立体几何复习-空间角的求法ppt课件
合集下载
空间角的计算课件

H A E1B 1 7
E1
B1
.G
A
B
1 5
可得直线AH与BE1所成角的余弦值
1 7
1
2
3
5
例1:在正方体ABCD-A1B1C1D1中,
1
4
D1F1= D1C 1,
角的余弦值。
1
B1E1= 4
A1B1,求直线DF1与BE1所成
D1 F1
A1
H
C1
E1 B1
D
A
C
B
例1:在正方体ABCD-A1B1C1D1中,
综合法:作——证——求。
G
解析:延长AH,BE1 交于点G, 所以∠AGGH= 1 7
在三角形HE1G中,由余弦定理得
A1
H
E1
B1
GE12 GH 2 HE12
cos =
2GE1 • GH
17 17 4 15
2 17 17 17
1
点, 且D1E1= 4 D1C1求直线E1F与平面D1AC所成角的正弦值.
D1(0,0,4)
(0,4,4) C1
E1
(4,2,4) B1 (4,4,4)
(4,0,4)
A1
(0,4,0)
C
D
(4,0,0)
A
B
F
(4,4,0)
解:以
{DA,DC,DD}
正交基底,建立如图所示的
1 为
空间直角坐标系D-xyz,则各点的坐标为
D1 A 2, CE 1 (t 2)2 t 2 4t 5
D1 A • CE=1
D1 A • CE
1
所以cos60 =
空间角的计算PPT课件

解:以点C为坐标原点建立空间直角坐标 z
系 C,如xy图z 所示,设 则C:C1 1
C1
F1
D1
B1
A(1,0,0), B(0,1,0),
1
11
F1( 2 , 0,1), D1( 2 , 2 ,1)
A1
C
所以:AF1
(
1 2
,
0,1),
BD1
(1 2
,
1 2
,1)
A
By
cos AF1, BD1
AF1
6.正方体中ABCD-A1B1C1D1中E为A1D1的
中点, 则二面角E-BC-A的大小是__4__5_0___
第17页/共59页
7.正三棱柱 ABC A1B1C1中,D是AC的中点,当 AB1 BC1时,求二面角D BC1 C的余弦值。
8.已知正方体 ABCD A1B1C1D1的边长为2, O为AC和BD的交点,M为DD1 的中点
B
化为向量问题 根据向量的加法法则有
C D
AB AC CD DB
A
d
2
2
AB
( AC
CD
DB )2
2
2
2
AC CD BD 2( AC CD AC DB CD DB)
a2 c2 b2 2AC DB a2 c2 b2 2CA DB
于是,得 2CA DB a2 b2 c2 d 2
法向量的夹
角;
同进同出,
二面角等于
n1
l
法向量夹角 的补角。
n2
l
n1
cos cos n1, n2
cos cos n1, n2
第14页/共59页
1、已知 AB =(2,2,1),AC =(4,5,3),则平面
系 C,如xy图z 所示,设 则C:C1 1
C1
F1
D1
B1
A(1,0,0), B(0,1,0),
1
11
F1( 2 , 0,1), D1( 2 , 2 ,1)
A1
C
所以:AF1
(
1 2
,
0,1),
BD1
(1 2
,
1 2
,1)
A
By
cos AF1, BD1
AF1
6.正方体中ABCD-A1B1C1D1中E为A1D1的
中点, 则二面角E-BC-A的大小是__4__5_0___
第17页/共59页
7.正三棱柱 ABC A1B1C1中,D是AC的中点,当 AB1 BC1时,求二面角D BC1 C的余弦值。
8.已知正方体 ABCD A1B1C1D1的边长为2, O为AC和BD的交点,M为DD1 的中点
B
化为向量问题 根据向量的加法法则有
C D
AB AC CD DB
A
d
2
2
AB
( AC
CD
DB )2
2
2
2
AC CD BD 2( AC CD AC DB CD DB)
a2 c2 b2 2AC DB a2 c2 b2 2CA DB
于是,得 2CA DB a2 b2 c2 d 2
法向量的夹
角;
同进同出,
二面角等于
n1
l
法向量夹角 的补角。
n2
l
n1
cos cos n1, n2
cos cos n1, n2
第14页/共59页
1、已知 AB =(2,2,1),AC =(4,5,3),则平面
高中数学《空间角的求法》课件1 北师大版必修2

则有 D(0, 3, 0) , E(3, 0, 0) C1(4, 3, 2) , C(4, 3, 0) ,
∴ DE (3, 3, 0) , EC1 (1, 3, 2)
设平面 C1DE 的一个法向量 n ( x, y, z) ,
则
n n
DE EC1
3x 3y 0 x 3y 2z
0
设直线 CE 与平面 C1DE 所成的角为 ,
则 sin cos n, EC1 = n EC =
n EC
4 2 15 6 10 15
∴直线 CE 与平面 C1DE
所成 的角的正弦值为
2 15 15
.
