数学竞赛中的无理函数最值问题
九年级数学竞赛题:代数最值

九年级数学竞赛题:代数最值数学问题中常见的一类问题是:求某个变量的最大值或最小值.在生产实践中,我们经常面对带有“最”字的问题,如投入最少、利益最高、时间最短、效益最大、耗材最少等.我们把这类问题称为“最值问题”.最值问题也是数学竞赛中的热点问题,它内容丰富,涉及面广,解法灵活,解最值问题的常见方法有:1.利用配方法求最值;2.运用不等式或不等分析法求最值;3.建立二次方程,在方程有解的条件下,利用判别式求最值;4.构造二次函数模型求最值;5.构造图形求最值.例1 某乒乓球训练馆准备购买n 副某种品牌的乒乓球拍,每副球拍配k (k ≥3)个乒乓球.已知A 、B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A 超市所有商品均打九折(接原价的90%付费)销售,而B 超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A 超市还是B 超市买更合算?(2)当k =12时,请设计最省钱的购买方案.例2 光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A 、B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 元,求y 与x 间的函数关系式,并写出x 的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来; 、(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.例3已知实数a 、b 、c 满足.4,2==++abc c b a(1) 求a 、b 、c 中最大者的最小值;(2) 求||||||c b a ++的最小值.例4 某商场将进价为30元的书包以40元售出,平均每月售出600个.调查表明:这种书包的售价每上涨1元,其销售量就将减少10个. ’(1)为了实现平均每月10000元的销售利润,这种书包的售价应定为多少元?(2)10000元的利润是否为最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元?(3)请分析并回答售价在什么范围内商家就可获得利润.例5如图1,已知直线x y 21-=与抛物线6412+-=x y 交于A 、B 两点. (1)求A 、B 两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A 、B 两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A 、B 构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.1.甲、乙两人进行羽毛球比赛,甲发出一枚十分关键的球,出手点为P ,羽毛球飞行的水平距离s (米)与其距地面高度h (米)之间的关系式为23321212++-=s s h .如图,已知球网AB 距原点5米.乙(用线段CD 表示)扣球的最大高度为94米,设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失误,则m 的取值范围是__________.2.已知x ,y ,z 为实数,若zx yz xy x z z y y x ++=+=+=+则,2,2,1222222的最小值为__________.3.某饮料厂为了开发新产品,用A 、B 两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的相关数据:(1)假设甲种饮料需配制x 千克,请你写出满足题意的不等式组,并求出其解集;(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y 元,请写出y 与x 的函数表达式.并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?4.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y (万件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 关于x 的函数关系式;(2)试写出该公司销售该种产品的年获利z (万元)关于销售单价x (元)的函数关系式(年获利一年销售额一年销售产品总进价一年总开支).当销售单价x 为何值时,年获利最大?并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?5.某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润y A (万元)与投资金额x (万元)之间存在正比例函数关系:y A =kx ,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B 种产品,则所获利润y B (万元)与投资金额x (万元)之间存在二次函数关系:y B =ax 2+bx ,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A 、B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.6.已知实数a 、b 、c 满足6,0222=++=++c b a c b a ,则a 的最大值为_____________.7.若正数x 、y 、z 满足))((,4)(z y y x yz x xyz ++=+则的最小可能值为____________.8.函数4)4(1)(22+-++=x x x f 的最小值是____________.9.a 、b 是正数,并且抛物线b ax x y 22++=和a bx x y ++=22都与x 轴有公共点,则22b a +的最小值是____________.10.销售某种商品,如果单价上涨m %,则售出的数量就将减少150m ,为了使该商品的销售总金额最大,那么m 的值应该确定为____________.11.已知x 、y 、z 为实数,且3,5=++=++zx yz xy z y x ,试求x 的最大值与最小值.12.有一种产品的质量可分成6种不同的档次.若工时不变,每天可生产最低档次的产品40件;如果每提高一个档次,每件利润可增加1元,但每天要少生产2件产品.(1)若最低档次的产品每件利润16元时,生产哪一种档次的产品的利润最大?(2)若最低档次的产品每件利润22元时,生产哪一种档次的产品的利润最大?(3)由于市场价格浮动,生产最低档次产品每件利润可以从8元到24元不等,那么,生产哪种档次的产品所得利润最大?13.如图,在直角坐标系中,以点A (3,0),以23为半径的圆与x 轴相交于点B 、C ,与y 轴相交于点D 、E .(1)若抛物线c bx x y ++=231经过C 、D 两点,求抛物线的解析式,并判断点B 是否在该抛物线上;(2)在(1)中的抛物线的对称轴上求一点P ,使得△PBD 的周长最小;(3)设Q 为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M ,使得四边形BCQM 是平行四边形?若存在,求出点M 的坐标;若不存在,说明理由.。
求函数最值问题常用的10种方法

较大小,确定最值.
解析 因为f′(x)=3x2-3,所以令f′(x)=0,得x=
-1(舍正).又f(-3)=-17,f(-1)=3,f(0)=1,
比较得,f(x)的最大值为3,最小值为-17.故填3, -17. 点评 (1)利用导数法求函数最值的三个步骤:第一, 求函数在(a,b)内的极值;第二,求函数在端点的函 数值f(a)、f(b);第三,比较上述极值与端点函数值 的大小,即得函数的最值.(2)函数的最大值及最小 值点必在以下各点中取得:导数为零的点,导数不存 在的点及其端点.
三、换元法 换元法是指通过引入一个或几个新的变量,来替换 原来的某些变量(或代数式),以便使问题得以解决 的一种数学方法.在学习中,常常使用的换元法有 两类,即代数换元和三角换元,我们可以根据具体 问题及题目形式去灵活选择换元的方法,以便将复 杂的函数最值问题转化为简单函数的最值问题,从 而求出原函数的最值.如可用三角代换解决形如a2 +b2=1及部分根式函数形式的最值问题.
【例 4】设 x,y,z 为正实数,x-2y+3z=0,则 y 2 xz
的最小值为________. 分析 先利用条件将三元函数化为二元函数,再利用基 本不等式求得最值.
解析 因为x-2y+3z=0,
x+3z
y2 x2+9z2+6xz
所以y=
2
,所以 = xz
4xz
.
y2 6xz+6xz
又x,z为正实数,所以由基本不等式,得 ≥
∴Δ=(3y+3)2-4(y-1)(4y4)≥0,11
解得7≤y≤7(y≠1).综上得ymax=7,ymin=7.
点评 判别式法的应用,对转化的(y-1)x2+(3y+3)x +4y-4=0来说,应该满足二次项系数不为0,对二次 项系数为0时,要另行讨论,对本题若y-1=0,即 y=1,有(3+3)x+4-4=0,所以x=0.一般来说, 利用判别式法求函数的最值,即根据g(y)x2+h(y)x+
数学竞赛中的无理函数最值问题

数学竞赛中的无理函数最值问题无理函数是一类特殊的函数,其最值(或值域)的求法大多涉及到化归思想,能较好的考查学生分析问题解决问题的能力,因此受到数学竞赛命题人的青睐,时常出现在数学竞赛中,本文结合近几年全国数学联赛中的一些试题,总结这类问题的解法,并给出相应练习供参考:一、利用函数单调性求无理函数的最值若无理函数函数的单调性比较容易确定,常借助其单调性求最值。
例1(2010全国高中数学联赛).函数x x x f 3245)(---=的值域是 . 解析:该题是一道基础题,易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,x=5时)(x f 取到最小值-3,x=8时)(x f 取到最大值3,所以)(x f 的值域为]3,3[-.练习1:函数12)(2+-+-=x x x x f 的最小值是 .(3)二、利用代数换元求无理函数的最值例2.(2011全国高中数学联赛山西预赛)函数25113y x x =-+-的最大值是 .解析:令113x t -=,则6123061134(113)611314y x x x x =-+-=--+-+ 223656546142244t t t ⎛⎫=-++=--+≤ ⎪⎝⎭,则6524y ≤,当34t =,即16748x =取得等号, 所以25113y x x =-+-的最大值是2465. 例 3.(2011全国高中数学联赛四川初赛)已知0>m ,若函数mx x x f -+=100)(的最大值为)(m g ,求)(m g 的最小值.解析:令mx t -=100,则mt x 2100-=, ∴4100)2(110022m m m t m t m t y ++--=+-=, ∴当2m t =时,y 有最大值4100m m +,即4100)(m m m g +=. ∴10410024100)(=⨯≥+=m m m m m g , 等号当且仅当20=m 时成立,∴当20=m 时,)(m g 有最小值10.评析:对于形如“y m x n a x b=++±”的无理函数,一般可通过令t a x b =+,将原函数转化为关于t 的二次函数,通过配方求最值,本法同样适用于形如“y m x n a x b=++22±”的函数。
3.求函数最值问题常用的10种方法

函数,∴函数在区间[a,2a]上的最大值与最小值分别为 loga 2a,logaa=1. 1 1 又∵它们的差为 ,∴loga2= ,a=4.故填4. 2 2
点评 解决这类问题的重要的一步就是判断函数在给定区 间上的单调性.这一点处理好了, 间上的单调性.这一点处理好了,以下的问题就容易 了.一般而言,对一次函数,幂函数,指数函数,对数函 一般而言,对一次函数,幂函数,指数函数, 数在闭区间[m ,n]上的最值:若函数f x)在[m ,n]上单调 数在闭区间[ 上的最值:若函数f ( 递增,则f x)min=f m ),f x)max=f n);若函数f x)在[m ,n] 若函数f 递增, ( ( ( ( ( 上单调递减, ( 若函数f 上单调递减,则f x)min=f n),f x)max=f m );若函数f x)在 ( ( ( ( 上不单调,但在其分成的几个子区间上是单调的, [m ,n]上不单调,但在其分成的几个子区间上是单调的, 则可以采用分段函数求最值的方法处理. 则可以采用分段函数求最值的方法处理.
