初三上学期数学期末试题

合集下载

2024北京昌平区初三(上)期末数学试卷及答案

2024北京昌平区初三(上)期末数学试卷及答案

昌平区2023—2024学年第一学期初三年级期末质量抽测数学试卷2024.1本试卷共8页,共三部分,28个小题,满分100分。

考试时间120分钟。

考生务必将答案填涂或书写在答题卡上,在试卷上作答无效。

考试结束后,请交回答题卡。

一、选择题(共8道小题,每小题2分,共16分)第1-8题均有四个选项,符合题意的选项只有一个....1.如图,这是一张海上日出照片,如果把太阳看作一个圆,把海平面看作一条直线,那么这个圆与这条直线的位置关系是(A )相离(B )相切(C )相交(D )不确定2.如果2m =3n (n ≠0),那么下列比例式成立的是(A)32nm =(B )23n m =(C )32=n m (D )nm 32=3.将抛物线22y x =向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线的表达式为(A )22(2)3y x =++(B )22(2)3y x =-+(C )22(2)3y x =--(D )22(2)3y x =+-4.如图,点A ,B ,C ,D 在⊙O 上,AC 是⊙O 的直径,∠BAC =40°,则∠D 的度数是(A )40°(B )50°(C )60°(D )90°5.在平面直角坐标系xOy 中,若点)1,(1x A 和)4,(2x B 在反比例函数xy 4=图象上,则下列关系式正确的是(A )120x x <<(B )210x x <<(C )021<<x x (D )012<<x x 6.如图,一艘轮船航行至O 点时,测得某灯塔A 位于它的北偏东40°方向,且它与灯塔A 相距13海里,继续沿正东方向航行,航行至点B 处时,测得灯塔A 恰好在它的正北方向,则AB 的距离可表示为(A ) 40cos 13海里(B ) 04sin 13海里(C )05sin 13海里(D )cos5013海里1题图(图换了)4题图,则CBD ∠sin 的值且AD =CE ,连接BD ,AE 相交于点F ,则下列说法正确的是①△ABD ≌△CAE ;②∠BFE =60°;③△AFB ∽△ADF ;④若31=AC AD ,则21=BF AF (A )①②③(B )①②④(C )②③④(D )①③④二、填空题(共8道小题,每小题2分,共16分)9.写出一个开口向下且过(0,1)的抛物线的表达式_________.下一家”的主题,让世界观众感受了中国人的浪漫.如图,作出“雪花”图案(正六边形ABCDEF )的外接圆,已知正六边形ABCDEF 的边长是4,则 BC长为______________.12.如图,在平行四边形ABCD 中,E 为BC 的中点,DE ,AC 交于点F ,则△CEF 和△ADF 的面积比为.13.如图,在⊙O 中,半径OC 垂直弦AB 于点D ,若OC=3,AB=24,则CD 的长为___________.10题图11题图12题图13题图7题图8题图14.小明同学测量一个圆形零件的半径时,他将直尺、三角板和这个零件如图放置于桌面上,零件与直尺,三角板均相切,测得点A 与其中一个切点B 的距离为3cm ,则这个零件的半径是__________cm.15.如图,AB 是⊙O 直径,点C 是⊙O 上一点,OC =1且∠BOC =60°,点D 是 BC的中点,点P 是直径AB 上一动点,则CP +DP 的最小值为____________.16.已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)的对称轴是直线x =1,其部分图象如图,则以下四个结论中:①0abc >;②20a b +=;③30a c +<;④.ac b a 442>+其中,正确结论的序号是____________________.14题图15题图16题图三、解答题(本题共12道小题,第17题5分,第18题4分,第19题6分,第20-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17.计算:2sin 30tan 453tan 30cos 45︒⋅︒+︒-︒.18.如图,△ABC 中,点D 是边AB 上一点,点E 为△ABC 外一点,DE ∥BC ,连接BE.从下列条件中:①∠E =∠A ;②DE DB BABC=.选择一个作为添加的条件,求证:△EDB ∽△ABC .(18题图也换了,字母好看点)19.已知二次函数2(0)y ax bx c a =++≠的y 与x 的部分对应值如下表:x …-3-113…y…-31…(1)求这个二次函数表达式;(2)在平面直角坐标系中画出这个函数图象;(3)当x 的取值范围为_________时,y >-3.18题图(图换了)20.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CD =3,BD =1,求sin ∠BCD 及AC 的长.21.已知:如图,在△ABC 中,AB =AC .求作:射线BP ,使得12ABP BAC ∠=∠.作法:①以点A 为圆心,AB 长为半径画圆;②延长BA 交⊙A 于点D ,以点D 为圆心,BC 长为半径画弧,与⊙A 交于点P (点C ,P 在线段BD 的同侧);③作射线BP .射线BP 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接AP ,DP .∵AB =AC ,∴点C 在⊙A 上.∵ DPDP =,∴12ABP DAP =∠∠()(填推理依据).∵DP =BC ,∴________DAP =∠.∴12ABP BAC =∠∠.21题图20题图22.如图,在平面直角坐标系xOy 中,点A (1,2)在双曲线1110k y xk =≠()上,点B 在双曲线2220ky k x=≠()上,且满足OA ⊥OB ,连接AB .(1)求双曲线1110k y k x=≠()的表达式;(2)若tan ∠OAB =2,求k 2的值.23.