第五页,共9页。
练习 2(全品 P95例3) 如图,直三棱柱 ABC ─A1B1C1 中,
a
lb
(1) cos cos n1 , n2
关键是求法向量,
另外还要注意角 的范围.
(2) a, b
其中 a, b 如图所示.
第二页,共9页。
练习 1(全品 P94 例 3)如图,在长方体 ABCD─A1B1C1D1 中,
已知 AB 4, AD 3, AA1 2, E 分别是线段 AB 、BC 上的
高中数学《空间角的求法》课件1 北师大 版必修2
2023/5/16
生产计划部
第一页,共9页。
第 46 讲空间角的求法(下)
空间角的计算:
三、二面角 ─ l ─ :0,
n 2 几何法: (利用垂线)作→证→求(三角形的计算)
P
n 1 利用垂线来作二面角,通常是“作一证一”的思路.
A
lO
向量法:
CC1 CB CA 2 , AC CB ,
A1
D 、E 分别是棱 C1C 、B1C1 的中点.
∴ DE (3, 3, 0) , EC1 (1, 3, 2)
设平面 C1DE 的一个法向量 n ( x, y, z) ,
则
n n
DE EC1
3x 3y 0 x 3y 2z
0
设直线 CE 与平面 C1DE 所成的角为 ,
则 sin cos n, EC1 = n EC =
n EC
4 2 15 6 10 15
∴直线 CE 与平面 C1DE
所成 的角的正弦值为
2 15 15
.
第五页,共9页。
练习 2(全品 P95例3) 如图,直三棱柱 ABC ─A1B1C1 中,
a
lb
(1) cos cos n1 , n2
关键是求法向量,
另外还要注意角 的范围.
(2) a, b
其中 a, b 如图所示.
第二页,共9页。
练习 1(全品 P94 例 3)如图,在长方体 ABCD─A1B1C1D1 中,
已知 AB 4, AD 3, AA1 2, E 分别是线段 AB 、BC 上的
高中数学《空间角的求法》课件1 北师大 版必修2
2023/5/16
生产计划部
第一页,共9页。
第 46 讲空间角的求法(下)
空间角的计算:
三、二面角 ─ l ─ :0,
n 2 几何法: (利用垂线)作→证→求(三角形的计算)
P
n 1 利用垂线来作二面角,通常是“作一证一”的思路.
A
lO
向量法:
CC1 CB CA 2 , AC CB ,
A1
D 、E 分别是棱 C1C 、B1C1 的中点.
立体几何中的向量方法空间角ppt

,1)
A
By
cos AF1, BD1
AF1 BD1
x
1 1 4
30
| AF1 || BD1 |
5 3 10
所以 BD与1 A所F1成角得余弦值为
42 30
10
2、直线与平面得夹角:
设直线 l 的方向向量分别为 a ,平面 的 法向量分别为 u ,
直线 l 与平面 所成的角为 ( 0 ≤ ≤ ),sin a u ;
立体几何中的向量方法空间角
1、两条直线得夹角:
设直线 l, m 的方向向量分别为 a, b ,
两直线 l , m 所成的角为 ( 0 ≤ ≤ ),cos a b ;
2
ab
l
a
m
l
a
b m
例: 在直三棱柱ABC A1B1C1中,BC AC,
BC CA CC1, 取A1B1、A1C1的中点D1、F1,
CD为a,b得公垂线,
n是直线CD的方向向量,
A,B分别在直线a,b上
b
n
C A
DB a
n AB d CD
n
例.已知:直三棱柱ABC A1B1C1的侧棱AA1 4, 底面ABC中, AC BC 2, BCA 900, E为AB的中点。求CE与AB1的距离。
解:如图建立坐标系C xyz,则C(0,0,0), E(1,1,0), A(2,0,0), B1(0,2,4).
