数的产生和发展
113数的产生与发展

算筹数码
从算筹数码中没有"10"这个数可以清楚地 看出,筹算从一开始就严格遵循十位进制。9 位以上的数就要进一位。同一个数字放在百 位上就是几百,放在万位上就是几万。这样 的计算法在当时是很先进的。因为在世界的 其他地方真正使用十进位制时已到了公元6世 纪末。
0的出现:
但筹算数码中开始没有"零",遇到"零"就空 位。比如"6708",就可以表示为"┴ ╥ "。数 字中没有"零",是很容易发生错误的。所以 后来有人把铜钱摆在空位上,以免弄错,这 或许与"零"的出现有关。不过多数人认为, "0"这一数学符号的发明应归功于公元6世纪 的印度人。他们最早用黑点(· )表示零,后 来逐渐变成了"0"。
1、古罗马数字
古罗马的数字相当进步,现在许多老式挂 钟上还常常使用。 实际上,罗马数字的符号 一共只有7个:I(代表1)、V(代表5)、X (代表10)、L(代表50)、C代表100)、D (代表500)、M(代表1,000)。这7个符号 位置上不论怎样变化,它所代表的数字都是 不变的。它们按照下列规律组合起来,就能 表示任何数:
数字进制法
除了十进制以外,在数学萌芽的早期,还出 现过五进制、二进制、三进制、七进制、八进制、 十进制、十六进制、二十进制、六十进制等多种 数字进制法。 在长期实际生活的应用中,十进制最终占了 上风。现在世界通用的数码1、2、3、4、5、6、 7、8、9、0,人们称之为阿拉伯数字。实际上它 们是古代印度人最早使用的。后来阿拉伯人把古 希腊的数学融进了自己的数学中去,又把这一简 便易写的十进制位值记数法传遍了欧洲,逐渐演 变成今天的阿拉伯数字。
人教版-数学-一年级上册-数的由来与发展

小学-数学-上册-打印版
数的由来与发展
数字的起源早在原始人时代,人们在生产活动中注意到一只羊与许多羊,一头狼与整群狼在数量上的差异,随着时间的推移慢慢的产生了数的概念。
数的概念的形成可能与火的使用一样古老,大约是在30万年以前,它对于人类文明的意义也决不亚于火的使用。
最早人们利用自己的十个指头来记数,当指头不敷应用时,人们开始采用“石头记数”“结绳记数”和“刻痕记数”。
在经历了数万年的发展后,直到距今大约五千多年前,才出现了书写记数以及相应的记数系统。
早期记数系统有:公元前3400年左右的古埃及象形数字;公元前2400年左右的巴比伦楔形数字;公元前1600年左右的中国甲骨文数字;公元前500年左右的希腊阿提卡数字;公元前500年左右的中国筹算数码;公元前300年左右的印度婆罗门数字以及年代不详的玛雅数字。
这些记数系统采用不同的进制,其中巴比伦楔形数字采用六十进制、玛雅数字采用二十进制外,其他均采用十进制。
记数系统的出现使人类文明向前迈进了一大步,随着生产力的不断发展,数字不断完善,数学就逐渐的发展起来。
小学-数学-上册-打印版。
数产生发展历史

数产生发展历史一、数的起源数作为一种抽象的概念,是人类在长期的实践中逐渐产生的。
最早的数是由人类用手指进行计数而来的,这种计数方式被称为“指位计数法”。
随着人类社会的发展,人们开始使用更加便于计数的物品,比如贝壳、石头等,这就是所谓的“物位计数法”。
后来,人们发现了一种非常方便的计数工具,那就是竹签计数法,这种计数方法在中国古代非常流行。
二、数的运算随着数的产生和发展,人们开始探索数的运算。
最早的数运算是简单的加法和减法,人们通过比较物品的数量来进行计算。
随着社会的发展,数的运算逐渐变得复杂起来,人们开始使用更加先进的计算方法。
在中国古代,有一种非常著名的计算方法,那就是“筹算”,通过将计算问题抽象成筹码的移动来进行计算。
在其他国家,人们也发明了各种各样的计算方法,比如罗马数字、阿拉伯数字等。
三、数的表示为了更方便地表示数,人们开始发明各种表示方法。
最早的数表示方法是使用物品来表示,比如贝壳、石头等。
后来,人们发明了各种符号来表示数,比如古代的象形文字、楔形文字等。
在中国,人们使用的是汉字来表示数,这种表示方法一直沿用至今。
在现代,人们使用的是阿拉伯数字来表示数,这种表示方法简洁明了,便于计算和交流。
四、数的应用数的应用广泛存在于人类社会的各个领域。
在经济领域,数被用来表示货币的价值、商品的价格等。
在科学领域,数被用来表示物理量、化学反应等。
在工程领域,数被用来进行设计、计算等。
在艺术领域,数被用来进行音乐的节奏、绘画的构图等。
可以说,数在人类社会的发展中起到了不可替代的作用。
五、数的发展随着人类社会的发展,数也在不断发展。
最早的数是自然数,表示物品的数量。
后来,人们发现了负数、分数等,这样就拓展了数的范围。
在现代,人们发明了无理数、复数等更加抽象的数,这些数在数学研究和应用中发挥着重要的作用。