某校组织九年级学生参加社会实践活动,数学学科的项目任务是测量银山塔林中某塔的高度AB ,其中一个数学兴趣小组设计的方案如图所示,他们在点C 处用高1.5m 的测角仪CD 测得塔顶A 的仰角为37°,然后沿CB 方向前行7m 到达点F 处,在F 处测得塔顶A 的仰角为45°.请根据他们的测量数据求塔高AB 的长度大约是多少.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈,sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)24.如图,AB 是⊙O 的直径,点C 在⊙O 上,点D 为 AC 的中点,过点D 作⊙O 的切线,交BC 延长线于点P ,连接OD 交AC 于点E .(1)求证:四边形DECP 是矩形;(2)作射线AD 交BC 的延长线于点F ,若tan ∠CAB =43,BC =6,求DF 的长.22题图24题图23题图123题图225.如图,小静和小林在玩沙包游戏,沙包(看成点)抛出后,在空中的运动轨迹可看作抛物线的一部分,小静和小林分别站在点O 和点A 处,测得OA 距离为6m ,若以点O 为原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,小林在距离地面1m 的B 处将沙包抛出,其运动轨迹为抛物线C 1:2(3)2y a x =-+的一部分,小静恰在点C (0,c )处接住,然后跳起将沙包回传,其运动轨迹为抛物线C 2:21188ny x x c =-+++的一部分.(1)抛物线C 1的最高点坐标为__________;(2)求a ,c 的值;(3)小林在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,若小林成功接到小静的回传沙包,则n 的整数值可为________________.26.在平面直角坐标系xOy 中,点(0,3),(6,1y )在抛物线()02≠++=a c bx ax y 上.(1)当31=y 时,求抛物线的对称轴;(2)若抛物线()02≠++=a c bx ax y 经过点(-1,-1),当自变量x 的值满足-1≤x ≤2时,y 随x 的增大而增大,求a 的取值范围;(3)当0>a 时,点(m -4,2y ),(m ,2y )在抛物线c bx ax y ++=2上.若2y <1y <c ,请直接写出m 的取值范围.25题图125题图227.在△ABC中,AB=AC,∠BAC=90°,点M为BC的中点,连接AM,点D为线段CM上一动点,过点D作DE⊥BC,且DE=DM,(点E在BC的上方),连接AE,过点E作AE的垂线交BC边于点F.(1)如图1,当点D为CM的中点时,①依题意补全图形;②直接写出BF和DE的数量关系为______________;(2)当点D在图2的位置时,用等式表示线段BF与DE之间的数量关系,并证明.27题图127题图228.对于在平面直角坐标系xOy 中⊙T 和⊙T 外的点P ,给出如下定义:已知⊙T 的半径为1,若⊙T 上存在点Q ,满足PQ ≤2,则称点P 为⊙T 的关联点.(1)如图1,若点T 的坐标为(0,0),28题图1①在点1P (3,0),2P (3,-2),3P (-2,2)中,是⊙T 的关联点的是____________;②直线2y x b =+分别交x 轴,y 轴于点A ,B ,若线段AB 存在⊙T 的关联点,求b 的取值范围;(2)已知点C (0,D (1,0),T (m ,1),△COD 上的每一个点都是⊙T 的关联点,直接写出m 的取值范围.28题图2昌平区2023—2024学年第一学期初三年级期末质量抽测数学参考答案及评分标准2024.1一、选择题(本题共8道小题,每小题2分,共16分)题号12345678答案CBDBAADB二、填空题(本题共8道小题,每小题2分,共16分)17.解:=1321232⎛⨯+- ⎝⎭………………………………………………………………………4分11122=+-1=…………………………………………………………………………………………….5分18.证明:选择①∵DE ∥BC ∴∠EDB=∠ABC …………………………………………………………………………….….…3分∵∠E =∠A ∴△EDB ∽△AB C .……………………………………………………………………….………5分或选择②∵DE ∥BC ∴∠EDB=∠ABC ……………………………………………………………………….………….3分∵DE DBBABC=∴△EDB ∽△AB C .………………………………………………………………………….……5分19.解:(1)设二次函数的表达式为1)1(2+-=x a y 把(3,0)代入上式得1)1(2+-=x a y ∴a=14-∴21(1)14y x =--+……………………………………………………………….2分(2)画图………………………………………………………………………….……………………4分(3)当-3<x<5时,y>-3…………………………………………………………………………6分20.解:∵CD ⊥AB ,∴∠CDA =∠CDB =90°.在Rt △CDB 中,BD =1,CD =3,∴CB=2.………………………………………………………….…………………………2分3tan =B .…………………………………………………………………….………………3分∴sin ∠BCD=21..…….…….……………………………………………………….………………4分在Rt △CDB 中,BC =2,3tan =B ,∴AC =32.…………………………………………………………………………………….…5分21.(1)画图………………………………………….…………………………………………………2分(2)一条弧所对的圆周角等于它所对的圆心角的一半………………………………………………4分∠DAP=∠BAC………………………………………….…………………………………………5分22.解:(1)∵点A (1,2)在双曲线1110ky k x=≠()上,∴21=k ∴xy 21=……………………………………………………………….