E C
y B
x
G
D
A
(1)证明:设正方形边长为1,则PD=DC=DAz=1、连AC、BD交于G点
以DA,DC,DP为正交基底建立空间 P
直角坐标系。如图所示。则
E
y
《空间角的复习》课件

空间角在几何图形中有着广泛的应用,如多面体、球体、旋 转体等,通过空间角的分析可以深入理解图形的结构和性质 。
几何图形的度量
空间角是度量几何图形的重要工具,如平面角、二面角、线 面角等,通过空间角的度量可以确定图形的形状、大小和位 置关系。
在解决实际问题中的应用
建筑结构分析
在建筑领域中,空间角的应用十分广 泛,如梁、柱、墙等结构的空间角度 分析,有助于确保建筑结构的稳定性 和安全性。
注意事项
在计算过程中,需要注意向量 的方向和夹角的范围,以避免
出现错误的结果。
利用几何意义计算空间角
总结词
详细描述
几何法是通过空间几何图形的性质和定理 来计算空间角的方法,适用于解决与几何 图形相关的问题。
利用空间几何图形的性质和定理,如平行 线性质、等腰三角形性质等,可以计算出 空间中的线线角、线面角和二面角。
《空间角的复习》ppt 课件
目录
• 空间角的基本概念 • 空间角的计算方法 • 空间角的应用 • 空间角的综合题解析 • 空间角的易错点解析
CHAPTER 01
空间角的基本概念
定义与分类
总结词
详细描述空间角的定义,以及按照不 同标准分类的种类。
详细描述
空间角是指两个非平行直线或平面在 三维空间中形成的角。根据不同的分 类标准,空间角可以分为不同的类型 ,如平面角和立体角等。
CHAPTER 04
空间角的综合题解析
综合题一:求异面直线所成的角
总结词
掌握异面直线所成角的定义和性质,利用平移法或向量法求解。
详细描述
异面直线所成的角是指两条异面直线所夹的锐角或直角,其取值范围为$0^{circ}$到$90^{circ}$。求解时,可以 通过平移将两条异面直线变为相交直线,再利用平面几何知识求解;或者利用向量法,通过向量的夹角来求解。
几何图形的度量
空间角是度量几何图形的重要工具,如平面角、二面角、线 面角等,通过空间角的度量可以确定图形的形状、大小和位 置关系。
在解决实际问题中的应用
建筑结构分析
在建筑领域中,空间角的应用十分广 泛,如梁、柱、墙等结构的空间角度 分析,有助于确保建筑结构的稳定性 和安全性。
注意事项
在计算过程中,需要注意向量 的方向和夹角的范围,以避免
出现错误的结果。
利用几何意义计算空间角
总结词
详细描述
几何法是通过空间几何图形的性质和定理 来计算空间角的方法,适用于解决与几何 图形相关的问题。
利用空间几何图形的性质和定理,如平行 线性质、等腰三角形性质等,可以计算出 空间中的线线角、线面角和二面角。
《空间角的复习》ppt 课件
目录
• 空间角的基本概念 • 空间角的计算方法 • 空间角的应用 • 空间角的综合题解析 • 空间角的易错点解析
CHAPTER 01
空间角的基本概念
定义与分类
总结词
详细描述空间角的定义,以及按照不 同标准分类的种类。
详细描述
空间角是指两个非平行直线或平面在 三维空间中形成的角。根据不同的分 类标准,空间角可以分为不同的类型 ,如平面角和立体角等。
CHAPTER 04
空间角的综合题解析
综合题一:求异面直线所成的角
总结词
掌握异面直线所成角的定义和性质,利用平移法或向量法求解。
详细描述
异面直线所成的角是指两条异面直线所夹的锐角或直角,其取值范围为$0^{circ}$到$90^{circ}$。求解时,可以 通过平移将两条异面直线变为相交直线,再利用平面几何知识求解;或者利用向量法,通过向量的夹角来求解。
用空间向量求空间角课件(共22张PPT)

1
M
2 x 0 z 0 即 取z =2得x=1,y = - 2 2 x 2 y z 0 A
D O B
C
y
所以平面B1MA的一个法向量为 n (1, 2, 2) 1 2 4 6 cos B1O, n 6 6 9
x
由图可知二面角为锐角
6 所以二面角B1 MA C的余弦值为 。 6
即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向
量夹角的补角.
直线和直线在平面内的射影所成的角, 二、线面角: 叫做这条直线和这个平面所成的角.
[0, ] 直线与平面所成角的范围:
A
2
n
思考:如何用空间向量的夹角 表示线面角呢?
B
O
结论: sin
| cos n, AB |
立体几何中的向量方法 ——空间“角”问题
空间的角常见的有:线线角、线面角、面面角
复习回顾
• 直线的方向向量:两点 • 平面的法向量:三点两线一方程 • 设a=(a1,a2,a3),b=(b1,b2,b3) 则(1)a·b= a1b1+a2b2+a3b3 .