同时,数的运算也在不断发展,人们发明了代数运算、几何运算等各种运算方法,这些方法为数的应用提供了强大的工具。
数字的起源与发展

数字的起源与发展一、起源数字的起源可以追溯到古代人类的计数需求。
早期的人类利用手指、石头、棍棒等物体进行计数,但这种计数方式受到物体数量的限制。
随着人类文明的进步,人们开始使用更加高效的计数系统。
最早的数字系统可以追溯到公元前3000年左右的美索不达米亚文明。
美索不达米亚人使用的是一种基于60的计数系统,这种系统被称为六十进制。
六十进制的计数系统在美索不达米亚文明中得到广泛应用,并且影响了后来的数学发展。
二、发展1. 罗马数字在古代,罗马人采用罗马数字进行计数。
罗马数字采用一些特定的字母来表示不同的数值,如I表示1,V表示5,X表示10,L表示50,C表示100,D表示500,M表示1000。
罗马数字的计数方式相对复杂,不利于进行大规模的计算。
2. 阿拉伯数字阿拉伯数字是一种基于10的计数系统,由印度人发明并传入阿拉伯地区。
阿拉伯数字采用10个数字符号来表示不同的数值,即0、1、2、3、4、5、6、7、8、9。
这种计数系统的优势在于简洁明了,便于进行计算和表达。
阿拉伯数字的发展可以追溯到公元前6世纪的印度,当时的印度人使用的是一种叫做布拉米数字的计数系统。
布拉米数字是一种基于10的计数系统,它的数字符号与现代的阿拉伯数字非常相似。
随着布拉米数字的传入阿拉伯地区,阿拉伯人对其进行了改进和推广,最终形成了现代的阿拉伯数字系统。
阿拉伯数字的优势在于它的位置计数法。
在阿拉伯数字中,每个数字的位置决定了它的数值大小,这使得进行复杂的计算变得更加简单和直观。
阿拉伯数字的推广和应用对数学和科学的发展产生了深远的影响。
3. 十进制系统阿拉伯数字的发展还带来了十进制系统的形成。
十进制系统是一种基于10的计数系统,它以10为基数,使用0到9这10个数字符号来表示不同的数值。
十进制系统在现代社会中得到广泛应用,成为了人们日常生活和科学研究中最常用的计数系统。
十进制系统的优势在于它的简单性和易于理解。
在十进制系统中,每个数字的位置决定了它的权重,从而使得进行复杂的计算变得更加简单和直观。
数学的起源和发展

一般认为,从远古到现在,数学经历了五个历史阶段:数学萌芽时期(公元6世纪以前)初等数学时期(从公元前5世纪到公元17世纪)变量数学时期(17世纪上半叶-19世纪20年代)近代数学时期(19世纪20年代-20世纪40年代)现代数学时期(20世纪40年代以来)一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算。
他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
二、初等数学时期(从公元前5世纪到公元17世纪)在人类历史上,这是发达的奴隶社会和整个封建社会时期。
这个时期外国数学发展的中心先在古希腊,后在印度和阿拉伯国家,之后又转到西欧诸国。
这时期的中国数学独立发展,在许多方面居世界领先地位。
在数学内容上,2世纪以前是几何优先发展阶段,2世纪以后是代数优先发展阶段。
如果说古希腊的几何证明的较突出,则中国和印度的代数计算可与其媲美。
这个时期的数学发生了本质的变化,数学(主要是几何学)由具体的、实用阶段发展到抽象的、理论阶段;从以实验和观察为依据的经验学科过渡到演绎的科学,并形成了自己的体系,初等几何、算术、初等代数和三角学都已成为独立的学科。
这个时期的研究内容是常量和不变的图形,因此又称为常量数学。
从公元前6世纪到公元前3世纪是希腊数学的古典时期。
数学的起源与早期发展

C CI CC D DC CM M MDCLXV I MCMLXX
100 101 200 500 600 900 1000 1666 1970
罗马数字 I
1
简单累数制
V
5
X
10
L
C
D M
50 100 500 1000
3888=MMMDCCCLXXXVIII
记数
数字符号出现后,如何用符号记数有多种 算筹记数——位置制记数法(十进制)
• 单分数与高考题
2006年高考湖北卷理科15题
1 将杨辉三角中的每一个数 C 都换成分数 , r (n 1)Cn
r n
1 1 1 2 1 3 1 6 1 12 1 20 1 30 1 1 42 105 1 60 1 1 30 1 60 1 1 12 1 20 1 30 1 42 1 2 1 3 1 4 1 5 1 6 1 7
1.2.1
埃及数学
一、地理历史概况
地理范围:非洲东北部、 尼罗河两岸
时间跨度:BC 3100 至 BC 332
1.2.1
埃及数学
1.2.1
埃及象形文字
埃及数学
二、埃及古文字及解读
