=∠DBE=∠BAD=30°,分两种情况:①如图所示,当点E在线段AC上时,∵∠ABE=15°=∠ABC=∠DBE,∴∠ABD=∠ABE=15°,在BE上截取BF=BD,易得△ABD≌△ABF,∴AD=AF=﹣1,∠ABC=∠BAD=∠BAF=30°,∴∠AFE=∠ABF+∠BAF=15°+30°=45°,又∵∠AEF=∠CBE+∠C=15°+30°=45°,∴∠AFE=∠AEF,∴AE=AF=﹣1;②如图所示,当点E在CA的延长线上时,过D作DF⊥AB于F,过E作EG⊥BC于G,∵AD=﹣1,∠DAF=30°,∴DF=,AF=,∵∠DBF=15°+30°=45°,∴∠DBF=∠BDF,∴BF=DF=,AB=+=1=AC,易得△ABC中,BC=,∵∠EBG=15°+30°=45°,∴∠BEG=∠EBG,设BG=EG=x,则CG=﹣x,∵Rt△CEG中,tan C=,即=,∴x==EG,∴CE=2EG=3﹣,∴AE=CE﹣AC=3﹣﹣1=2﹣综上所述所,线段AE的长度为﹣1或2﹣.八、解答题(本大题共1小题,共14分)26.【解答】解:(1)∵抛物线y=x2+bx+c经过点B(3,0),C(4,),∴,解得:,…2分∴该抛物线的解析式为:y=x2﹣x﹣;…4分(2)当y=0时,x2﹣x﹣=0,解得:x1=﹣1,x2=3,设直线AC的解析式为:y=kx+b,∵直线AC经过点A(﹣1,0),C(4,),则,解得:,∴直线AC的解析式为:y=x+;…6分∴D(0,),OD=,由勾股定理得:AD==,设P(t,),则F(t,t+),∴PF=()﹣()=﹣++2,…8分∵DF∥y轴,∴∠ADO=∠PFE,∵PE⊥AC,∴∠PEF=∠AOD=90°,∴△AOD∽△PEF,∴==,∴PF=EF,∴m=﹣++2,m=(﹣++2)=﹣++(﹣1<t<4);…10分(3)y=x2﹣x﹣=(x﹣1)2﹣2,则抛物线的对称轴是x=1,分4种情况:①当以PQ为斜边,在x轴下方,如图1和图2,过P作PH⊥x轴于H,∵△POQ是等腰直角三角形,∠POQ=90°,∴OQ=OP,易得△OQG≌△OPH,当y=﹣1时,x2﹣x﹣=﹣1,解得:x1=1+,x2=1﹣,∴P(1+,﹣1)或(1﹣,﹣1);②当以PQ为斜边,在x轴上方,如图3和图4,过P作PH⊥x轴于H,∵△POQ是等腰直角三角形,∠POQ=90°,∴OQ=OP,易得△OQG≌△OPH,∴PH=OG=1,当y=1时,x2﹣x﹣=1,解得:x1=1+,x2=1﹣(此时点P在直线AC的上方,不符合题意,舍),∴P(1+,1);③如图5,以OQ为斜边,当P在对称轴的左侧时,设P(t,),过P作PH⊥x轴于H,PG⊥对称轴于G,同理得:PG=PH,∴1﹣t=﹣,解得:t1=2﹣,t2=2+(舍),∴P(2﹣,1﹣),④如图6,以OQ为斜边,当P在对称轴的右侧时,设P(t,),过P作PH⊥x轴,过Q作QH⊥PH,同理得:PG=QH,∴t﹣1=﹣,解得:t1=﹣(舍),t2=,∴P(,1﹣),综上所述,点P的坐标为P(1+,﹣1)或(1﹣,﹣1)或(1+,1)或(2﹣,1﹣)或(,1﹣)…14分。
辽宁省本溪市中考数学模拟试卷(二)(含解析)

2017年辽宁省本溪市中考数学模拟试卷(二)一、选择题(本题共10个小题,每小题3分,共30分)1.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A.28.3×107B.2.83×108C.0.283×1010D.2.83×1092.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B.C.D.3.下列运算正确的是()A.a+a2=a3B.(3a)2=6a2C.a6÷a2=a3D.a•a3=a44.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5 B.m=n=4 C.m+n=4 D.m+n=85.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A. B.C. D.6.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F的度数是()A.10.5°B.9.5°C.8.5°D.8°7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A.3个B.2个C.1个D.0个8.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4 B.4 C.4.8 D.59.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC 绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(,﹣)B.(﹣,)C.(2,﹣2)D.(,﹣)10.如图,在直角坐标系xoy中,已知A(0,1),B(,0),以线段AB为边向上作菱形ABCD,且点D在y轴上.若菱形ABCD以每秒2个单位长度的速度沿射线AB滑行,直至顶点D落在x轴上时停止.设菱形落在x轴下方部分的面积为S,则表示S与滑行时间t的函数关系的图象为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共30分)11.