复习回顾
• 设直线l1、l2的方向向量分别为a、b,平面α、β的 法向量分别为n1、n2.
10 5
所以直线SA与OB所成角余弦值为
课堂小结:
1.异面直线所成角:
C
D
cos sin
|cos CD, AB | | cos n, AB |
A
B
D1
A
O
2.直线与平面所成角: 3.二面角:
n
B
n2
《空间角的计算》课件

计算示例
通过具体的示例来理解空间角的计算方法。例如,在已知两个向量的情况下, 我们可以求解它们之间的夹角;又或者在已知三个点的坐标时,我们可以计 算它们围成的空间角。
总结
通过比较不同的计算方法,我们可以了解空间角的重要性和不同计算方法的优缺点。学习空间角对于提高相关 领域的数学能力具有重要意义。
《空间角的计算》PPT课 件
这是一份关于《空间角的计算》的PPT课件,旨在通过生动的图片和清晰的解 释,向大家介绍空间角的定义、计算方式、关系以及其在物理和工程中的应 用。
什么是空间角
空间角是三维空间中两个向量之间的夹角称为空间角。它可以通过向量的内积或两度和空间角之间存在着密切的关系。角度通常使用度数或弧度来表示,并且可以与空间角进行转换。此外, 定向角度和不定向角度也有着不同的概念和用途。
空间角的应用
空间角在物理学和工程中有着广泛的应用。在物理学中,它可以描述物体的 运动和力的方向。在工程中,它可以用于测量和设计三维结构。
空间角的计算方法
空间角的计算可以使用空间直角坐标系的方法、三点坐标法或两向量夹角法。每种方法都有其适用的场景和计 算方式。
求空间角的常用方法PPT课件

故选B.
点评 这里将点O到面 ABC1D1 的距离转化为点 A1 到面 ABC1D1 的距离,比直接求O
到平面ABC1D1 的距离要简单得多 。
第17页/共27页
【例8】 如图1-15,CD,AB是两条异面直线,它们夹在两平行平面 和 间的 部分AB,CD在平面 内的射影分别是12cm和2cm,它们与平面 的交角之差 的绝对值是45o ,求AC与BD之间的距离.
2
2
第10页/共27页
2
PE
PD2 DE2
a2
3 2
a
7a 2
EF
FD2 ED2
a 2
2
3 2
a
2
a
PE 2 EF 2 PF 2
cos PEF 2PF·EF
7 2
2
a
a2
a 2
2
2 7 aa
=
7 4
+1-
1 4
=
5
7
2
7
14
∴二面角P-AB-F的平面角的余弦值为 5 7 14
∵O为底面中心,
∴O为BD中点,从而FO为△DAB的中位线.
∴FO ∴MO
1 AB 2
D1F
D1M ∴四边形 D1FOM 为平行四边形. 故∠MOE(或其补角)即为异面直线 D1F 和OE所成的角.
在△MOE中,OM D1F 22 1 5 ME 2
OE EC2 OC2 1 ( 2)2 3
则
FG
=(-1,1,+1),A1 E
=(-1,0,-1),
第12页/共27页
∴ FG A1E 1 0 1 0 FG A1E 选D.
点评 连B1G,B1F 运用平移法及勾股定理的逆定理当然也很简单,这里主要是强调 空间向量法的运用.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)直线D1B和B1C所成的角 D1
C1
A1
E
B1
D
C
A
B
.
作(找)---证---指出---算---结论
关键
在三角形中计算
(二)直线与平面所成的角:范围是[0,π/2]. 确定射影的方法(找斜足和垂足):
.
正三棱柱 ABC ? A1B1C1 ,的底面边长 a, 侧棱 长为 2a, 求直线 AC1与平面 AA1B1B所成的 .
2 ??(算) A ?
? 二面角 A ? BD ? C的大小为 900.
(结论)B
O
D
作(找)---证(指出)---算---结论
.
C
练:正方体ABCD—A1B1C1D1中,
D1
求:
A1
(1) 二面角A-BD-A1的正切值;
C1 B1
(2) 二面角A1-AD-B的大小.
D
解 由:正连方结体A的C,性交质BD可于知O,,连BD结⊥OOAA1 ,BD⊥AAA1
.
作(找)---证---指出---算---结论
关键
在三角形中计算
(三)二面角:范围是[0,π].
①棱上一点定义法 :常取等腰三角形底边 (棱)中点.