利用二次函数的性质求最值, 利用二次函数的性质求最值,要特别注意自变量 的取值范围, 的取值范围,同时还要注意对称轴与区间的相对位置 关系.如本题化为含参数的二次函数后, 关系.如本题化为含参数的二次函数后,求解最值时 要细心区分:对称轴与区间的位置关系, 要细心区分:对称轴与区间的位置关系,然后再根据 不同情况分类解决. 不同情况分类解决.
母恒为正,故可以应用判别式法求解.
2
2 y
五,函数单调性法 先确定函数在给定区间上的单调性, 先确定函数在给定区间上的单调性,然后依据单调 性求函数的最值. 性求函数的最值.这种利用函数单调性求最值的方 法就是函数单调性法. 法就是函数单调性法.这种求解方法在高考中是必 考的,且多在解答题中的某一问中出现. 考的,且多在解答题中的某一问中出现.
三角代换求函数最值问题

巧用三角代换求无理函数的最值上海市第五十四中学(邮编200030)裴华明求无理函数的最值问题,是中学数学中常见的问题之一,若用常规方法求解,对于有些题目来说就显得较为繁杂,计算量也较大,但若根据问题的特点巧妙的用三角代换来求解,则可把求无理函数的最值问题转化为求三角函数的最值问题,使问题得已简化,达到事半功倍的效果。
下面就介绍几类可用三角代换法来求无理函数最值的题型,仅供参考。
一、当函数的定义域为 x0, a a 0 时,可设x a sin2,0,2例 1、求函数y 1 x x 的最大值和最小值。
解:∵函数的定义域为则原函数可化为x 0,1 ,∴可设x sin 2,0,2 y sin cos 2 sin4又∵ 0则34424∴2sin1即 1y2 24故当0 或2时,ym i n1当时,ymax24例 2、求函数y3x x1的最值。
解:∵函数的定义域为x0,3,∴设 x3sin 2,0,2则原函数可化为y 3 cos 3 sin1 6 sin14∵ 02则444∴2sin2即31y 3 1 242故当4即0 时,y m a x 3 14当4即2时,ymin314二、 当 函 数 的 定 义 域 为 xa,a a 0 时 , 则 可 设 x a sin ,2 ,2例 3、 求函数 yx 24 x 2 的最大值和最小值。
解:∵函数的定义域为 x2,2 ,∴可设 x 2 sin,2 ,2 则原函数可化为 y2 sin2 2 cos2 2 sin4 2∵则322444∴2 sin1 即4 y 22 224故当 42 即时,ymax2 224当4 即2 时,ymin44三、 当 函 数 的 定 义 域 为 xa, b , 可 设 xa b a cos 2,0,或者设 xa b bacos ,0,222例 4、 求函数 yx 2 21 3x 的最值。
解:∵函数的定义域为 x 2,7 ,∴可设 x2 7 2 cos 22 5 cos 2,0,2则原函数可化为y5 cos15 sin2 5 sin6∵ 02 则3 66∴3sin1即15 y5226故当6 即0 时,ymax56当即 时,ymin15632例 5、 求函数 y8 2x x 23x 的最大值或最小值。
2005年“我爱数学”初中生夏令营数学竞赛试卷及试卷解析

2005年“我爱数学”初中生夏令营数学竞赛试卷一、解答题(共13小题,满分0分)1.已知:(1)a>0(2)当﹣1≤x≤1时,满足|ax2+bx+c|≤1;(3)当﹣1≤x≤1时,ax+b有最大值2.求常数a、b、c.2.在△ABC中,已知I为内心,O为外心,AB=8,BC=6,CA=4.求证:OI⊥CI.3.在9×9的方格表中,共有81个小方格.在每一个小方格中,写上一个数,如果只要每行、每列至多有三个不同的数,就能保证在方格表中存在一个数,这个数在其某一行中至少出现n次,在某一列中也至少出现n次,那么,n 的最大值是多少?并证明你的结论.4.已知=8,则2x+4y﹣z+6=.5.若2x2+7xy﹣15y2+ax+by+3可以分解成两个一次整系数多项式的乘积,其中a、b为实数,那么,a+b的最小值是.6.已知n是正整数,1++是一个有理式A的平方,那么,A=.7.某计算机用户计划用不超过500元的资金购买单价分别为60元、70元的A 类软件和B类软件,根据需要A类软件至少买3片,B类软件至少买2片,则不同的选购方式共有种.8.已知方程6x2+2(m﹣13)x+12﹣m=0恰有一个正整数解,则整数m的值为.9.在边长为1的正方形ABCD中,点M、N、O、P分别在边AB、BC、CD、DA 上.如果AM=BM,DP=3AP,则MN+NO+OP的最小值是.10.已知O为△ABC的外心,AD为BC上的高,∠CAB=66°,∠ABC=44°.那么∠OAD=.11.代数式++达到最小值时,x、y的值分别为 .12.如果2006个整数a 1,a 2,…a 2006,满足下列条件:a 1=0,|a 2|=|a 1+2|,|a 3|=|a 2+2|,…,|a 2006|=|a 2005+2|,那么,a 1+a 2+…+a 2005的最小值是 .13.一栋房子的造价由地上部分费用与基础部分费用组成.一栋面积为Nm 2的房子的地上部分费用与N 成正比,基础部分费用与成正比.已知一栋3600m 2的房子的造价中的地上部分费用是基础部分费用的72%,那么,要建造若干栋相同的住房,使面积为8000m 2的总造价最小,则每栋住房的面积的平方米数应是 .2005年“我爱数学”初中生夏令营数学竞赛试卷参考答案与试题解析一、解答题(共13小题,满分0分)1.已知:(1)a>0(2)当﹣1≤x≤1时,满足|ax2+bx+c|≤1;(3)当﹣1≤x≤1时,ax+b有最大值2.求常数a、b、c.【分析】由已知:a>0,ax+b有最大值2,就知道ax+b是一个升函数,当﹣1≤x≤1时,ax+b有最大值2,就可以求出a+b的值为2,然后根据当﹣1≤x≤1时,满足|ax2+bx+c|≤1,就可以求出c的值,最后根据x的范围确定二次函数的最小值为﹣1,这样由二次函数的顶点坐标公式就可以求出b值,从而求出常数a、b、c的值.【解答】解:当a>0时,ax+b的值随着x取值的增大而增大,所以x=1时,ax+b有最大值a+b,即:a+b=2令x=0,则|c|≤1,即:﹣1≤c≤1令x=1,则|a+b+c|≤1,即:|2+c|≤1,所以﹣3≤c≤﹣1故c=﹣1.令y=ax2+bx+c,则抛物线y=ax2+bx+c必过(0,﹣1)因为当﹣1≤x≤1时,﹣1≤ax2+bx+c≤1,所以该二次函数的最小值是﹣1,∴∴4ac﹣b2=﹣4a∵c=﹣1﹣4a﹣b2=﹣4a∴b=0∴a=2所以a=2,b=0,c=﹣1.【点评】本题是一道二次函数的综合题,考查了一次函数的图象特征,用不等式组求解的特殊方法的运用以及二次函数的顶点公式的运用.2.在△ABC中,已知I为内心,O为外心,AB=8,BC=6,CA=4.求证:OI⊥CI.【分析】因I是内心,故,=.又因AB=8,BC=6,CA=4,所以AC+AB=2BC,故AB=2BE.由△ABE∽△ADC知AD=2DC.又DC=DI(内心性质),故AD=2DI.从而即可证明.【解答】证明:∵I是内心,∴,=.又∵AB=8,BC=6,CA=4∴AC+AB=2BC,∴AB=2BE.由△ABE∽△ADC知AD=2DC.又∵DC=DI(内心性质),∴AD=2DI.而O是外心,∴OI⊥AI.【点评】本题考查了相似三角形的性质与判定及三角形内切圆与内心,难度适中,关键是掌握外心与内心的性质.3.在9×9的方格表中,共有81个小方格.在每一个小方格中,写上一个数,如果只要每行、每列至多有三个不同的数,就能保证在方格表中存在一个数,这个数在其某一行中至少出现n次,在某一列中也至少出现n次,那么,n 的最大值是多少?并证明你的结论.【分析】通过举例首先猜想n的最大值是3,然后通过做标记实验的方法得当某数在某一行至少出现3次,在某一列至少出现3次.【解答】解:1 2 34 5 67 8 9每一格表示3×3的方格,如图的特例中的数字,得到n≤3,猜想:n的最大值为3.只需要证按条件填好的81个数后一定存在一个数,这个数在某一行至少出现3次,在某一列也至少出现3次.若某数在某行至少出现3次,就在该数上打“√”作上记号,则每行至少有5个“√”(不打“√”号的最多有4个),因此表格中至少有45个,同理,若某数在某列至少出现3次,就在该数上打“0”作上记号,则表格中至少有45个“0”.由于45+45=90,所以至少有一格既打“√”,又打“0”,即这个数在某一行至少出现3次,在某一列至少出现3次.【点评】本题考查了规律探究题,解决此类问题的关键是仔细的观察数据之间的关系并发现其中的规律,从而解决问题.4.已知=8,则2x+4y﹣z+6=6.【分析】先把原方程去分母,再去括号化简,得到(4x2+16xy+16y2)﹣(4xz+8yz)+z2=0即:(2x+4y)2﹣2•(2x+4y)•z+z2=0,从而得出2x+4y﹣z=0,再求答案就容易了.【解答】解:由题意得:(2x+z)2=8(x+y)(﹣2y+z),∴4x2+4xz+z2=﹣16xy+8xz﹣16y2+8yz,∴4x2﹣4xz+z2+16xy+16y2﹣8yz=0,∴(4x2+16xy+16y2)﹣(4xz+8yz)+z2=0即:(2x+4y)2﹣2•(2x+4y)•z+z2=0,∴(2x+4y﹣z)2=0,∴2x+4y﹣z=0,∴2x+4y﹣z+6=0+6=6.