……………1分(2)如图,分别过点A ,B 作x 轴的垂线,垂足分别为C ,D .∴∠AOC +∠OAC =90°,∠BDO =∠OCA =90°.∵OA ⊥OB ,∴∠AOC +∠BOD =90°.∴∠BOD =∠OAC .∴△BOD ∽△OAC .……………………………………………………………….…………………2分∴BD OD OB OC AC AO==.∵A 的坐标为(1,2),∴OC =1,AC =2.∵Rt △AOB 中,tan OB OAB AO ==∠,∴12BD OD ==………………………………………………………….…………………3分∴BD =OD =.∴B 的坐标为(-).……………………………………………………………….………4分∴将B (-)代入2220ky k x =≠()得24k =-.………………………………………5分23.解:根据题意,得AB ⊥BC ,EF ⊥BC ,DC ⊥BC ,DG ⊥AB .∴BG =CD =1.5m ,DE =CF =7m ,∠AEG ==45°,∠ADG =37°,在Rt △AGE 中,∠AEG =45°,∴∠GAE =45°,∴AG =GE .………………………………………………………………………………………1分设AG 为x m ,则GE=x ,GD=x +7在Rt △AGD 中,tan ∠ADG =GD AG ,∴43AG GD≈43(7)x x ≈+………………………………………………………………………………4分x ≈21……………………………………………………………………………5分∴AB =AG +GB ≈21+1.5≈22.5m答:塔高AB 的长约为22.5m .………………………………………………………………………6分24.证明:(1)连接OC∵AB 为⊙O 直径,C 为⊙O 上一点∴∠ACB =90°∴∠ACP =90°∵点D 为AC 的中点∴AD DC =∴∠AOD =∠COD∵OA =OC∴OD ⊥AC∵DP 是⊙O 的切线,D 为切点∴OD ⊥DP ………………………………………………………………………………2分∴四边形DECP 是矩形……………………………………………………………………3分(2)如图补全图形,在Rt △ABC 中,BC =6,tan ∠CAB =43∴AC =8,AB =10…………………………………………………………………………………4分∵OD ⊥AC∴AE =EC =4在Rt △AEO 中,OA =5,AE =4,∴OE =3…………………………………………………………………………………5分∴DE=2在Rt △AEO 中,DE =2,AE =4,∴AD =52∵矩形DECP 对边平行∴OD ∥BF ∴1AO AD OB DF==∴FD =52……………………………………………………………………………………………6分25.解:(1)抛物线C 1的最高点坐标为的(3,2)…………………………………………………1分(2)由题可得点A (6,1)…………………………………………………………………2分将A (6,1)代入抛物线C 1:2(3)2y a x =-+得91-=a ………………………………………………………………………………………3分∵对称轴为直线x =3∴点A 和点C 关于对称轴对称.∴c =1(也可让x =0代入表达式求出c =1)………………………………………………4分(3)n =4或n =5……………………………………………………………………………………6分26.解:(1)∵(0,3),(6,3)为抛物线上的对称点∴3260221=+=+=x x x ……………………………………………………………………2分(2)∵()02≠++=a c bx ax y 过(0,3),(-1,-1)∴3=c ,31a b -+=-4+=a b ∴对称轴422b a x a a +=-=-①当0>a 时∵-1≤x ≤2时,y 随x 的增大而增大∴412a a+-≤-4a ≤∴04a <≤…………………………………………………………………………………………………3分②当0<a 时∵-1≤x ≤2时,y 随x 的增大而增大∴422a a+≥-45a ≥-∴405a -≤<………………………………………………………………………………………………4分综上:a 的取值范围是405a -≤<或40≤<a (3)56m <<或10m >…………………………………………………………………………………6分27.(1)①补图………………………………………………………………………………………2分②BF =2DE …………………………………………………………………………………………4分(2)当点D 在图2位置时,仍满足BF =2DE………………………………………………………5分证明:如图,AM 与EF 交于点N ,连接EM ,EC∵AB =AC ,∠BAC =90°,M 为BC 中点∴AM =BM =CM=12BC ,∠AMC =∠AMB =90°∵DE =DM ,DE ⊥BC ,∴∠EMC =∠AME =45°∵EM =EM∴△AME ≌△CME∴∠EAM =∠ECM∵在△ANE 和△FNM 中,EF ⊥AE ,∠AMB =90°,∠ANE =∠FNM∴∠NAE =∠NFM (即∠EFC )∴∠EFC =∠ECM∴EF =EC∵ED ⊥FC∴CF =2DC∵BC =2CM∴BF =BC -CF =2(CM -DC )=2DM =2DE …………………………………………………………7分28.(1)①1P ,3P ……………………………………………………………………………………2分②如图所示可得531≤<b …………………………………………………………………………………4分同理可得1b -≤<-………………………………………………………………………5分(2)1m 1-≤<-……………………………………………………………………………………6分313m +<≤…………………………………………………………………………………7分仅供参考,其他答案酌情给分。