②面上一点垂线法 :自二面角的一个面上一点向另一 面引垂线,再由垂足向棱作垂线
③空间一点垂面法 :自空间一点作与棱垂直的平面, 截二面角得两条射线,这两条射线所成的角 .
关键
在三角形中计算
例1.正四面体S-ABC中,如
s
果E、F分别是SC、AB的
中点,那么异面直线EF和 E
SA所成的角=_______.
C
B
G
F
.
A
空间角(线线角,线面角,二面角)
作(找)---证(指出)---算---结论
在正方体AC1中,求(1)直线A1B和B1C所成的角;
(2)直线D1B和B1C所成的角 D1
2
[典题](2013年高考天津卷)如图,三棱柱ABC- A等1B,1CD1,中E,,侧F棱分A别1A为⊥棱底A面B,ABBCC,,且A1各C1棱的长中均点相.
(1)证明:EF∥平面A1CD; (2)证明:平面A1CD⊥平面A1ABB1; (3)求直线BC与平面A1CD所成角的正弦值.
.
高考大题冲关(四)
C1
A1
B1
D
C
A
B
.
空间角(线线角,线面角,二面角)
作(找)---证(指出)---算---结论
在正方体AC1中,求(1)直线A1B和B1C所成的角;
(2)直线D1B和B1C所成的角 D1
C1
A1
B1
O
E
D
C
F
A
B
.
空间角(线线角,线面角,二面角)
作(找)---证(指出)---算---结论
在正方体AC1中,求(1)直线A1B和B1C所成的角;
各棱的长均是 2 , 求二面角A-BD-C的大小。
解 : 取BD的中点O, 连结AO, BO. (作)
?
?
?
AB ? AD, BC ? CD
AO ? BD,CO ? BD
? AOC是二面角A? BD
?
??(证)
C的平?面角(. 指出)
在? AOC中,OA ? OC ? 1, AC ? ? ? AOC ? 90 0
O
C B
OA和AA1是平面AOA1内两条相交直线 ∴BD⊥平面AOA1 ∴BD⊥OA1 ∴∠AOA1是二面角A-BD-A1的平面角.
设正方体的棱长为 1, 作(找)---证(指出)---算---结论
在Rt? A1 AO中, AA1 ? 1, AO ? .
2 , tan ? 2
AOA1
?
AA1 AO
?
.
▲当二面角的平面角不易作出时,可用面积法 直接求平面角的余弦值.
? 斜面面积和射影面积的关系公式 : S?? S ?cos
? ( S 为原斜面面积 ,S?为射影面积, 为斜面与射影所成
二面角的平面角 )这个公式对于斜面为三角形 ,任意多边 形都成立 .
A
B
O
D
α
C
.
例1.如图,四面体ABCD的棱BD长为2,其余
立体几何复习
空间角
作(找)---证---指出---算---结论
关键
在三角形 中计算
.
作(找)---证---指出---算---结论
关键
在三角形中计算
(一)异面直线所成的角:范围是(0,π/2].
平移直线成相交直线:
(1)利用中位线,平行四边形;
(2)补形法.
.
作(找)---证---指出---算---结论
A1
A
.
C1
D
B1
C
B
(2014 江苏无锡市模拟)如图所示,四棱锥 P-ABCD 的 底面是正方形,PD⊥底面 ABCD,AC 与 BD 交于 O,点 E 在 PB 上,连接 OE.
(1)求证:平面 AEC⊥平面 PDB; (2)当 PD= 2AB,且 E 为 PB 中点时, 求 AE 与平面 PDB 所成角的大小.
.
? [例1] (2013年高考新课标全国卷Ⅱ)如图
所示,直三棱柱 ABC-A1B1C1中,D,E分别是 AB,BB1的中点.
(1)证明:BC1∥平面 A1CD;
(2)设 AA1=AC=CB=2,AB=2 2,求三棱锥 C-A1DE
的体积.
.
题型二 立体几何中的折叠问题
[例 3] (2013 年高考广东卷 )如图(1),在边长为 1 的等边三角形 ABC 中,D,E 分别是 AB,AC 边上的 点,AD=AE,F 是 BC 的中点,AF 与 DE 交于点 G, 将△ABF 沿 AF 折起,得到如图 (2)所示的三棱锥 A- BCF,其中 BC= 22.
.
(1)证明:DE∥平面 BCF; (2)证明:CF⊥平面 ABF; (3)当 AD=23时,求三棱锥 F-DEG 的体积 VF-DEG.
.
.