故答案为6.【点评】本题考查了代数式求值,考查了整体代入的思想,此题比较繁琐,计算时要细心才行.5.若2x2+7xy﹣15y2+ax+by+3可以分解成两个一次整系数多项式的乘积,其中a、b为实数,那么,a+b的最小值是﹣17.【分析】由2x2+7xy﹣15y2+ax+by+3可以分解成两个一次整系数多项式的乘积,即可得:2﹣3 3 (1﹣3﹣1)××1 5 1 (3﹣1﹣3)则可求得a与b的可能取值,继而求得a+b的最小值.【解答】解:∵2x2+7xy﹣15y2+ax+by+3可以分解成两个一次整系数多项式的乘积,∴2﹣3 3 (1﹣3﹣1)××1 5 1 (3﹣1﹣3)∴a=5,b=12或a=7,b=﹣4或a=﹣5,b=﹣12或a=﹣7,b=4,∴a+b的最小值是﹣5+(﹣12)=﹣17.故答案为:﹣17.【点评】此题考查了因式定理的应用.注意形如ax2+bxy+cy2+dx+ey+f的二次三项式:a1c1f1××a2c2f2如果有:a1•c2+a2•c1=b,a1•f2+a2•f1=d,c1•f2+c2•f1=e,那么:ax2+bxy+cy2+dx+ey+f=(a1x+c1y+f1)(a2x+c2y+f2).6.已知n是正整数,1++是一个有理式A的平方,那么,A=±.【分析】先通分,分母n2(n+1)2是完全平方的形式,然后把分子整理成完全平方式的形式,从而即可得解.【解答】解:1++=,分子:n2(n+1)2+(n+1)2+n2=n2(n+1)2+n2+2n+1+n2,=n2(n+1)2+2n(n+1)+1,=[n(n+1)+1]2,∴分子分母都是完全平方的形式,∴A=±.故答案为:±.【点评】本题考查了完全平方式,先通分,然后把分子整理成完全平方公式的形式是解题的关键,难度较大,灵活性较强.7.某计算机用户计划用不超过500元的资金购买单价分别为60元、70元的A 类软件和B类软件,根据需要A类软件至少买3片,B类软件至少买2片,则不同的选购方式共有7种.【分析】首先设购买A、B类软件分别为x,y片,根据题意即可得不等式组:,解此不等式组,然后根据分类讨论的思想求解即可求得答案.【解答】解:设购买A、B类软件分别为x,y片,根据题意得:,∴3≤x≤6,2≤y≤,∴当x=3,y=2时,60x+70y=320,当x=3,y=3时,60x+70y=390,当x=3,y=4时,60x+70y=460,当x=4,y=2时,60x+70y=380,当x=4,y=3时,60x+70y=450,当x=4,y=4时,60x+70y=520(舍去),当x=5,y=2时,60x+70y=440,当x=5,y=3时,60x+70y=510(舍去),当x=5,y=4时,60x+70y=580(舍去),当x=6,y=2时,60x+70y=500,当x=6,y=3时,60x+70y=570(舍去),当x=6,y=4时,60x+70y=640(舍去),∴不同的选购方式共有7种.故答案为:7.【点评】此题考查了不等数组的实际应用问题.此题难度较大,解题的关键是注意理解题意,根据题意求得方程组,然后根据其性质解题,注意分类讨论思想的应用.8.已知方程6x2+2(m﹣13)x+12﹣m=0恰有一个正整数解,则整数m的值为8.【分析】根据方程6x2+2(m﹣13)x+12﹣m=0恰有一个正整数解可知:△=[2(m ﹣13)]2﹣4×6×(12﹣m)=4×[(m﹣13)2﹣6•(12﹣m)]应该是一个完全平方式,令令(m﹣13)2﹣6•(12﹣m)=y2,把该式转化成m2﹣20m﹣y2+97=0,即(m﹣10)2﹣y2=3,于是列出m和y的二元一次方程组,求出m的值,最后验证m是否符合题意.【解答】解:由题意知:△=[2(m﹣13)]2﹣4×6×(12﹣m)=4×[(m﹣13)2﹣6•(12﹣m)]应该是一个完全平方式,所以(m﹣13)2﹣6•(12﹣m)是一个完全平方式,令(m﹣13)2﹣6•(12﹣m)=y2(y是正整数),则m2﹣20m﹣y2+97=0,即(m﹣10)2﹣y2=3,∴(m﹣10+y)(m﹣10﹣y)=3×1=(﹣3)×(﹣1),∴或或或,解得m=12或8,当m=12时,原方程即6x2﹣2x=0,解得x=0或,不符合题意,当m=8时符合题意,整数m的值为8,故答案为8.【点评】本题主要考查一元二次方程的整数跟和有理根的知识点,解答本题的关键是熟练掌握跟的判别式和完全平方式的知识,此题难度不大.9.在边长为1的正方形ABCD中,点M、N、O、P分别在边AB、BC、CD、DA上.如果AM=BM,DP=3AP,则MN+NO+OP的最小值是.【分析】作点M关于直线BC的对称点M′,过P作关于直线CD的对称点P′,根据两点间线段最短,及勾股定理即可求解.【解答】解:作点M关于直线BC的对称点M′,过P作关于直线CD的对称点P′,连M′P′交BC,CD于N,O,所以M′N=MN,OP=OP′MN+NO+OP=NM′+ON+OP′=M′P′此时MN+NO+OP有最小值,由作法,得BM′=BM=,所以AM′=3/2,DP′=3/4,AP′=1+3/4=7/4在直角三角形AM′P′中,M′P′2=AM′2+AP′2=,所以M′P′=.故答案为:.【点评】考查了正方形的性质和轴对称﹣最短路线问题,熟知正方形的性质是解答此题的关键.10.已知O为△ABC的外心,AD为BC上的高,∠CAB=66°,∠ABC=44°.那么∠OAD=26°.【分析】如图,延长AO、AD分别交⊙O于E、F,连接EF,BF,根据圆周角定理及其推论可以分别得到∠CBF=∠CAF,∠AEF=∠ABF,∠AFE=90°,然后利用∠OAD=180°﹣∠AFE﹣∠AEF即可求解.【解答】解:如图,延长AO、AD分别交⊙O于E、F,连接EF,BF,∴∠CBF=∠CAF,∠AEF=∠ABF,∠AFE=90°,而∠OAD=180°﹣∠AFE﹣∠AEF=90°﹣∠AEF=90°﹣∠ABF=90°﹣(∠ABC+∠CBF)=90°﹣(∠ABC+∠CAF)而AD为BC上的高,∴∠CAF=90°﹣∠ACB,∴∠OAD=90°﹣(∠ABC+90°﹣∠ACB)=∠ACB﹣∠ABC=180°﹣∠BAC﹣2∠ABC=26°.故答案为:26°.【点评】此题主要考查了三角形的外接圆与外心的性质,同时也利用了圆周角定理及其推论,有一定的综合性,要求学生熟练掌握相关的性质才能很好解决问题.11.代数式++达到最小值时,x、y的值分别为,.【分析】将原式化为++,根据两点间的距离公式可知:可以看成是坐标轴上A(0,3)与B(3x,1)两点的距离,可看成是B(3x,1)与C(2y,0)的距离,则为C(2y,0)与D(4,2)的距离,继而利用轴对称﹣最短路线问题求解即可.【解答】解:原式=++,根据两点间的距离公式可知:可以看成是坐标轴上A(0,3)与B(3x,1)两点的距离,可看成是B(3x,1)与C(2y,0)的距离,则为C(2y,0)与D(4,2)的距离,在坐标轴上找出A、B、C和D四点的位置如下所示,点B在直线y=1上,点C 在x轴上,作点D(4,2)关于x轴对称到点E(4,﹣2),后连接DE两点,其与直线y=1的交点即是代数式达到最小值时的B点,与x轴的交点即是代数式达到最小值时的C点,可以算出此时B点的坐标为:(,0),解得x=;此时C点的坐标为:(,0),解得y=.故答案为:,.【点评】本题考查了利用轴对称﹣最短路径的知识求解无理函数的最值,找出A、B、C和D四点的位置是解答此题的关键,有一定的技巧性.12.如果2006个整数a1,a2,…a2006,满足下列条件:a1=0,|a2|=|a1+2|,|a3|=|a2+2|,…,|a2006|=|a2005+2|,那么,a1+a2+…+a2005的最小值是﹣2004.【分析】可以把2006个数分为502个小组(a1,a2,a3,a4)(a5,a6,a7,a8)…(a2001,a2002,a2003,a2004)(a2005,a2006),分别求出这些组的最小值,然后求和即可.【解答】解:可以把2006个数分为502个小组(a1,a2,a3,a4)(a5,a6,a7,a8)…(a2001,a2002,a2003,a2004)(a2005,a2006),第一组,取a1=0,a2=2,a3=﹣4,a4=﹣2 其和最小=﹣4,第二组,取a5=0,a6=2,a7=﹣4,a8=﹣2 其和最小=﹣4,…倒数第2组,取a2001=0,a2002=2,a2003=﹣4,a2004=﹣2.其和最小=﹣4,最后一组,取a2005=0,a2006=﹣2.∴这些数的和最小为501×(﹣4)+0=﹣2004,故答案为﹣2004.【点评】本题主要考查函数最值问题和整数问题的综合运用的知识点,解答本题的关键是对这些数进行分组,此题有一定难度.13.一栋房子的造价由地上部分费用与基础部分费用组成.一栋面积为Nm2的房子的地上部分费用与N成正比,基础部分费用与成正比.已知一栋3600m2的房子的造价中的地上部分费用是基础部分费用的72%,那么,要建造若干栋相同的住房,使面积为8000m2的总造价最小,则每栋住房的面积的平方米数应是500.【分析】根据题意先设出每栋住房的面积的平方米应是y,共建了x栋相同的住房,总价值为S,得出xy=8000,S=(αy+β)x,再根据题意得出S=α•xy+βx(其中α、β为比例常数),再根据统一列出式子,得出结果进行讨论,即可求出答案【解答】解:设每栋住房的面积的平方米应是y,共建了x栋相同的住房,总价值为S,则xy=8000,S=(αy+β)x,=,其中α、β为比例常数,于是有S=α•xy+βx=α•8000+5000•α••x=5000α(+)α•2•=105•8α≥105,由于上式等号成立,因此=,x=16,y=500.所以每栋住房的面积的平方米数应是500.故答案为:500.【点评】本题考查的知识点是函数模型的选择与应用,函数的值域,其中根据已知条件构造房屋总造价的函数解析式,将实际问题转化为函数的最值问题是解答本题的关键.。