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。

2024年北京东城区初三上学期期末考数学试卷和答案

2024年北京东城区初三上学期期末考数学试卷和答案

东城区2023—2024学年第一学期期末统一检测初三数学2024.1一、选择题(每题2分,共16分)1.下列四个交通标志图案中,是中心对称图形的是2.若3x =是关于x 的方程22=0x x m --的一个根,则m 的值是A .-15B .-3C .3D .153.关于二次函数22(1)2y x =-+,下列说法正确的是A .当x =1时,有最小值为2B .当x =1时,有最大值为2C .当x =-1时,有最小值为2D .当x =-1时,有最大值为24.在下列事件中,随机事件是A .投掷一枚质地均匀的骰子,向上一面的点数不超过6B .从装满红球的袋子中随机摸出一个球,是白球C .通常情况下,自来水在10℃结冰D .投掷一枚质地均匀的骰子,向上一面的点数为25.如图,正方形ABCD 的边长为6,且顶点A ,B ,C ,D 都在⊙O 上,则⊙O 的半径为A.3B.6C.32D.626.北京2022年冬奥会以后,冰雪运动的热度持续.某地雪场第一周接待游客7000人,第三周接待游客8470人.设该地雪场游客人数的周平均增长率为x ,根据题意,下面所列方程正确的是A .27000(1)8470x +=B .270008470x =C .7000(1+2)8470x =D .37000(1)8470x +=7.如图,某汽车车门的底边长为1m ,车门侧开后的最大角度为72°.若将一扇车门侧开,则这扇车门底边扫过区域的最大面积是A .2πm 10B .2πm5C .22πm5D .24πm58.⊙O 是△ABC 的内切圆,与AB ,BC ,AC 分别相切于点D ,E ,F .若⊙O 的半径为2,△ABC 的周长为26,则△ABC 的面积为A.3B.24C.26D.52二、填空题(每题2分,共16分)9.把抛物线22y x =向下平移3个单位长度,所得到的抛物线的解析式为.10.若一元二次方程261=0x x +-经过配方,变形为()23x n +=的形式,则n 的值为.11.为了解某小麦品种的发芽率,某农业合作小组在相同条件下对该小麦做发芽试验,试验数据如下表:种子个数n 550100200500100020003000发芽种子个数m 4449218947695118982851发芽种子频率m n0.8000.8800.9200.9450.9520.9510.9490.950(1)估计该品种小麦在相同条件下发芽的概率为(结果保留两位小数);(2)若在相同条件下播种该品种小麦种子10000个,则约有个能发芽.12.在平面直角坐标系xOy 中,已知点A 的坐标为(1,2),点B 与点A 关于原点对称,则点B 的坐标为_____________.13.已知二次函数2+8+3y x x =-,当x >m 时,y 随x 的增大而减小,则m 的值可以是____________(写出一个即可).14.如图,A ,B ,C 是⊙O 上的三个点,若∠ACB=40°,则∠OBA 的大小是_____________°.15.如图1,一名男生推铅球,铅球的运动路线近似是抛物线的一部分.铅球出手位置的高度为35m,当铅球行进的水平距离为4m 时,高度达到最大值3m.铅球的行进高度y (单位:m)与水平距离x (单位:m)之间的关系满足二次函数.若以最高点为原点,过原点的水平直线为x 轴,建立如图2所示的平面直角坐标系xOy ,则该二次函数的解析式为2121x y -=.若以过出手点且与地面垂直的直线为y 轴,y 轴与地面的交点为原点,建立如图3所示的平面直角坐标系xOy ,则该二次函数的解析式为.16.某单位承担了一项施工任务,完成该任务共需A ,B ,C ,D ,E ,F ,G 七道工序.施工要求如下:①先完成工序A ,B ,C ,再完成工序D ,E ,F ,最后完成工序G ;②完成工序A 后方可进行工序B ;工序C 可与工序A ,B 同时进行;③完成工序D 后方可进行工序E ;工序F 可与工序D ,E 同时进行;④完成各道工序所需时间如下表所示:工序A B C D E F G 所需时间/天11152817163125(1)在不考虑其它因素的前提下,该施工任务最少_____________天完成.(2)现因情况有变,需将工期缩短到80天.工序A ,C ,D 每缩短1天需增加的投入分别为5万元,4万元,6万元,其余工序所需时间不可缩短,则所增加的投入最少是_____________万元.三、解答题(共68分,17-21题,每题5分,22题6分,第23题5分,第24-26题,每题6分,27-28题,每题7分)17.解方程:()()3121x x x +=+.18.如图,在Rt △ACB 中,∠C =90°.求作:⊙O ,使得△ACB 的三个顶点都在⊙O 上.作法:①作边AB 的垂直平分线,交AB 于点O ;②以点O 为圆心,OA 长为半径作圆.则⊙O 为所求作的圆.(1)利用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OC .由作图可知,OB =OA=12AB .∴点B 在⊙O 上.在Rt △ACB 中,∠ACB =90°,∴OC =12________()(填推理依据).∴OC =OA .∴点C 在⊙O 上.∴△ACB 的三个顶点都在⊙O 上.19.在平面直角坐标系xOy 中,二次函数2y x bx =+的图象过点A (3,3).(1)求该二次函数的解析式;(2)用描点法画出该二次函数的图象;(3)当0x <<3时,对于x 的每一个值,都有2kx x bx +>,直接写出k 的取值范围.20.某班开展“讲数学家故事”的活动.下面是印有四位中国数学家纪念邮票图案的卡片A,B,C,D,卡片除图案外其它均相同.将四张卡片背面朝上,洗匀后放在桌面上,小明同学从中随机抽取两张,讲述卡片上数学家的故事.(1)请写出小明抽到的两张卡片所有可能出现的结果;(2)求小明抽到的两张卡片中恰好有数学家华罗庚邮票图案的概率.21.