分解因式:2x2+2x+= .12.一组数据﹣1,0,2,3,x,其中这组数据的极差是5,那么这组数据的平均数是.13.如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB= .14.(﹣1.414)0+()﹣1﹣+2cos30°=.15.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D 的对应点D′落在∠ABC的角平分线上时,DE的长为.16.如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD= °.17.如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C,将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,则点E的坐标为.18.已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D n+1都在同一直线上,则正方形A n C n C n+1D n+1的边长是.三、解答题(共2小题,共22分)19.(10分)先化简,再求值:,其中x是不等式3x+7>1的负整数解.20.(12分)如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.四、解答题21.(12分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:请结合统计图表,回答下列问题.(1)本次参与调查的学生共有人,m= ,n= ;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全图1示数的条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.22.(12分)如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1:,求旗杆AB的高度(,结果精确到个位).23.(12分)如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)如果CD=15,BE=10,sin∠DAE=,求⊙O的半径.24.(12分)我市是世界有机蔬菜基地,数10种蔬菜在国际市场上颇具竞争力.某种有机蔬菜上市时,某经销商按市场价格10元/千克在我市收购了2000千克某种蔬菜存放入冷库中.据预测,该种蔬菜的市场价格每天每千克将上涨0.5元,但冷库存放这批蔬菜时每天需要支出各种费用合计340元,而且这种蔬菜在冷库中最多保存110天,同时,平均每天将会有6千克的蔬菜损坏不能出售.(1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出y 与x之间的函数关系式.(2)经销商想获得利润22500元,需将这批蔬菜存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?25.(12分)已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD.(1)如图1,若AB=BC=AC,求证:AE=EF;(2)如图2,若AB=BC,(1)中的结论是否仍然成立?证明你的结论;(3)如图3,若AB=kBC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出AE与EF之间的数量关系,并证明.26.(14分)已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)(1)求二次函数的解析式;(2)求抛物线上存在点P,使S△BDC=S△PBC,求出P点坐标(不与已知点重合);(3)在x轴上存在点N,平面内存在点M,使得B、N、C、M为原点构成矩形时,请直接写出M点坐标.2017年辽宁省本溪市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A.28.3×107B.2.83×108C.0.283×1010D.2.83×109【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:28.3亿=28.3×108=2.83×109.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、旋转角是,只是每旋转与原图重合,而中心对称的定义是绕一定点旋转180度,新图形与原图形重合.因此不符合中心对称的定义,不是中心对称图形.D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列运算正确的是()A.a+a2=a3B.(3a)2=6a2C.a6÷a2=a3D.a•a3=a4【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项、积的乘方、同底数幂的除法、同底数幂的乘法法则进行计算.