无理函数最值(或值域)的柯西不等式求法

结论 1 设 函数 厂( ) 一a
b
b 、 了= ( n> 0 , b >0 , z < z ) 的最值.
文[ 1 ]用 拉格 朗 日( L a g r a n g e ) 乘数法 、 三 角
置 换法 、 构 造平 面 向量法 分 别 研 究 了这 类 无 理 函
M —J( a +b ) ( z 2 一 1 ) ,
例5 求 函数 g( z) 一7 一 + 2 、 = =丽 的最值 ( 例 1改编 1 )
即 z 一 号 时 , 一 √ _ 耋 - ;
再 次 由柯 西不 等式 ① , 得
解 A 一 E 2 , 导 ÷ ] . 显 然 , g ( z ) ≥ ≥( g ( 9 5 一 ,
①
②
厂( z) 一
√ ( 1 ・ 厨 + ・ √ 号 一 ) 。
一
( 当且 仅 当 b c —a d时取 “ _, ’ 号)
≤
本 文利 用 以上 柯 西 不 等 式 探 究 无 理 函 数 最 值( 或 值域 )的求 法 . 为简 明起 见 , 本 文 约定 : 函数 - 厂 ( z) 的定 义域 和值 域分 别记 为 A 和 C, 最 大 值 和 最 小值 ( 如 果
2 0 1 4年 第 2期
中 学数 学教 学
3 3
, 一 一 . ” “ “ “ 、
} 解 题
+ 十
无 理 函数 最 值 ( 或值域 ) 的 柯 西 不 等 式 求 法
浙 江省 湖 州 市双林 中学 宋 卫成 李建 潮 ( 邮编 : 3 1 3 0 1 2 )
有 的话 ) 分 别记 为 M 和 m.
当 且 仅 当 ・ 厨 一 1 ・ √ 导 一 , 即 z 一
第8无理函数

无理函数的值域问题求无理函数的值域问题是初等数学的难点,因该类问题内涵丰富,灵活多变,涉及多个知识点,技巧性、综合性较强,解法灵活多样,因此成为数学竞赛的热点.本文通过对各种解法进行对比研究,试图寻找解决各种类型问题的最佳方法.1.单调性质法[例1]:(2010年全国高中数学联赛试题)函数f(x)=5-x -x 324-的值域是 .[解析]:[评注]:一个函数我们直接或作一些变形就能判断函数的单调性,用单调求值域是一种比较快捷的方法.无理函数f (x)=b ax ++d cx +(a 与c 同号)型,或f (x)=b ax +-d cx +(a 与c 异号)型,或f (x)=b ax +-d cx +(a 与c 相等)型等,可判断函数单调性,均可用此法.用单调性质法求无理函数的值域时,必须注意到函数隐含的正负性特征和定义域.[类题]:1.(2011年全国高中数学联赛湖南初赛试题)函数y=1+x -x 525-的值域是 .2.(1995年第六届“希望杯”全国数学邀请赛(高一)试题)函数y=2+x -2-x ( ) (A)是非单调函数,没有反函数 (B)有反函数,且反函数是增函数 (C)有反函数,且反函数是减函数 (D)有反函数,且反函数是非单调函数3.(原创题)求函数y=27+x +x -13-x 的最大值和最小值.4.(原创题)求函数y=27+x +x -14-x -13的最大值和最小值.2.平方分析法[例2]:(2005年全国高中数学联赛试题)使关于x 的不等式3-x +x -6≥k 有解的实数k 的最大值是 .[解析]:[评注]:求无理函数值域的难点是解析式中含有的根式,而平方法是去掉根式的根本方法.无理函数f (x)=b ax ++ax d -(a>0,b>0,d>0)型,或f (x)=ax+b ±q px x a ++22型等,可使用平方法分析求解.用平方法求无理函数的值域时,必须注意到平方前函数中隐含的非负性特征和定义域.[类题]:1.(1994年全国高中数学联赛上海初赛试题)函数y=x -1994+1993-x 的值域是_____.2.(2003年第十四届“希望杯”全国数学邀请赛(高二)试题)函数y=232+-x x +232x x -+的最大值是 ,最小值是 .3.(2005年全国高中数学联赛吉林初赛试题)若x 2+y 2=169,则函数f(x,y)=3381024+-x y +3381024++x y 的最大值是 .4.(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .3.代数换元法[例3]:(2006年江苏高考试题)设a 为实数,设函数f(x)=a21x -+x +1+x -1的最大值为g(a).(Ⅰ)设t=x +1+x -1,求t 的取值范围,并把f(x)表示为t 的函数m(t); (Ⅱ)求g(a); (Ⅲ)试求满足g(a)=g(a1)的所有实数a. [解析]:[评注]:此法适用于函数f(x)=ax+b+md cx +,一般令t=d cx +,将原函数转化为t 的二次函数,当然也适用于函数f(x)=ax 2+b+m d cx +2、f(x)=ax 2+bx+k+m d cx +、f(x)=qpx cbx ax +++等.用代数换元法求无理函数的值域时,必须注意到换元后的新变元的取值范围.[类题]:1.(1997年第八届“希望杯”全国数学邀请赛(高一))函数y=x-x -1的值域为 . 2,(2011年全国高中数学联赛山西初赛试题)函数y=2x-5+x 311-的最大值是 . 3.(原创题)函数f(x)=x 2+21x -的值域为 .4.(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . 4.三角换元法(Ⅰ)[例4]:(2010年全国高中数学联赛安徽初赛试题)函数f(x)=2x-24x x -的值域是_________.[解析]:[评注]:若|x|≤R,则可作代换x=Rcos α,且α∈[0,π].此法适用于无理函数f(x)中的无理式是22)(a x R --的形式.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.如作代换x=Rsin α,则α∈[-2π,2π],使得换元恰取值好为原函数的定义域.[类题]:1.(2010年全国高中数学联赛江西初赛试题)函数f(x)=212+-x x 的值域是 . 2.(典型题)函数y=x 21x -+x 2的值域是 .3.(1986年全国高中数学联赛上海初赛试题)已知函数y=)56)(96(22-+-+-x x x x ,那么它的值域是__________.4.⑴(2011年全国高中数学联赛内蒙古初赛试题)函数f(x)=9102-+-x x +184502-+-x x 的最大值为 . ⑵(2004年第十五届“希望杯”全国数学邀请赛(高一))已知函数f(x)=232-+-x x +652-+-x x ,则函数f(x)的最大值与最小值之差是________.5.三角换元法(Ⅱ)[例5]:(2006年全国高中数学联赛江西初赛试题)函数f(x)=3-x +x 312-的值域为 .[解析]:[评注]:若x ∈[a,b],则可作代换x=(b-a)sin 2α+a,且α∈[0,2π],或x=2a b -cos α+2b a +,且α∈[0,π].此法适用于无理函数f(x)中的无理式的定义域为[a,b]的函数.如无理函数f (x)=b ax ++d cx +(a 与c 异号)型,或f (x)=ax 2+bx+c+ m t qx px ++2(a<0,q 2-4pr>0)型.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(2008年重庆高考试题)(2009年全国高中数学联赛河南初赛试题)已知函数y=x -1+3+x 的最大值为M,最小值为m,则Mm的值为 .2.(2010年全国高中数学联赛湖南初赛试题)设函数f(x)=x -4+2+x 的最大值为M,最小值为m,则M 与m 的乘积为 .3.(2006年全国高中数学联赛福建初赛试题)函数y=43+x +x 34-的最大值与最小值之和为 .4.(典型题)函数y=x+2+23102-+-x x 的值域是________.6.三角换元法(Ⅲ)[例6]:(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . [解析]:[评注]:若无理函数f(x)中的无理式是c b x a ++2)((a>0,c>0)的形式,可作代换x+b=actan α,且α∈(-2π,2π),则c b x a ++2)(=αcos c.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(原创题)函数f(x)=212+-x x 的值域为 .2.(200年全国高考试题改编题)若函数f(x)=12+x -ax(a>0)在[0,+∞)上单调递减,则实数a 的取值范围是 .3.