如图,AB 是⊙O 的弦,半径OD ⊥AB 于点C .若AB =16,CD =2,求⊙O 的半径的长.22.已知关于x 的一元二次方程()222120x m x m -++-=(1)当该方程有两个不相等的实数根时,求m 的取值范围;(2)当该方程的两个实数根互为相反数时,求m 的值.23.如图,在边长均为1个单位长度的小正方形组成的网格中,O ,B 为格点(每个小正方形的顶点叫做格点),OA =3,OB =4,且∠AOB=150°.线段OA 关于直线OB 对称的线段为O A ',将线段OB 绕点O 逆时针旋转45︒得到线段OB '.(1)画出线段O A ',OB ';(2)将线段OB 绕点O 逆时针旋转角()4590αα︒<<︒得到线段OC ',连接A C ''.若=5A C '',求∠B OC ''的度数.24.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠ACB 的平分线CD 交⊙O 于点D.过点D 作DE ∥AB ,交CB 的延长线于点E .(1)求证:直线DE 是⊙O 的切线;(2)若∠BAC =30°,22BC =,求CD 的长.25.食用果蔬前,适当浸泡可降低农药的残留.某小组针对同种果蔬研究了不同浸泡方式对某种农药去除率的影响.方式一:采用清水浸泡.记浸泡时间为t分钟,农药的去除率为y1%,部分实验数据记录如下:方式二:采用不同浓度的食用碱溶液浸泡相同时间.记食用碱溶液的浓度为x%,农药的去除率为y2%,部分实验数据记录如下:结合实验数据和结果,解决下列问题:(1)通过分析以上实验数据,发现可以用函数刻画方式一中农药的去除率y1(%)与浸泡时间t(分)之间的关系,方式二中农药的去除率y2(%)与食用碱溶液的浓度x(%)之间的关系,请分别在下面的平面直角坐标系中画出这两个函数的图象:(2)利用方式一的函数关系可以推断,降低该种农药残留的最佳浸泡时间约为__________分钟.(3)方式一和方式二的函数关系可以推断,用食用碱溶液浸泡含该种农药的这种果蔬时,要想不低于清水浸泡的最大去除率,食用碱溶液的浓度x %中,x 的取值范围可以是_____________.26.在平面直角坐标系xOy 中,点(2,c )在抛物线2(0)y ax bx c a =++>上,设该抛物线的对称轴为直线x t =.(1)求t 的值;(2)已知11()M x y ,,22()N x y ,是该抛物线上的任意两点,对于11m x m <<+,212m x m +<<+,都有12y y <,求m 的取值范围.27.在△ABC 中,AB =AC ,∠BAC =120°,D 为BC 上一点,连接DA ,将线段DA 绕点D 顺时针旋转60°得到线段DE .(1)如图1,当点D 与点B 重合时,连接AE ,交BC 于点H ,求证:AE ⊥BC ;(2)当BD ≠CD 时(图2中BD <CD ,图3中BD >CD ),F 为线段AC 的中点,连接EF .在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形;②猜想∠AFE 的大小,并证明.28.在平面直角坐标系xOy 中,已知点P 和直线1l ,2l ,点P 关于直线1l ,2l “和距离”的定义如下:若点P 到直线1l ,2l 的距离分别为1d ,2d ,则称1d +2d 为点P 关于直线1l ,2l 的“和距离”,记作d .特别地,当点P 在直线1l 上时,1d =0;当点P 在直线2l 上时,2d =0.(1)在点1P (3,0),2P (-1,2),3P (4,-1)中,关于x 轴和y 轴的“和距离”为3的点是________;(2)若P 是直线3y x =-+上的动点,则点P 关于x 轴和y 轴的“和距离”d 的最小值为________;(3)已知点A (0,3),⊙A 的半径为1,点P 是⊙A 上的动点,直接写出点P 关于x 轴和直线y +6的“和距离”d 的取值范围.东城区2023—2024学年度第一学期期末统一检测初三数学参考答案及评分标准2024.1一、选择题(每题2分,共16分)题号12345678答案BCADCABC二、填空题(每题2分,共16分)9.223y x =-10.1011.0.95950012.(-1,-2)13.答案不唯一,m ≥4即可14.5015.21251233y x x =-++16.86,38三、解答题(共68分,17-21题,每题5分,22题6分,第23题5分,第24-26题,每题6分,27-28题,每题7分)17.解:移项,得()()31210.x x x +-+=因式分解,得()()1320.x x +-=……………………………..1分于是得10x +=,或320.x -=……………………………..3分所以方程的两个根分别为1=-1x ,22.3x =……………………………..5分18.解:(1)作图如下,------------------------3分(2)AB直角三角形斜边上的中线等于斜边的一半.------------------------5分19.解:(1)∵点A (3,3)在抛物线二次函数2y x bx =+的图象上,∴2333b =+.解得2b =-.∴二次函数的解析式为22y x x =-.------------------------2分(2)列表:x …-10123…y…3-13…描点,连线------------------------4分(3)当k ≥1.------------------------5分20.解:(1)所有可能出现的结果共6种:AB ,AC ,AD ,BC ,BD ,CD .…………3分(2)记抽到的2张卡片中恰好有数学家华罗庚邮票图案为事件M ,M 包含的结果有3种,即AC ,BC ,CD ,且6种可能的结果出现的可能性相等,所以()31==62P M …………5分21.解:连接OA .∵半径OD ⊥AB 于点C ,AB =16,∴∠ACO =90°,AC =12AB =8,………2分设OA =r ,则OC =2r -.