【解答】解:A、a与a2是相加,不是相乘,所以指数不能相加,故选本项错误;B、应为(3a)2=9a2,故本选项错误;C、应为a6÷a2=a6﹣2=a4,故本选项错误;D、a•a3=a1+3=a4,正确.故选D.【点评】本题主要考查了合并同类项、积的乘方、同底数幂的除法、同底数幂的乘法法则.同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.4.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5 B.m=n=4 C.m+n=4 D.m+n=8【考点】X4:概率公式.【分析】由于每个球都有被摸到的可能性,故可利用概率公式求出摸到白球的概率与摸到的球不是白球的概率,列出等式,求出m、n的关系.【解答】解:根据概率公式,摸出白球的概率,,摸出不是白球的概率,,由于二者相同,故有=,整理得,m+n=8,故选D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A. B.C. D.【考点】B6:由实际问题抽象出分式方程.【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.【点评】此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.6.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F的度数是()A.10.5°B.9.5°C.8.5°D.8°【考点】JA:平行线的性质.【分析】先根据平行线的性质求出∠AED与∠DEB的度数,再由角平分线的性质求出∠DEF 的度数,进而可得出∠GEF的度数,再根据三角形外角的性质即可得出结论.【解答】解:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠DEF=×119°=59.5°,∴∠GEF=61°+59.5°=120.5°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣120.5°=9.5°.故选:B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补,内错角相等.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A.3个B.2个C.1个D.0个【考点】H4:二次函数图象与系数的关系.【分析】根据图象得到x=﹣2时对应的函数值小于0,得到N=4a﹣2b+c的值小于0,根据对称轴在直线x=﹣1右边,利用对称轴公式列出不等式,根据开口向下得到a小于0,变形即可对于P作出判断,根据a,b,c的符号判断得出a+b﹣c的符号.【解答】解:∵图象开口向下,∴a<0,∵对称轴在y轴左侧,∴a,b同号,∴a<0,b<0,∵图象经过y轴正半轴,∴c>0,∴M=a+b﹣c<0当x=﹣2时,y=4a﹣2b+c<0,∴N=4a﹣2b+c<0,∵﹣>﹣1,∴<1,∵a<0,∴b>2a,∴2a﹣b<0,∴P=2a﹣b<0,则M,N,P中,值小于0的数有M,N,P.故选:A.【点评】此题主要考查了二次函数图象与系数的关系,根据图象判断出对称轴以及a,b,c 的符号是解题关键.8.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4 B.4 C.4.8 D.5【考点】PA:轴对称﹣最短路线问题.【分析】过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用S△ABC=AB•CM=AC•BC,得出CM的值,即PC+PQ的最小值.【解答】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB===10.∵S△ABC=AB•CM=AC•BC,∴CM===,即PC+PQ的最小值为.故选:C.【点评】本题主要考查了轴对称问题,解题的关键是找出满足PC+PQ有最小值时点P和Q 的位置.9.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC 绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(,﹣)B.(﹣,)C.(2,﹣2)D.(,﹣)【考点】R7:坐标与图形变化﹣旋转;L8:菱形的性质.【分析】首先连接OB,OB′,过点B′作B′E⊥x轴于E,由旋转的性质,易得∠BOB′=105°,由菱形的性质,易证得△AOB是等边三角形,即可得OB′=OB=OA=2,∠AOB=60°,继而可求得∠AOB′=45°,由等腰直角三角形的性质,即可求得答案.【解答】解:连接OB,OB′,过点B′作B′E⊥x轴于E,根据题意得:∠BOB′=105°,∵四边形OABC是菱形,∴OA=AB,∠AOB=∠AOC=∠ABC=×120°=60°,∴△OAB是等边三角形,∴OB=OA=2,∴∠AOB′=∠BOB′﹣∠AOB=105°﹣60°=45°,OB′=OB=2,∴OE=B′E=OB′•sin45°=2×=,∴点B′的坐标为:(,﹣).故选:A.