(原创题)函数f(x)=5422+-x x -x 的值域为 .4.(2002年全国高中数学联赛上海初赛试题)已知函数f(x)=x21(1-x+2221x x +-),x ∈[2,4],则该函数的值域是_____. 7.距离分析法[例7]:(2008年全国高中数学联赛江西初赛试题)设x ∈R,则函数f(x)=12+x +16)12(2+-x 的最小值为 .[解析]:[评注]:对于有些无理函数的值域问题,巧妙地应用平面上两点间的距离公式,可以起到化难为易,化繁为简的作用,同时借助几何直观,使问题得到顺利解答.[类题]:1.(2006年全国高中数学联赛四川初赛试题)函数f(x)=222++x x +222+-x x 的最小值是 . ⑵(2011年台湾高校(对澳门地区)试题)设f(x)=522+-x x +1342+-x x ,则f(x)的最小值为 . ⑶(2011年第二十二届“希望杯”全国数学邀请赛(高一)试题)522+-x x +2582+-x x 的最小值为______. ⑷(2010年第二十一届“希望杯”全国数学邀请赛(高二))函数f(x)=50102+-x x +252+x 的值域是 .2.(2011年全国高中数学联赛安徽初赛试题)设a 是正数,若f(x)=22106a ax x +-+2252a ax x ++(x ∈R)的最小值为10, 则a= .3.⑴(2004年第十五届“希望杯”全国数学邀请赛(高二))函数y=222++x x -332+-x x 达到最大值时,x 的值是 .⑵(2007年第十八届“希望杯”全国数学邀请赛(高二))当x ∈R 时,函数y=1022++x x -102+-x x ( ) (A)没有最大值和最小值 (B)有最大值,没有最小值 (C)没有最大值,有最小值 (D)有最大值和最小值 4.⑴(1992年全国高中数学联赛试题)函数f(x)=136324+--x x x -124+-x x 的最大值是 .⑵(2011年全国高中数学联赛河南初赛试题)函数f(x)=106324+-+x x x -52324++-x x x 的最大值是 .8.曲线分析法[例8]:(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .[解析]:[评注]:利用函数解析式的几何意义,把求函数值域的问题转化为距离或截距的范围问题.数形结合是解决求值域和最值问题的重要方法,运用图形的直观性,通过数形结合使抽象问题直观化,复杂问题简单化,综合问题浅显化,充分训练发散思维.[类题]:1.(2005年第十六届“希望杯”全国数学邀请赛(高二)试题)函数y=2-x +x -5的最大值是 ,最小值是 .2.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值是 .3.(典型题)函数y=4x+223x x -+的值域为 .4.(数学奥林匹克高中训练题(73))函数y=212x x -+-2215x x --的值域为 .9.向量分析法[例9]:(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值. [解析]:[评注]:根据向量的数量积的定义ab =|a ||b |cos<a,b>⇒(ab )2=|a |2|b |2cos 2<a,b>⇒(ab )2≤|a |2|b |2,等号当且仅当a ∥b 时成立.如求函数f(x)=m x a -+n b x -的最值,可令a =(m,n),b =(x a -,b x -),由(x a -)2+(b x -)2=a-b,f 2(x) =(ab )2=|a |2|b |2cos 2<a,b>⇒<a,b>∈[0,θ],tan θ=n/m,或cot θ=n/m ⇒cos<a,b>∈[t,1],其中t=min{22nm n +,22nm m +}⇒f 2(x)∈[(m 2+n 2)t,(m 2+n 2)(a-b)].[类题]:1.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值为 .2.(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219. 10.不等式法[例10]:(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219.[解析]: [类题]:1.(数学奥林匹克高中训练题(147))设0≤x ≤8则函数f(x)=1)8)(8(2+-+x x x x 的值域为 .2.(《中等数学》2006年笫6期.数学奥林匹克高中训练题(1))设x ∈R +,则函数y=211x++2xx+1的最大值为 . 3.(数学奥林匹克高中训练题(126))函数f(x)=x(x +1+x -1)的值域为 . 4.(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值.无理函数的值域问题求无理函数的值域问题是初等数学的难点,因该类问题内涵丰富,灵活多变,涉及多个知识点,技巧性、综合性较强,解法灵活多样,因此成为数学竞赛的热点.本文通过对各种解法进行对比研究,试图寻找解决各种类型问题的最佳方法.Ⅰ.解法分析1.单调性质法[例1]:(2010年全国高中数学联赛试题)函数f(x)=5-x -x 324-的值域是 .[解析]:函数f(x)的定义域为[5,8],且函数y=5-x 在定义域[5,8]内单调递减,y=x 324-在定义域[5,8]内单调递增⇒f(x)在定义域[5,8]内单调递增⇒f(x)的值域是[f(5),f(8)]=[-3,3].[评注]:一个函数我们直接或作一些变形就能判断函数的单调性,用单调求值域是一种比较快捷的方法.无理函数f (x)=b ax ++d cx +(a 与c 同号)型,或f (x)=b ax +-d cx +(a 与c 异号)型,或f (x)=b ax +-d cx +(a 与c 相等)型等,可判断函数单调性,均可用此法.用单调性质法求无理函数的值域时,必须注意到函数隐含的正负性特征和定义域.[类题]:1.(2011年全国高中数学联赛湖南初赛试题)函数y=1+x -x 525-的值域是 .2.(1995年第六届“希望杯”全国数学邀请赛(高一)试题)函数y=2+x -2-x ( ) (A)是非单调函数,没有反函数 (B)有反函数,且反函数是增函数 (C)有反函数,且反函数是减函数 (D)有反函数,且反函数是非单调函数 解:y=2+x -2-x =224-++x x 在[-2,2]上单调递减⇒有反函数,且反函数是减函数.3.(原创题)求函数y=27+x +x -13-x 的最大值和最小值. 解:函数的定义域为[0,13],y=27+x -x =xx ++2727在[0,13]上单调递减⇒函数y=27+x +x -13-x 在[0,13]上单调递减⇒x=13时,y min =210-13,x=0时,y max =33+13. 4.(原创题)求函数y=27+x +x -14-x -13的最大值和最小值. 解:函数的定义域为[-27,,13],y=x -14-x -13=xx -+-14131在[-27,13]上单调递增⇒y=27+x +x -14-x -13在[-27,13]上单调递增⇒2.平方分析法[例2]:(2005年全国高中数学联赛试题)使关于x 的不等式3-x +x -6≥k 有解的实数k 的最大值是 .[解析]:令y=3-x +x -6,3≤x ≤6,则y 2=3+2)6)(3(x x --(或用二次函数)≤3+[(x-3)+(6-x)]=6,实数k 的最大值是6.[评注]:求无理函数值域的难点是解析式中含有的根式,而平方法是去掉根式的根本方法.无理函数f (x)=b ax ++ax d -(a>0,b>0,d>0)型,或f (x)=ax+b ±q px x a ++22型等,可使用平方法分析求解.用平方法求无理函数的值域时,必须注意到平方前函数中隐含的非负性特征和定义域.[类题]:1.(1994年全国高中数学联赛上海初赛试题)函数y=x -1994+1993-x 的值域是_____.2.(2003年第十四届“希望杯”全国数学邀请赛(高二)试题)函数y=232+-x x +232x x -+的最大值是 ,最小值是 .解:令x 2-3x=t,y=2+t +t -2.3.(2005年全国高中数学联赛吉林初赛试题)若x 2+y 2=169,则函数f(x,y)=3381024+-x y +3381024++x y 的最大值是 .解:f 2(x,y)=48y+676+222)10()33824(x y -+=48y+676+22222210169338338242)1024(⨯-+⨯⨯++y y ,y=13,x=0时,f(x)max=1026.4.(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .解:y=x+232+-x x ⇒y-x=232+-x x ≥0⇒(y-x)2=x 2-3x+2⇒(2y-3)x=y 2-2⇒y ≠23,x=3222--y y ⇒y ≥3222--y y ⇒1≤y <23,或y ≥2. 3.