在Rt △AOC 中,根据勾股定理,得222OA AC OC =+,即2228(2)r r =+-.………4分解得17r =.∴⊙O 的半径的长17.………5分22.解:(1)∵关于x 的一元二次方程22(21)20x m x m -++-=有两个不相等的实数根,∴[]()2222=(21)4244148490m m m m m m ∆-+--=++-+=+> (2)分解得94m >-.∴m 的取值范围是94m >-.………..3分(2)由(1)可知,49m ∆=+.由求根公式,得()1212m x +=,()2212m x +=.………..5分∵该方程的两个实数根互为相反数,∴12+0x x =.∴()()2121+21022m m m +++=+=.解得1=2m -,符合题意.∴当方程的两个实数根互为相反数时,1=2m -.………..6分23.解:(1)如图.……………….2分(2)如图,在△A OC ''中,==3OA OA ',==4OC OB ',=5A C '',∴222=A C OA OC ''''+.∴△A OC ''是直角三角形.∴=90.A OC ''︒∠………………..3分∵∠AOB =150°,OA OA OB '与关于直线对称,∴=150.A OB '︒∠………………..4分∴=60C OB '︒∠,即=60α︒.∴=604515B OC C OB B OB '''''-=︒-︒=︒∠∠∠.………………..5分24.(1)证明:如图1,连接OD .∵AB 是⊙O 的直径,∴∠ACB=90°.∵CD 平分∠ACB ,∴∠ACD =∠BCD=45°.---------------1分∴∠ABD =∠ACD=45°.∵OD =OB ,∴∠ODB =∠OBD =45°.--------------2分∵DE ∥AB ,∴∠BDE =∠OBD =45°.∴∠ODE =∠ODB+∠BDE=90°.∴OD ⊥DE .∵OD 为⊙O 的半径,∴直线DE 是⊙O 的切线.------------------3分(3)如图2,过点B 作BF ⊥CD 于点F .∴∠BFC =∠BFD =90°.∵∠BCD =45°.∴∠CBF =45°.图1∴BF CF =.------------------4分在Rt △BFC 中,BC =根据勾股定理,得=2BF CF =.∵ BCBC =,∴∠CDB =∠BAC =30°.------------------5分∴2=4.BD BF =在Rt △BFD 中,根据勾股定理,得DF∴CD CF DF =+------------------6分25.解:(1)画图如下,---------------------------------------------------------------------2分(2)10-------------------------------------------4分(3)答案不唯一,如7x ≤≤12.---------------------------6分26.解:(1)由题意可知,42a b c c ++=,∴2b a =-.∴12bt a=-=.---------------------------2分(2)∵0a >,1t =,∴当1x >时,y 随x 的增大而增大,当1x <,时y 随x 的增大而减小.---------------------------3分①当1m ≥时,∵11m x m <<+,212m x m +<<+,∴121x x <<.∴12y y <,符合题意.---------------------------4分②当112m <≤时,有3122m +<,(i )当111x m <+≤时,∵212m x m +<<+,∴121x x <≤.∴12y y <.(ii )当11m x <<时,设11()M x y ,关于抛物线对称轴1x =的对称点为01()M 'x y ,,则01x >,011=1x x --.∴012x x =-.∵112m <≤,∴0312x <<.∵3122m +≤<,212m x m ++<<∴232x >.∴02312x x <<<.∴12y y <.∴当112m <≤时,符合题意.---------------------------5分③当102m <≤时,3112m +<≤,令11=2x ,23=2x ,则12=y y ,不符合题意.④当102m -<≤时,有1112m +<≤,令1=0x ,2=1x ,则12=1x x <,∴.12>y y ,不符合题意.⑤当112m -<-≤时,1012m +<≤,令11=2x -,2=1x ,则12=1x x <,∴.12>y y ,不符合题意.⑥当1m <-时,1221x x m <<+<,∴.12>y y ,不符合题意.综上所述,m的取值范围是12m ≥.---------------------------6分27.(1)证明:∵AB =AC ,∠BAC =120°,∴∠ABC =∠C =30°.将线段DA 绕点D 顺时针旋转60°得到线段DE ,∴DE =DA ,∠ADE =60°.∴△ADE 是等边三角形.∴∠BAE =60°.∴∠AHB =90°.∴BC ⊥AE.………..3分(2)解:选择图2:①补全图形如图所示:………..4分②猜想∠AFE =90°.………..5分证明:如图,过点A 作AH ⊥BC 于H ,连接AE .则∠AHB =∠AHC =90°.∵AB =AC ,∠BAC =120°,∴∠CAH =12∠BAC =60°,∠C =30°.∴AH =12AC .∵F 为线段AC 中点,∴AF =12AC .∴AH =AF .由(1)可知△ADE 是等边三角形.∴∠DAE =60°=∠CAH ,AD=AE.∴∠DAH =∠EAF.在△ADH 和△AEF 中,.DAH EA AD AE AH AF F ∠==⎧∠⎪⎨⎪=⎩,,∴△ADH ≌△AEF (SAS ).∴∠AFE =∠AHD =90°.………7分选择图3:①补全图形如图所示:②(选择图3的答案与选择图2的答案一致)28.解:(1)P 1,P 2.………2分(2)3.………4分(3)71122d ≤≤.………7分。