【点评】此题考查了旋转的性质、菱形的性质、等边三角形的判定与性质以及等腰直角三角形性质.此题难度不大,注意掌握旋转前后图形的对应关系,注意辅助线的作法.10.如图,在直角坐标系xoy中,已知A(0,1),B(,0),以线段AB为边向上作菱形ABCD,且点D在y轴上.若菱形ABCD以每秒2个单位长度的速度沿射线AB滑行,直至顶点D落在x轴上时停止.设菱形落在x轴下方部分的面积为S,则表示S与滑行时间t的函数关系的图象为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据点A、B的坐标求出OA、OB,再利用勾股定理列式求出AB,再求出菱形的高,以及菱形沿y轴方向滑落的速度和x轴方向滑落的速度,再分①点A在x轴上方时,利用三角形的面积公式表示出s与t的函数关系式,②点A在x轴下方,点C在x轴上方时,利用梯形的面积公式表示出s与t的函数关系式,③点C在x轴下方时,利用菱形ABCD的面积减去x轴上方部分的三角形的面积,列式整理得到s与t的函数关系式,从而判断出函数图象而得解.【解答】解:∵A(0,1),B(,0),∴OA=1,OB=,∴AB===2,∵tan∠BAO===,∴∠BAO=60°,∴菱形ABCD的高为2×=,∵菱形ABCD以每秒2个单位长度的速度沿射线AB滑行,∴菱形沿y轴方向滑落的速度为1,沿x轴方向滑落的速度,①点A在x轴上方时,落在x轴下方部分是三角形,面积S=•t•t=t2,②点A在x轴下方,点C在x轴上方时,落在x轴下方部分是梯形,面积S= [t+(t﹣1)•1]×=t﹣,③点C在x轴下方时,x轴下方部分为菱形的面积减去x轴上方部分的三角形的面积,S=2×﹣(6﹣2t)•(6﹣2t)=2﹣(3﹣t)2,纵观各选项,只有A选项图形符合.故选A.【点评】本题考查了动点问题的函数图象,主要利用了菱形的性质,解直角三角形,分三段得到x轴下方部分的图形并求出相应的函数关系式是解题的关键.二、填空题(本大题共8小题,每小题3分,共30分)11.分解因式:2x2+2x+= 2(x+)2.【考点】55:提公因式法与公式法的综合运用.【分析】观察多项式,有三项时,可以考虑完全平方公式.此时只需首先提取二次项系数2即可.【解答】解:2x2+2x+,=2(x2+x+),=2(x+)2.(2x+1)2或2或答案都对【点评】本题考查了提公因式法与公式法分解因式,此题注意化二次项系数为1时,可更清楚地看出符合完全平方公式.12.一组数据﹣1,0,2,3,x,其中这组数据的极差是5,那么这组数据的平均数是 1.6或0.4 .【考点】W1:算术平均数;W6:极差.【分析】根据极差的定义求解.分两种情况:x为最大值或最小值.再根据平均数的公式求解即可.【解答】解:一组数据﹣1,0,2,3,x的极差是5,当x为最大值时,x﹣(﹣1)=5,x=4,平均数是:(﹣1+0+2+3+4)÷5=1.6;当x是最小值时,3﹣x=5,解得:x=﹣2,平均数是:(﹣1+0+2+3﹣2)÷5=0.4.故答案为:1.6或0.4.【点评】考查了极差的定义和算术平均数,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.13.如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB= .【考点】LB:矩形的性质;KJ:等腰三角形的判定与性质;KO:含30度角的直角三角形;KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF ﹣∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.【解答】解:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,∵∠ACG=∠AGC,∴∠CAG=180°﹣∠ACG﹣∠AGC=180°﹣2×40°=100°,∴∠CAF=∠CAG+∠GAF=100°+20°=120°,∴∠BAC=∠CAF﹣∠BAF=30°,在Rt△ABC中,AC=2BC=2AD=2,由勾股定理,AB===.故答案为:.【点评】本题考查了矩形的性质,等腰三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记各性质并求出AB是30°角直角三角形的直角边是解题的关键.14.(﹣1.414)0+()﹣1﹣+2cos30°=4﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式零指数幂、负整数指数幂法则,算术平方根性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+3﹣3+2×=4﹣2,故答案为:4﹣2【点评】此题考查了整式的混合运算,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.15.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【考点】PB:翻折变换(折叠问题).【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC 交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.