代数换元法[例3]:(2006年江苏高考试题)设a 为实数,设函数f(x)=a21x -+x +1+x -1的最大值为g(a).(Ⅰ)设t=x +1+x -1,求t 的取值范围,并把f(x)表示为t 的函数m(t); (Ⅱ)求g(a); (Ⅲ)试求满足g(a)=g(a1)的所有实数a. [解析]:(Ⅰ)t 2=2+221x -∈[2,4]⇒t ∈[2,2],f(x)=m(t)=21at 2-a+t; (Ⅱ)①当a=0时,m(t)=t ⇒g(a)=m(2)=2;②当a>0时,函数m(t)过定点(2,2),对称轴t=-a1⇒g(a)=m(2)=a+2;③当a<0时,函数m(t)过定点(2,2),对称轴t=-a1. 综上[评注]:此法适用于函数f(x)=ax+b+md cx +,一般令t=d cx +,将原函数转化为t 的二次函数,当然也适用于函数f(x)=ax 2+b+m d cx +2、f(x)=ax 2+bx+k+m d cx +、f(x)=qpx cbx ax +++等.用代数换元法求无理函数的值域时,必须注意到换元后的新变元的取值范围.[类题]:1.(1997年第八届“希望杯”全国数学邀请赛(高一))函数y=x-x -1的值域为 . 解:令x -1=t,则t ≥0,且x=1-t 2,则y=1-t 2-t ≤1.2,(2011年全国高中数学联赛山西初赛试题)函数y=2x-5+x 311-的最大值是 . 解:令x 311-=t,则t ≥0,且x=31(11-t 2),则3y=-2t 2+3t+7≤865⇒y 的最大值是2465. 3.(原创题)函数f(x)=x 2+21x -的值域为 .解:令21x -=t,则t ∈[0,1],且x 2=1-t 2,y=1-t 2+t.4.(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . 解:令x-1=t,则f(x)=tt 1)1(2++.当t>0时,f(x)=2221t t ++>1;当t<0时,f(x)=-2221t t ++=-21)211(22++t ≤-22. 4.三角换元法(Ⅰ)[例4]:(2010年全国高中数学联赛安徽初赛试题)函数f(x)=2x-24x x -的值域是_________.[解析]:f(x)=2x-24x x -=2x-2)2(4--x ,设x-2=2cos α,α∈[0,π],则y=4cos α-2sin α+4=25cos(α+φ)+4,其中cos φ=52,φ为锐角,所以当α=0时,y max =8,当α+φ=π时,y min =4-25.[评注]:若|x|≤R,则可作代换x=Rcos α,且α∈[0,π].此法适用于无理函数f(x)中的无理式是22)(a x R --的形式.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.如作代换x=Rsin α,则α∈[-2π,2π],使得换元恰取值好为原函数的定义域.[类题]:1.(2010年全国高中数学联赛江西初赛试题)函数f(x)=212+-x x 的值域是 . 解:设x=cos α,且α∈[0,π].则y=2cos sin +αα,作P(cos α,sin α),A(-2,0),k AP =2cos sin +αα∈[0,33].2.(典型题)函数y=x 21x -+x 2的值域是 .解:设x=sin α(|α|≤2π),则y=sin αcos α+sin 2α=21+22sin(2α-4π),故所求函数值域为[21-22,21+22]. 3.(1986年全国高中数学联赛上海初赛试题)已知函数y=)56)(96(22-+-+-x x x x ,那么它的值域是__________. 解:f(x)的定义域为[1,5],令x-3=2cos α,α∈[0,π],y=])3(4[)3(22---x x =αα22cos sin 16=2|sin2α|∈[0,2]. 4.⑴(2011年全国高中数学联赛内蒙古初赛试题)函数f(x)=9102-+-x x +184502-+-x x 的最大值为 . 解:f(x)=22)5(4--x -22)25(21--x ,令x-5=4cos α,x-25=21cos β,α,β∈[0,π],4cos α-21cos β=20,f(x)=4sin α+21sin β,f 2(x)+202=(4sin α+21sin β)2+(4cos α-21cos β)2=16+441-168cos(α+β)⇒f 2(x)=57-168cos(α+β)⇒cos(α+β)=-1时,f(x)max =16857+=15.⑵(2004年第十五届“希望杯”全国数学邀请赛(高一))已知函数f(x)=232-+-x x +652-+-x x ,则函数f(x)的最大值与最小值之差是________. 解:f(x)=2)23(41--x +2)25(41--x ,令x-23=21cos α,x-25=21cos β,α,β∈[0,π],cos α-cos β=2⇒f(x)=21(sinα+sin β)⇒4+4f 2(x)=2-2cos(α+β)≤4⇒f(x)=0.5.三角换元法(Ⅱ)[例5]:(2006年全国高中数学联赛江西初赛试题)函数f(x)=3-x +x 312-的值域为 .[解析]:f(x)的定义域为[3,4],令x=(4-3)sin 2θ,θ∈[0,2π],则f(x)=sin θ+3cos θ=2sin(θ+3π),3π≤θ+3π≤65π⇒21≤sin(θ+3π)≤1⇒f(x)=3-x +x 312-的值域为[1,2].[评注]:若x ∈[a,b],则可作代换x=(b-a)sin 2α+a,且α∈[0,2π],或x=2a b -cos α+2b a +,且α∈[0,π].此法适用于无理函数f(x)中的无理式的定义域为[a,b]的函数.如无理函数f (x)=b ax ++d cx +(a 与c 异号)型,或f (x)=ax 2+bx+c+ m t qx px ++2(a<0,q 2-4pr>0)型.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(2008年重庆高考试题)(2009年全国高中数学联赛河南初赛试题)已知函数y=x -1+3+x 的最大值为M,最小值为m,则Mm的值为 . 2.(2010年全国高中数学联赛湖南初赛试题)设函数f(x)=x -4+2+x 的最大值为M,最小值为m,则M 与m 的乘积为 .3.(2006年全国高中数学联赛福建初赛试题)函数y=43+x +x 34-的最大值与最小值之和为 .4.(典型题)函数y=x+2+23102-+-x x 的值域是________.解:由-x 2+10x-23≥0⇒5-2≤x ≤5+2,令x=2cos α+5,α∈[0,π],则y=2cos α+7+2sin α=2sin(α+4π)+7,由 α∈[0,π]⇒α+4π∈[4π,45π]⇒sin(α+4π)∈[-22,1]⇒y ∈[7-2,9]. 6.三角换元法(Ⅲ)[例6]:(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . [解析]:令x=tan α,α∈(-2π,2π),α≠4π,f(x)=ααcos sin 1-=)4sin(21πα-,α-4π∈(-43π,4π)⇒sin(α-4π)∈[-1,0)∪(0,22)⇒f(x)∈(-∞,-22]∪(1,+∞).[评注]:若无理函数f(x)中的无理式是c b x a ++2)((a>0,c>0)的形式,可作代换x+b=actan α,且α∈(-2π,2π),则c b x a ++2)(=αcos c.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(原创题)函数f(x)=212+-x x 的值域为 .解:令x=2tan α,α∈(-2π,2π),则f(x)=22(sin α-cos α)=sin(α-4π)∈[-1,22). 2.(200年全国高考试题改编题)若函数f(x)=12+x -ax(a>0)在[0,+∞)上单调递减,则实数a 的取值范围是 .解:令x=tan α,α∈(-2π,2π),则f(x)=αcos 1-atan α=ααcos sin 1a -=a ααcos sin 1-a ,取单位圆上的点P(cos α,sin α),A(0,a 1),-k PA =ααcos sin 1-a ,f(x)递减⇔k PA 递增⇔a 1≤1⇔a ≥1. 3.(原创题)函数f(x)=5422+-x x -x 的值域为 . 解:f(x)=3)1(22+-x -12+x ,令x-1=26tan α,α∈(-2π,2π),则f(x)=αcos 3-26tan α-1=26ααcos sin 2--1,取单位圆上的点P(cos α,sin α),A(0,2),-k PA =ααcos sin 2-,k PA ≤-1⇒-k PA ≥1⇒f(x)≥26-1.4.(2002年全国高中数学联赛上海初赛试题)已知函数f(x)=x21(1-x+2221x x +-),x ∈[2,4],则该函数的值域是_____. 