2024年北京朝阳区初三九年级上学期期末数学试题和答案

2024年北京朝阳区初三九年级上学期期末数学试题和答案

张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。

2024年北京初三九年级上学期数学期末考《圆的综合》

2024年北京初三九年级上学期数学期末考《圆的综合》

2024年1月九上期末——圆的综合1.【东城】24.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠ACB 的平分线CD 交⊙O 于点D.过点D 作DE ∥AB ,交CB 的延长线于点E .(1)求证:直线DE 是⊙O 的切线;(2)若∠BAC =30°,BC =CD 的长.2.【西城】24.如图,AB 是O 的直径,AB BC =,AC 交O 于点D ,点F 在OD 的延长线上且12FAD ABC ∠=∠.(1)求证:AF 是O 的切线;(2)若8AF =,4DF =,求AC 的长.3.【海淀】25.如图,AB 为半圆O 的直径,点C ,D 在半圆O 上,直线CM 与半圆O 相切于点C ,//CM AD .(1)若MCD ∠α=,求COA ∠的大小(用含α的式子表示);(2)过点O 作OE CD ⊥交CM 于点E ,交CD 于点F ,若//CD AB ,6AB =,求CE 的长.4.【朝阳】24.如图,AC ,BD 是圆内接四边形ABCD 的对角线,AC ⊥BD 于点E ,BD 平分∠ADC .(1)求∠BAD 的度数;(2)点P 在DB 的延长线上,P A 是该圆的切线.①求证:PC 是该圆的切线;②若PA =AC =3,直接写出PD 的长.5.【石景山】24.如图,在ABC △中,AB AC =,以AB 为直径的O 交BC 于点D ,交AC 于点E ,点F 在AC 的延长线上,12CBF BAC ∠=∠.(1)求证:BF 是O 的切线;(2)若5AB =,1tan 2CBF ∠=,求CE 的长.6.【丰台】24.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O 交BC 于点D ,作DE ⊥AC 交AC 于点E ,延长ED 与AB 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若△ABC 为等边三角形,AE=3,求⊙O 半径的长.7.【昌平】24.如图,AB 是⊙O 的直径,点C 在⊙O 上,点D 为 AC 的中点,过点D 作⊙O 的切线,交BC 延长线于点P ,连接OD 交AC 于点E .(1)求证:四边形DECP 是矩形;(2)作射线AD 交BC 的延长线于点F ,若tan ∠CAB =43,BC =6,求DF 的长.8.【通州】25.如图,点C 在以AB 为直径的O 上,CD 平分ACB ∠交O 于点D ,交AB 于点E ,过点D 作DF AB ∥交CO 的延长线于点F .(1)求证:直线DF 是O 的切线;(2)若30A ∠=︒,43AC =,求DF 的长.24题图9.【房山】24.如图,AB是⊙O的直径,AC,BC是弦,点D在AB的延长线上,且DCB DAC∠=∠,⊙O的切线AE与DC的延长线交于点E.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,30∠=︒,求AE的长.D10.【大兴】24.如图,AB是⊙O的直径,点C在⊙O上,连接AC,BC,过点O作OD⊥BC于点D,过点C作直线CE交OD的延长线于点E,使得∠E=∠B.(1)求证:CE是⊙O的切线.(2)若DE=6,CE=35,求OD的长.11.【门头沟】25.如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O切线与AC的延长线交于点E,ED∥BC,连接AD交BC于点F.(1)求证:∠BAD=∠DAE;(2)若AB=6,AD=5,求DF的长.12.【燕山】24.如图,在△ABC中,∠ACB=90°,点D在AB上,以AD为直径作⊙O与BC相切于点E,连接DE并延长交AC的延长线于点F.(1)求证:AF=AD;(2)若CE=4,CF=2,求⊙O的半径.13.【顺义】25.如图,AB为⊙O的弦,点C为AB的中点,CO的延长线交⊙O于点D,连接AD,BD,过点D作⊙O的切线交AO的延长线于点E.(1)求证:DE∥AB;(2)若⊙O的半径为3,tan∠ADC=,求DE的长.14.【密云】24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.15.【平谷】24.如图,AB 为⊙O 的直径,弦CD ⊥AB 于H ,连接AC 、AD ,过点A 作⊙O 的切线与∠ADC 的平分线相交于点E ,DE 交AB 于点G ,交AC 于点F ,交⊙O 于点M ,连接AM .(1)求证:AC=AD ;(2)若22tan =∠AMD ,CD=4,求AF 长.。