【点评】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.16.如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD= 65 °.【考点】M5:圆周角定理;D5:坐标与图形性质.【分析】根据∠DAB=20°,得出∠DOB的度数,再利用等腰三角形的性质得出∠OCD=∠CDO,进而求出答案.【解答】解:连接DO,∵∠DAB=20°,∴∠DOB=40°,∴∠COD=90°﹣40°=50°,∵CO=DO,∴∠OCD=∠CDO,∴∠OCD=(180°﹣50°)÷2=65°.故答案为:65.【点评】此题主要考查了圆周角定理以及等腰三角形的性质,得出∠OCD=∠CDO是解决问题的关键.17.如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C,将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,则点E的坐标为(,5).【考点】G6:反比例函数图象上点的坐标特征;L5:平行四边形的性质;Q3:坐标与图形变化﹣平移.【分析】根据点A、B、D的坐标结合平行四边形的性质即可得出点C的坐标,由点C的坐标利用反比例函数图象上点的坐标特征即可得出反比例函数解析式,设点B′的坐标为(6,m),由点B′在反比例函数图象上即可求出m值,从而可找出点C′、D′的坐标,由点C′、D′的纵坐标利用反比例函数图象上点的坐标特征即可得出点E的坐标,此题得解.【解答】解:∵点A(2,0),B(6,0),D(0,3),四边形ABCD为平行四边形,∴C(4,3).∵反比例函数的图象经过点C,∴反比例函数解析式为y=.设点B′的坐标为(6,m),∵点B′在反比例函数y=的图象上,∴6m=12,解得:m=2,∴D′(0,5),C′(4,5).∵C′D′与双曲线交于点E,∴E(,5).故答案为:(,5).【点评】本题考查了反比例函数图象上点的坐标特征、平行四边形的性质以及坐标与图形变化中的平移,根据平行四边形的性质找出点C的坐标,再利用反比例函数图象上点的坐标特征求出反比例函数解析式是解题的关键.18.已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D n+1都在同一直线上,则正方形A n C n C n+1D n+1的边长是.【考点】LE:正方形的性质.【分析】延长D4A和C1B交于O,根据正方形的性质和三角形相似的性质即可求得各个正方形的边长,从而得出规律,即可求得正方形A9C9C10D10的边长.【解答】解:延长D4A和C1B交于O,∵AB∥A2C1,∴△AOB∽△D2OC2,∴=,∵AB=BC1=1,D2C2=C1C2=2,∴==,∴OC2=2OB,∴OB=BC2=3,∴OC2=6,设正方形A2C2C3D3的边长为x1,同理证得:△D2OC2∽△D3OC3,∴=,解得,x1=3,∴正方形A2C2C3D3的边长为3,设正方形A3C3C4D4的边长为x2,同理证得:△D3OC3∽△D4OC4,∴=,解得x2=,∴正方形A3C3C4D4的边长为;设正方形A4C4C5D5的边长为x3,同理证得:△D4OC4∽△D5OC5,∴=,解得x=,∴正方形A4C4C5D5的边长为;以此类推….正方形A n C n C n+1D n+1的边长为,故答案为长为;【点评】本题考查了正方形的性质,相似三角形的判定和性质,求得前五个正方形的边长得出规律是解题的关键.三、解答题(共2小题,共22分)19.(10分)(2013•重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解.【考点】6D:分式的化简求值;C7:一元一次不等式的整数解.【分析】首先把分式进行化简,再解出不等式,确定出x的值,然后再代入化简后的分式即可.【解答】解:原式=[﹣]×,=×,=×,=,3x+7>1,3x>﹣6,x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,把x=﹣1代入中得: =3.【点评】此题主要考查了分式的化简求值,以及不等式的整数解,关键是正确把分式进行化简.20.(12分)(2012•娄底)如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.【考点】LB:矩形的性质;KD:全等三角形的判定与性质;KP:直角三角形斜边上的中线;L9:菱形的判定.【分析】(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=DN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.【解答】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=AD,CN=BC,∴AM=CN,在△MAB和△NDC中,∵,∴△MBA≌△NDC(SAS);(2)四边形MPNQ是菱形.