解:f(x)=x 21(1-x+2221x x +-)=21(x1-1+2212+-xx)=21[x 1-1+1)11(2+-x ],令1-x 1=tan α∈[21,43],则y=f(x)=21(-tan α+αcos 1)=21ααcos sin 1-,取单位圆上的点P(cos α,sin α),A(0,1),-k PA =ααcos sin 1-,k OA 递增,ααcos sin 1-递减,当tan α=21时,sin α=55,cos α=552⇒f(x)max =415-;当tan α=43时,sin α=53,cos α=54⇒f(x)min =41.7.距离分析法[例7]:(2008年全国高中数学联赛江西初赛试题)设x ∈R,则函数f(x)=12+x +16)12(2+-x 的最小值为 .[解析]:[评注]:对于有些无理函数的值域问题,巧妙地应用平面上两点间的距离公式,可以起到化难为易,化繁为简的作用,同时借助几何直观,使问题得到顺利解答.[类题]:1.(2006年全国高中数学联赛四川初赛试题)函数f(x)=222++x x +222+-x x 的最小值是 . ⑵(2011年台湾高校(对澳门地区)试题)设f(x)=522+-x x +1342+-x x ,则f(x)的最小值为 . ⑶(2011年第二十二届“希望杯”全国数学邀请赛(高一)试题)522+-x x +2582+-x x 的最小值为______. ⑷(2010年第二十一届“希望杯”全国数学邀请赛(高二))函数f(x)=50102+-x x +252+x 的值域是 .2.(2011年全国高中数学联赛安徽初赛试题)设a 是正数,若f(x)=22106a ax x +-+2252a ax x ++(x ∈R)的最小值为10,则a= .3.⑴(2004年第十五届“希望杯”全国数学邀请赛(高二))函数y=222++x x -332+-x x 达到最大值时,x 的值是 . ⑵(2007年第十八届“希望杯”全国数学邀请赛(高二))当x ∈R 时,函数y=1022++x x -102+-x x ( ) (A)没有最大值和最小值 (B)有最大值,没有最小值 (C)没有最大值,有最小值 (D)有最大值和最小值4.⑴(1992年全国高中数学联赛试题)函数f(x)=136324+--x x x -124+-x x 的最大值是 .⑵(2011年全国高中数学联赛河南初赛试题)函数f(x)=106324+-+x x x -52324++-x x x 的最大值是 .8.曲线分析法[例8]:(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .[解析]:取点P(x-23,232+-x x ),则点P 在x 2-y 2=41(y ≥0)上,u=x+y+23,直线x+y=u-23在x 轴上的截矩u-23满足-21≤u-23<0,u-23≥21⇔u ∈[1,23)∪[2,+∞). [评注]:利用函数解析式的几何意义,把求函数值域的问题转化为距离或截距的范围问题.数形结合是解决求值域和最值问题的重要方法,运用图形的直观性,通过数形结合使抽象问题直观化,复杂问题简单化,综合问题浅显化,充分训练发散思维.[类题]:1.(2005年第十六届“希望杯”全国数学邀请赛(高二)试题)函数y=2-x +x -5的最大值是 ,最小值是 . 解:取点P(2-x ,x -5),点P 在四分之一圆弧C:x 2+y 2=3(x ≥0,y ≥0)上,u=x+y,直线x+y=u 在x 轴上的截矩u 满足:3≤u ≤6.2.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值是 .解:取点P(5-x ,x -8),点P 在四分之一圆弧C:x 2+y 2=3(x ≥0,y ≥0)上,u=x+3y,直线x+y=u 在x 轴上的截矩u 满足:3≤u ≤23.3.(典型题)函数y=4x+223x x -+的值域为 .解:取点P(x,223x x -+),点P 在半圆圆弧C:(x-1)2+y 2=4(0≤y ≤2)上,u=4x+y,直线4x+y=u 在x 轴上的截矩u 满足:-1≤41u ≤217+1⇒-4≤u ≤4+217. 4.(数学奥林匹克高中训练题(73))函数y=212x x -+-2215x x --的值域为 . 解:f(x)的定义域为[-3,3],设y 1=212x x -+(y 1≥0),y 2=2215x x --(y 2≥0),则(x-21)2+y 12=(27)2,(x+1)2+y 22=42, 作此两圆,如图: B y 设直线x=t 与半圆C 1,C 2分别相交于A,B 两点,则有向线段BA 的数量, A即为x=t 时的函数值. C 2 C 1 显然,当x=-3时,y 取得最小值-23;当x=3时,y 取得最大值6. -5 -3 x=t O 3 4 x9.向量分析法[例9]:(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值.[解析]:设a =(31,21,1),b =()13(3x -,x 2,27+x ),则|a |=666,|b |=66,ab =27+x +x -13+x ,其中0≤x ≤13,由(ab )2≤|a |2|b |2得y ≤66666=11,当且仅当a ∥b ,即x=9时,等号成立;又因()13(3x -)2+(x 2)2+(27+x )2=66⇒当且仅当b =(39,0,33),即x=0时,cos<a ,b >≥113313+⇒27+x +x -13+x =ab =|a ||b |cos<a ,b >≥13+33.[评注]:根据向量的数量积的定义ab =|a ||b |cos<a,b>⇒(ab )2=|a |2|b |2cos 2<a,b>⇒(ab )2≤|a |2|b |2,等号当且仅当a ∥b 时成立.如求函数f(x)=m x a -+n b x -的最值,可令a =(m,n),b =(x a -,b x -),由(x a -)2+(b x -)2=a-b,f 2(x) =(ab )2=|a |2|b |2cos 2<a,b>⇒<a,b>∈[0,θ],tan θ=n/m,或cot θ=n/m ⇒cos<a,b>∈[t,1],其中t=min{22nm n +,22nm m +}⇒f 2(x)∈[(m 2+n 2)t,(m 2+n 2)(a-b)].[类题]:Y.P.M 数学竞赛讲座 71.(2005年全国高中数学联赛试题)使关于x 的不等式3-x +x -6≥k 有解的实数k 的最大值是 .2.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值为 .3.(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219. 解:设a =(2,1,1),b =(1+x ,32-x ,x 315-),则|a |=6,|b |=13,ab =21+x +32-x +x 315-=|a ||b | cos<a ,b >=613cos<a ,b >.当b =(25,0,221),即x=23时,cos<a ,b >取得最大值⇒21+x +32-x +x 315-最大值=225+221<219. 10.不等式法[例10]:(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219.[解析]:由(x 1+x 2+…+x n )2=x 12+x 22+…+x n 2+2x 1x 2+2x 1x 3+…+2x n-1x n ≤x 12+x 22+…+x n 2+(n-1)(x 12+x 22+…+x n 2)=n(x 12+x 22+…+x n 2)⇒x 1+x 2+…+x n ≤n22221n x x x +⋅⋅⋅++,当且仅当x 1=x 2=…=x n 时取等号.21+x +32-x +x 315-=1+x +1+x +32-x +x 315-≤214+x ≤219,而等号不能成立.柯西不等式:(a 1x 1+a 2x 2+…+a n x n )2≤(a 12+a 22+…+a n 2)(x 12+x 22+…+x n 2),当且仅当a 1:x 1=a 2:x 2=…=a n :x n 时等号成立; (21+x +32-x +x 315-)2=(m1m mx 44++n1n nx 32-+k1kx k 315-)2≤(m 1+n 1+k1)[(4mx+4m)+(2nx-3n)+ (15k-3kx)],令4m+2n=3k,y 5≤(m 1+n 1+k1)(4m-3n+15k),取[评注]: [类题]:1.(数学奥林匹克高中训练题(147))设0≤x ≤8则函数f(x)=1)8)(8(2+-+x x x x 的值域为 .解:f(x)=1)8)(8(2+-+x x x x =1)8)(8(22+-+x x x x ≤)1(2)8()8(22+-++x x x x =4,当且仅当x=2时等号成立,值域为[0,4].2.(《中等数学》2006年笫6期.数学奥林匹克高中训练题(1))设x ∈R +,则函数y=211x++2xx+1的最大值为 . 解:设t=x1(t>0),y=21t t ++t+12≤2)1(2t t ++t+12=t t +12+t +12=2-t +12+t +12=2-2(t+11-22)2+22≤ 2+22=223,当且仅当t+11=22,即t=1时等号成立. 3.