BC 3500 僧侣文 BC 2500 通俗文 BC 700 1799年 拿破仑远征军发现刻有 三种文字(希腊文;僧侣文;象 形文)的铭文石碑
1 1 , 2 2 nCn1 (n 1)Cn
.
140 105
2006年高考湖北卷理科15题解题思路
对比杨辉三角的性质,通过观察、类比归纳可知,莱布尼茨三角形中从第二行起每一行中 的任一数都等于其“脚下”的两数之和. 由此可得
1 1 1 ,所以, x r 1或x n r 1. r r 1 r nCn1 (n 1)Cn (n 1)Cn
数的起源与发展

数的起源与发展一、数的起源数的起源可以追溯到人类文明的早期阶段。
在人类的生活中,数的概念是为了解决计数和量化的需求而产生的。
最早的数是通过物体的数量来表示的,比如用石头、木棍等物体来计数。
随着时间的推移,人们开始使用更方便的方式来表示数,比如手指、手掌等。
二、数的发展1. 古代数学的发展古代数学的发展对数的概念和理论做出了重要贡献。
在古代埃及、巴比伦和印度等文明中,人们已经开始研究数的性质和运算规律。
例如,埃及人使用分数来解决实际问题,巴比伦人发明了著名的巴比伦数字系统,印度人发展了零的概念和十进制数系统。
2. 数的符号表示法的发展在古代,人们使用各种不同的符号来表示数。
例如,罗马人使用罗马数字系统,中国人使用算筹和算盘来进行计算。
然而,这些符号表示法都存在一些不便之处,限制了数的表示和计算的发展。
直到阿拉伯人发明了现代的十进制数系统和阿拉伯数字,数的符号表示法才得到了极大的改进和发展。
3. 数论的发展数论是研究数的性质和结构的一个重要分支。
在古希腊时期,数论开始成为一个独立的数学领域。
欧几里德的《几何原本》中包含了许多数论的内容,他提出了著名的欧几里德算法和质数分解定理。
在随后的历史时期,数论得到了更深入的研究,包括费马大定理、黎曼猜想等重要问题的提出和解决。
4. 数的应用数在现代社会中有着广泛的应用。
在科学领域,数被用来描述和解释自然界的规律和现象,例如物理学中的运动规律、化学中的化学方程式等。
在工程领域,数被用来进行计算和建模,例如工程设计、电路分析等。
在经济学和金融学中,数被用来进行统计分析和预测,例如经济增长率、股票价格等。
5. 数的发展趋势随着科技的进步和数学研究的不断深入,数的发展也呈现出一些新的趋势。
例如,随着计算机的发展,人们可以利用计算机进行大规模的数值计算和模拟实验,从而推动数学的发展。
另外,随着人工智能的兴起,数的应用将更加广泛和深入,例如机器学习和数据挖掘等领域。
综上所述,数的起源可以追溯到人类文明的早期阶段,经过古代数学的发展和数的符号表示法的改进,数的概念和理论得到了极大的发展。
数的产生和发展史简单资料

数的产生和发展史简单资料1. 数字的起源1.1 远古的计数方式听说在古代,人们可真是个有创意的家伙!他们没有我们的计算器,甚至连笔和纸都没有。
最初的“数”其实是用手指、石头和小木棍来算的,嘿,想想就觉得好玩。
比如,他们可能用十根手指来代表十个东西,或是用几块小石子来帮自己记住。
简单直接,谁说古人不聪明呢?这就是“数”的萌芽,像是小树苗,慢慢在大地上扎根。
1.2 原始符号的使用后来,人们开始在地上画线,或者在石头上刻符号。
说到这里,不得不提的是,古埃及人和美索不达米亚人,他们发明了更复杂的符号系统。
像是用象形文字表示数字,这种方法真是神奇。
想象一下,他们用小动物或是自然现象来表达数字,简直就像在画漫画,让数字变得生动有趣。
数的世界从此变得丰富多彩!2. 数字的发展2.1 古代文明的数字体系到了古希腊和古罗马,那时候的数字系统简直让人眼花缭乱!希腊人用字母来代表数字,罗马人则是那种大写字母的风格,像I、V、X,感觉像在做游戏。
可想而知,算个数可能得花不少时间。
虽然它们看起来挺酷,但实在有点麻烦。
不过,他们的贡献让后来的数学发展打下了基础,真是前人栽树后人乘凉呀!2.2 阿拉伯数字的传播说到数字的演变,怎么能不提阿拉伯数字呢?这可是真正的游戏规则改变者!阿拉伯数字的出现,让计算变得轻松多了。
大家想象一下,从此再也不用数着罗马数字的复杂组合,而是简单明了的0到9。
更神奇的是,这套系统后来被传到欧洲,彻底改变了大家的生活方式,像是给大家的脑袋上装了个高科技的计算器。
太厉害了,简直是数字界的“超级英雄”!3. 数字的现代化3.1 现代科技与数字的结合随着科技的进步,数字的应用也越来越广泛。
从最早的简单计数,到今天的电脑和手机,数字早已无处不在。
比如,想想你手机里的应用程序,都是依靠着数字在运作。
就连我们生活中常用的支付方式,像扫码支付和网上购物,都是数字的“功劳”。
生活离不开数字,简直就是它们的天下,咱们也只能心服口服!3.2 数字在日常生活中的重要性现在,数字不仅是计算的工具,它们还承载着我们的情感和文化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人类是动物进化的产物,最初也完全没有数量的概念。