理由如下:连接AP,MN,则四边形ABNM是矩形,∵AN和BM互相平分,则A,P,N在同一条直线上,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q分别是BM、DN的中点,∴PM=NQ,∵,∴△MQD≌△NPB(SAS).∴四边形MPNQ是平行四边形,∵M是AD中点,Q是DN中点,∴MQ=AN,∴MQ=BM,∵MP=BM,∴MP=MQ,∴平行四边形MQNP是菱形.【点评】本题考查了矩形的性质、全等三角形的判定和全等三角形的性质、三角形中位线定理以及平行四边形的判定和菱形的判定方法,属于基础题目.四、解答题21.(12分)(2013•烟台)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:请结合统计图表,回答下列问题.(1)本次参与调查的学生共有400 人,m= 15% ,n= 35% ;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是126 度;(3)请补全图1示数的条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.【考点】X7:游戏公平性;VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.【分析】(1)根据“基本了解”的人数以及所占比例,可求得总人数;在根据频数、百分比之间的关系,可得m,n的值;(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D部分扇形所对应的圆心角;(3)根据D等级的人数为:400×35%=140;可得(3)的答案;(4)用树状图列举出所有可能,进而得出答案.【解答】解:(1)利用条形图和扇形图可得出:本次参与调查的学生共有:180÷45%=400;m=×100%=15%,n=1﹣5%﹣15%﹣45%=35%;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是:360°×35%=126°;(3)∵D等级的人数为:400×35%=140;如图所示:;(4)列树状图得:所以从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,则小明参加的概率为:P==,小刚参加的概率为:P==,故游戏规则不公平.故答案为:400,15%,35%;126.【点评】此题主要考查了游戏公平性,涉及扇形统计图的意义与特点,即可以比较清楚地反映出部分与部分、部分与整体之间的数量关系.22.(12分)(2017•本溪模拟)如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D 的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1:,求旗杆AB的高度(,结果精确到个位).。
2017年辽宁省本溪市中考数学试卷(含答案解析版)

2017年辽宁省本溪市中考数学试卷一、选择题:本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在13-,1,0,3-中,最大的数是( ) A .13- B .1 C .0 D .3-2.下列运算正确的是( ) A .43a a a ÷= B .()426a a = C .222a a 1-= D .3263a 2a 6a ⋅=3.下列图形中既是轴对称图形,又是中心对称图形的是( )A B C D4.关于x 的一元二次方程x 2﹣3x ﹣a=0有一个实数根为﹣1,则a 的 值是( ) A .2 B .﹣2 C .4 D .﹣45.小明同学中考前为了给自己加油,课余时间制作了一个六个面 分别写有“17”“中”“考”“必”“胜”“!”的正方体模型, 这个模型的表面展开图如图所示,与“胜”相对的一面写的是( ) A .17 B .! C .中 D .考6.已知一组数据1,2,4,3,x 的众数是2,则这组数据的中位数是( ) A .2B .2.5C .3D .47.下列事件为确定事件的是( )A .一个不透明的口袋中装有除颜色外完全相同的3个红球和1个白球,均匀混合后,从中任意摸出1个球是红球B .长度分别是4,6,9的三条线段能围成一个三角形C .本钢篮球队运动员韩德君投篮一次命中D .掷1枚质地均匀的硬币,落地时正面朝上8.四月是辽宁省“全民阅读月”,学校阅览室将对学生的开放时间由每天的4.5h 延长到每天6h ,这样每天可以多安排2个班级阅读,如果每个班级每天阅读时间相同,且每个时间段只能安排一个班级阅读,设原来每天可以安排x 个班级阅读,根据题意列出的方程正确的为( )A .4.562x x =- B . 4.562x x =- C .4.562x x =+ D . 4.562x x=+ 9.如图,点A 在第二象限,点B 在x 轴的负半轴上,AB=AO=13, 线段OA 的垂直平分线交线段AB 与点C,连接OC ,△BOC 的周长为 23,若反比例函数ky x=的图象经过点A ,则k 的值为( ) A .30B .﹣30C .60D .﹣6010.