(数学奥林匹克高中训练题(126))函数f(x)=x(x +1+x -1)的值域为 .解:函数f(x)的定义域为[-1,1],且为奇函数,设21x -=t,0≤t ≤1,f 2(x)=x 2(2+221x -)=2(1-t 2)(1+t)=(1+t)(1+t)(2-2t)≤[3)22()1()1(t t t -++++]3=2764,当且仅当1+t=2-2t,t=31时等号成立⇒f max (x)=938⇒值域为[-938,938]. 4.(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值.解:函数的定义域为[0,13],y=27+x +x -13+x =27+x +)13(213x x -+≥27+13=33+13,当且仅当x=0时等号成立;又由柯西不等式:(a 1x 1+a 2x 2+…+a n x n )2≤(a 12+a 22+…+a n 2)(x 12+x 22+…+x n 2),当且仅当a 1:x 1=a 2:x 2=…=a n :x n 时等号成立;y 2= (27+x +x -13+x )2=(m1m mx 27++n1nx n -13+k1kx )2≤(m 1+n 1+k1)[(mx+27m)+(13n-nx)+kx],令m+k=n,且m1:m mx 27+=n 1:nx n -13=k 1:kx ⇒m 2x+27m 2=13n 2-n 2x=k 2x ⇒x=22222713m n m n +-=22213k n n +∈[0,13],取m=1⇒k=2,n=3,则y 5≤(m 1+n 1+k1)(27m+13n)=112.x=9时等号成立;Ⅱ.类型分析1.函数f(x)=ax+b+m dcx +2.函数f(x)=3.函数f(x)=nbax ++mdcx +4.函数f(x)=ax+b+m t qx px ++25.函数f(x)=6.函数f(x)=7.函数f(x)=8.函数f(x)=9.函数f(x)= 10.函数f(x)=3.函数f(x)=n b ax ++m d cx ++k q px +4.f(x)=ax+b+m t qx px ++25.f(x)=ax 2+bx+c+m t qx px ++26.f(x)=n c bx ax ++2+m t qx px ++27.f(x)=qpx cbx ax +++4.(原创题)函数f(x)=5422+-x x -12+x 的值域为 . 解:设y 1=5422+-x x ,y 2=12+x ⇒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学竞赛中的无理函数最值问题
无理函数是一类特殊的函数,其最值(或值域)的求法大多涉及到化归思想,能较好的考查学生分析问题解决问题的能力,因此受到数学竞赛命题人的青睐,时常出现在数学竞赛中,本文结合近几年全国数学联赛中的一些试题,总结这类问题的解法,并给出相应练习供参考: 一、利用函数单调性求无理函数的最值
若无理函数函数的单调性比较容易确定,常借助其单调性求最值。
例1(2010全国高中数学联赛).函数x x x f 3245)(---=的值域是 .
解析:该题是一道基础题,易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,x=5时)(x f 取到最小值-3,x=8时)(x f 取到最大值3,所以)(x f 的值域为]3,3[-.
练习1:函数12)(2+-+-=x x x x f 的最小值是 .(3) 二、利用代数换元求无理函数的最值
例2.(2011全国高中数学联赛山西预赛)函数25113y x x =-+-的最大值是 .
解析:令113x t -=,则6123061134(113)611314y x x x x =
-+-=--+-+
2
23656546142244t t t ⎛
⎫=-++=--+≤ ⎪⎝⎭
,则6524y ≤,当34t =,即16748x =取得等号,
所以25113y x x =-+-的最大值是
24
65
. 例 3.(2011全国高中数学联赛四川初赛)已知0>m ,若函数
mx x x f -+=100)(的最大值为)(m g ,求)(m g 的最小值.
解析:令mx t -=100,则m
t x 2
100-=,
∴4
100)2(110022m
m m t m t m t y ++--=+-=
, ∴当2m t =
时,y 有最大值
4100m m +,即4
100)(m
m m g +=. ∴104
10024100)(=⨯≥+=
m
m m m m g ,
等号当且仅当20=m 时成立, ∴当20=m 时,)(m g 有最小值10.
评析:对于形如“y m x n a x b
=++±”的无理函数,一般可通过令t a x b =+,将原函数转化为关于t 的二次函数,通过配方求最值,本法同
样适用于形如“y m x n a x b
=++22±”的函数。
练习2: 函数1412--+=x x y 的最小值是 .(1). 三、利用三角换元求无理函数的最值
例4(2011全国高中数学联赛四川初赛) 函数x x x f 3245)(-+-=的最大值为( )
A 、3
B 、3
C 、32
D 、33
解析:本题显然由例1改编,一个运算符号的差别,导致解法的不同,因为
3)8()5(22=-+-x x ,所以可设x-5=θsin 3,8-x=θcos 3(0≤2π
θ≤),
则x x 3245-+-=θsin 3+θcos 3=)3
sin(32π
θ+≤32,所以选C.
评析:对一些无理函数进行适当的三角换元,可去掉根式,转化为三角函数求最值,一般来说,若函数式中含有21x -、21x +、12-x 可分别令θsin =x 、
θtan =x 、θsec =x ,从而脱去根式,再借助三角函数有界性求最值.
例5.(2011全国高中数学联赛).函数1
1
)(2-+=x x x f 的值域
为 .
解析:设4
2
2
tan π
θπ
θπ
θ≠
<
<-
=且,x ,
则1tan cos 1
)(-=θθx f =)(4
sin 21
cos sin 1πθθθ-=
-, 由4
2
2
π
θπ
θπ
≠
<
<-
且得
)1,0()0,2[)4
sin(2 -∈-π
θ,
所以
)
,(,()(∞+-∞-∈-1]22
4
sin 21
πθ, 所以11
)(2-+=x x x f 的值域为),(,(∞+-∞-1]2
2 .
练习3:(2011全国高中数学联赛内蒙古初赛)
18450910)(22-+-+-+-=x x x x x f 的最大值为 .(15)
四、利用柯西不等式求无理函数最值
我们以上面的例4为例,来分析柯西不等式的应用:因为51≤≤x ,由柯西不等式得3285315.352=-+-+≤-+-x x x x
评注:利用柯西不等式:2222y x b a by ax +⋅+≤+能够快速求得这类无理函数的最大值
五、利用距离模型求无理函数最值
例 6.(2008全国高中数学联赛江西预赛)设
x R ∈, 则函数()()2
211216f x x x =++
-+的最小值
为 .
解析:如图,取A 为数轴原点,12AB =,再作
AB 垂线,AC BD ,使1,4AC BD ==,在数轴上取
点P ,使 AP x =,则()f x CP DP =+,当,,C P D 共线时,
)(x f 值最小,此时.13512||||)]([22min =+===AE CD x f
例7.求函数842222+-++-=x x x x y 的最小值.
解:842222+-++-=x x x x y 22222)2(1)1(+-++-=x x , 故几何意义为:在直角坐标系下,函数值为x 轴上的点)0,(x 与)2,2(),1,1(-B A 的 距离之和,如图所示,从而可知10||=≥AB y ,即三点共线时,函数最小值为
10. 练习4:函数()424236131f x x x x x x =--+--+的最大值是_______。
六、利用斜率模型求无理函数最值
例8.求函数()211
2
x f x x -+=+的最小值。
解:令
21x y -=,则()()1
,2
y f x g x y x +==
+且()2210x y y +=≥,于是问题转化为:
当点(),P x y 在上半个单位圆()2210x y y +=≥上运动时,求()2,1A --与()
,P x y P
E
D C
B
A
的连线AP 的斜率的最值(如图).显然,当点P 与点()1,0B 重合时,直线AP 的斜
率最小,此时1
3AB K =.当直线AP 与上半个单位圆()2210x y y +=≥相切时,直线
AP 的斜率最大.
设AP K K =,则直线AP 的方程为()12y K x +=+
直线AP 与上半个单位圆()22
10x y y +=≥相切
()
2
22111OP K d K -∴=
=+- 解得 0K =(舍去)或43
K =
综上可得,直线AP 的斜率的最值为: min 13AB K K ==
, max 4
3
AP K K == ()min 13f x ∴=⎡⎤⎣⎦ , ()max 43f x =⎡⎤⎣⎦
练习5:函数x
x x f -+-+=413
2)(的最大值是_______。