但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。
这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。
比如捕获了一头野兽,就用1块石子代表。
捕获了3头,就放3块石子。
"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。
我国古书《易经》中有"结绳而治"的记载。
传说古代波斯王打仗时也常用绳子打结来计算天数。
用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。
这些办法用得多了,就逐渐形成数的概念和记数的符号。
世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。
实际上它们是古代印度人最早使用的。
后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。
数的概念最初不论在哪个地区都是从1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。
比如古代埃及的记数符号是,用古埃及的记数符号表示345,古罗马的数字相当进步,现在许多老式挂钟上还常常使用。
它们是这样的:你能从这些数字的实例中找出罗马数字写法的规律吗?实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。
这7个符号位置上不论怎样变化,它所代表的数字都是不变的。
它们按照下列规律组合起来,就能表示任何数:1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。
如:"III"表示"3";"XXX"表示"30"。
2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。
一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。
3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。
如:""表示"15,000",""表示"165,000"。
我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。
到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。
筹算用的算筹是竹制的小棍,也有骨制的。
按规定的横竖长短顺序摆好,就可用来记数和进行运算。
随着筹算的普及,算筹的摆法也就成为记数的符号了。
算筹摆法有横纵两式,都能表示同样的数字:从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。
9位以上的数就要进一位。
同一个数字放在百位上就是几百,放在万位上就是几万。
这样的计算法在当时是很先进的。
因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。
但筹算数码中开始没有"零",遇到"零"就空位。
比如"6708",就可以表示为"┴ ╥"。
数字中没有"零",是很容易发生错误的。
所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。
不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。
他们最早用黑点(·)表示零,后来逐渐变成了"0"。
说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。
不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。
如"零头"、"零星"、"零丁"。
"一百零五"的意思是:在一百之外,还有一个零头五。
随着阿拉数字的引进。
"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。
如果你细心观察的话,会发现罗马数字中没有"0"。
其实在公元5世纪时,"0"已经传入罗马。
但罗马教皇凶残而且守旧。
他不允许任何使用"0"。
有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。
但"0"的出现,谁也阻挡不住。
现在,"0"已经成为含义最丰富的数字符号。