如图,等腰直角三角形ABC ,∠BAC=90°,AB=AC=4,以点A 为中心的正方形EFGH 边长为x (x >0),EF ∥AB ,正方形EFGH 与等腰直角三角形ABC 重叠部分的面积为y ,则大致能反映y 与x 之间的函数关系的图象为( )二、填空题:本题共8小题,每小题3分,共24分.11.3月18日,本溪市首条地下综合管理廊项目在威宁大街开建,工程总投资560 000 000元,将数据560 000 000用科学记数法表示为 .12.如图,两张矩形纸条交叉重叠在一起,若∠1=50°, 则∠2的度数为_____.13.分解因式:33m 4m n n -= .14.有甲、乙两段高度相等的山坡,分别修建了阶数相同的两段台阶. 甲段台阶各级台阶高度的方差2s4.6=甲,乙段台阶各级台阶高度的方差2s 2.2=乙,当每级台阶高度接近时走起来比较舒适,则甲、乙两段台阶走起来更舒适的是_____(填“甲”或“乙”).15.电影《速度与激情8》上映,小亮同学准备买票观看,在选择座位时,他发现理想的位置只剩下了第九排的3个座位和第十排的4个座位.他从这7个座位中随机选了1个座位是第九排座位的概率为_____.16.直线y=kx+b 是由直线y=-2x 平移得到的,且经过点P (2,0),则k+b 的值为_____. 17.菱形ABCD 中,AB=5,AE 是BC 边上的高,AE=4,则对角线BD 的长为_____.18.如图,∠AOB=60°,点O1是∠AOB 平分线上一点,OO 1 =2,作O 1A 1⊥OA ,O 1B 1⊥OB ,垂足分别为点A 1,B 1,以A 1B 1为边作等边三角形A 1B 1O 2;作O 2A 2⊥OA ,O 2B 2⊥OB ,垂足分别为点A 2,B 2,以A 2B 2为边作等边三角形A 2B 2O 3;作O 3A 3⊥OA ,O 3B 3⊥OB ,垂足分别为点A 3,B 3,以A 3B 3为边作等边三角形A 3B 3O 4;……按这样的方式继续下去,则△A n B n O n 的面积为__________________________(用含正整数n 的代数式表示)三、解答题:第19题10分,第20题12分,共22分. 19.先化简,再求值:025241(2),(1)232x x x x x xπ+--=---+-其中.20.随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,本溪市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别,A.积极参与;B.一定参与;C.可以参与;D.不参与.根据调查结果制作了如下不完整的统计表和统计图. 请你根据以上信息,解答下列问题:(1) a=_____,b=______.(2) 请求出m 的值并将条形统计图补充完整.(3) 该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(4)“朗读”活动中,七年一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率.四、解答题(第21、22题各12分,共24分.解答应写出必要的文字说明、证明过程、演算步骤) 21.某校九年级有三个班,其中九年一班和九年二班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九年一班的满分率为70%,九年二班的满分率为80%.(1)求九年一班和九年二班各有多少名学生.(2)该校九年三班有45名学生,若九年级体育成绩的总满分率超过75%,求九年三班至少有多少名学生体育成绩是满分.22.如图,△PAB内接于⊙O,平行四边形ABCD的边AD是⊙O的直径,且∠C=∠APB,连接BD. (1)求证:BC是⊙O的切线.(2)若BC=2,∠PBD=60°,求AP与弦AP围成的阴影部分的面积.23.近几年随着人们生活方式的改变,租车出行成为一种新选择.本溪某租车公司根据去年运营经验得出:每天租出的车辆数y(辆)与每辆车每天的租金x(元)满足关系式13650y x=-+(500≤x≤1800,且x为50的整数倍),公司需要为每辆租出的车每天支出各种费用共200元,设租车公司每天的利润为w元.(1)求w与x的函数关系式.(利润=租金-支出)(2)公司在“十一黄金周”的前3天每天都获得了最大利润,但是后4天执行了物价局的新规定:每辆车每天的租金不超过800元.请确定这7天公司获得的总利润最多为多少元?六、解答题:(本题共12分.解答应写出必要的文字说明、证明过程、演算步骤)24.如图1,一种折叠式小刀由刀片和刀鞘两部分组成.现将小刀打开成如图2位置,刀片部分是四边形ABCD,其中AD∥BC,AB⊥BC,CD=15mm,∠C=53°,刀鞘的边缘MN∥PQ,刀刃BC与刀鞘边缘PQ相交于点O,点A恰好落在刀鞘另一边缘MN上时,∠COP=37°,OC=50mm.(1)求刀片宽度h.(2)若刀鞘宽度为14mm,求刀刃BC的长度.(结果精确到0.1mm)(参考数据:sin37°≈35,cos37°≈45,tan37°≈34)25.△ABC中,AB=AC,∠ABC=α,过点A作直线MN,使MN‖BC,点D在直线MN上,作射线BD,将射线BD绕点B顺时针旋转角α后交直线AC于点E.(1)如图①,当α=60°,且点D在射线AN上时,直接写出线段AB,AD,AE的数量关系;(2)如图②,当α=45°,且点D在射线AN上时,写出线段AB,AD,AE的数量关系,并说明理由。