"0"可以表示没有,也可以表示有。
如:气温,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。
在长期实际生活的应用中,十进制最终占了上风。
现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。
实际上它们是古代印度人最早使用的。
后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。
数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。
随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。
如果分配猎获物时,5个人分4件东西,每个人该得多少呢?于是分数就产生了。
中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。
自然数也称为正整数。
随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。
为了表示这样的量,又产生了负数。
正整数、负整数和零,统称为整数。
如果再加上正分数和负分数,就统称为有理数。
有了这些数字表示法,人们计算起来感到方便多了。
但是,在数字的发展过程中,一件不愉快的事发生了。
让我们回到大约2500年前的希腊,那里有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。
他们认为"数"是万物的本源,支配整个自然界和人类社会。
因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。
他们所说的数是指整数。
分数的出现,使"数"不那样完整了。
但分数都可以写成两个整数之比,所以他们的信仰没有动摇。
但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它。
如果设这个数为X,既然,推导的结果即。
他画了一个边长为1的正方形,设对角线为,根据勾股定理,可见边长为1的正方形的对角线的长度即是所要找的那个数,这个数肯定是存在的。
可它是多少?又该怎样表示它呢?希帕索斯等人百思不得其解,最后认定这是一个从未见过的新数。
这个新数的出现使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心。
为了保持支撑世界的数学大厦不要坍塌,他们规定对新数的发现要严守秘密。
而希帕索斯还是忍不住将这个秘密泄露了出去。
据说他后来被扔进大海喂了鲨鱼。
然而真理是藏不住的。
人们后来又发现了很多不能用两整数之比写出来的数,如圆周率就是最重要的一个。
人们把它们写成π、、、等形式,称它们为无理数。
有理数和无理数一起统称为实数。
在实数范围内对各种数的研究使数学理论达到了相当高深和丰富的程度。
这时人类的历史已进入19世纪。
许多人认为数学成就已经登峰造极,数字的形式也不会有什么新的发现了。
但在解方程的时候常常需要开平方,如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁。
于是数学家们就规定用符号""表示"-1"的平方根,即,虚数就这样诞生了。
""成了虚数的单位。
后人将实数和虚数结合起来,写成的形式(a、b均为实数),这就是复数。
在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,所以虚数总让人感到虚无缥缈。
随着科学的发展,虚数现在在水力学、地图学和航空学上已经有了广泛的应用,在掌握和会使用虚数的科学家眼中,虚数一点也不"虚"了。
数的概念发展到虚和复数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了。
可是1843年10月16日,英国数学家哈密尔顿又提出了"四元数"的概念。
所谓四元数,就是一种形如的数。
它是由一个标量(实数)和一个向量(其中、、为实数)组成的。
四元数的数论、群论、量子理论以及相对论等方面有广泛的应用。
与此同时,人们还开展了对"多元数"理论的研究。
多元数已超出了复数的范畴,人们称其为超复数。
由于科学技术发展的需要,向量、张量、矩阵、群、环、域等概念不断产生,把数学研究推向新的高峰。
这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阵等概念称为广义数。
尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的。
到目前为止,数的家庭已发展得十分庞大。