2023-2024学年九年级上学期期末考试数学试卷及答案解析

2023-2024学年九年级上学期期末考试数学试卷及答案解析

2023-2024学年九年级上期末数学试卷
一、填空题。

(本大题共6小题,每小题3分,共18分)
1.已知2是一元二次方程x2﹣3kx+2=0的根,则k的值是.
2.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.
3.反比例函数 剜 剜媵 的图象在第二、四象限内,那么m的取值范围是.4.在平面直角坐标系中,把点P(3,﹣2)绕原点O顺时针旋转90°,所得到的对应点Q 的坐标为.
5.已知圆锥的底面半径为3,侧面积为15π,则这个圆锥的高为.
6.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,
给出下列命题:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的两根分别为﹣3和1;

⑤8a+c>0.其中正确的命题是
二、选择题。

(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.下列图形中不是中心对称图形的是()
A .
B .
C .
D .
8.下列说法正确的是()
A.必然事件发生的概率为1B.随机事件发生的概率为0.5
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次
9.五个大小相同的正方体搭成的几何体如图所示,其左视图是()
第1页(共27页)。

2024年北京海淀区初三九年级上学期期末数学试题和答案

2024年北京海淀区初三九年级上学期期末数学试题和答案

海淀九年级数学2024.1第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.我国古代典籍《周易》用“卦”描述万物的变化.下图为部分“卦”的符号,其中是中心对称图形的是()A.B. C. D.2.抛物线2(1)2y x =--+的顶点坐标是()A.()1,2- B.()1,2 C.()1,2-- D.()1,2-3.若关于x 的一元二次方程220x x m +-=有一个根为1,则m 的值为()A.3B.0C.2-D.3-4.在平面直角坐标系xOy 中,抛物线2y ax bx c =++如图所示,则关于x 的方程20ax bx c ++=的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.有实数根D.没有实数根5.如图,在O 中,AB 为直径,C ,D 为圆上的点,若51CDB ∠=,则CBA ∠的大小为()A.51B.49C.40D.396.如图,O 的半径为2,将O 的内接正六边形ABCDEF 绕点O 顺时针旋转,第一次与自身重合时,点A 经过的路径长为()A.2B.3π C.23π D.4π7.林业部门考察某种幼树在一定条件下的移植成活率,统计数据如下:移植总数m 1027075015003500700014000成活数n 823566213353180629212628成活的频率n m(结果保留小数点后三位)0.8000.8700.8830.8900.9090.8990.902下列说法正确的是()A.若移植10棵幼树,成活数将为8棵B.若移植270棵幼树,成活数不会超过235棵C.移植的幼树越多,成活率越高D.随着移植总数的增加,幼树移植成活的频率总在0.900左右摆动,显示出一定的稳定性,可以估计该幼树在同等条件下移植成活的概率为0.9008.如果一个圆的内接三角形有一边的长度等于半径,那么称其为该圆的“半径三角形”.给出下面四个结论:①一个圆的“半径三角形”有无数个;②一个圆的“半径三角形”可能是锐角三角形、直角三角形或钝角三角形;③当一个圆的“半径三角形”为等腰三角形时,它的顶角可能是30,120或150;④若一个圆的半径为2,则它的“半径三角形”面积最大值为上述结论中,所有正确结论的序号是()A.①②B.②③C.①②③D.①②④第二部分非选择题二、填空题(共16分,每题2分)9.在平面直角坐标系xOy 中,将抛物线23y x =向下平移1个单位,得到的抛物线表达式为________.10.如图,由5个相同的正方形组成的十字形纸片沿直线AB 和EF 前开后重组可得到矩形ABCD ,那么②可看作①通过一次________得到(填“平移”“旋转”或“轴对称”).11.若关于x 的一元二次方程216ax =有整数根,则整数a 的值可以是________(写出一个即可).12.已知y 是x 的二次函数,表中列出了部分y 与x 的对应值:x 012y1-113.“青山绿水,畅享生活”,人们经常将圆柱形竹筒改造成生活用具,图1所示是一个竹筒水容器,图2为该竹筒水容器的截面.已知截面的半径为10cm ,开口AB 宽为12cm ,这个水容器所能装水的最大深度是________cm .图1图214.如图,PA ,PB 是O 的两条切线,切点分别为A ,B ,60P ∠=.若O 的半径为3,则图中阴影部分的面积为________(结果保留π).15.如图,将面积为25的正方形ABCD 的边AD 的长度增加a ,变为面积为22的矩形AEGF .若正方形ABCD 和矩形AEGF 的周长相等,则a 的值是________.16.小云将9张点数分别为19~的扑克牌以某种分配方式全部放入A ,B 两个不透明的袋子中(每个袋子至少放一张扑克牌),从两个袋子中各随机抽取一张扑克牌,将两张扑克牌的点数之和为k 这一事件的概率记为k P .(1)若将点数为1和2的扑克牌放入A 袋,其余扑克牌放入B 袋,则8P =________;(2)对于所有可能的分配方式以及所有的k ,k P 的最大值是________.三、解答题(共68分,第17-19题,每题5分,20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答写出文字说明、演算步骤或证明过程.17.解方程:21x x +=.18.已知22310a a -+=,求代数式()2(3)3a a a -++的值.19.如图,在ABC △中,45B ∠=,将ABC △绕点A 逆时针旋转得到AB C ''△,使点B '在BC 的延长线上.求证:BB C B '⊥''.20.已知关于x 的方程2220x mx m n -+-=有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为符合条件的最小整数,且该方程的较大根是较小根的2倍,求m 的值.21.如图,P 是O 外一点,PA 与O 相切,切点为A .画出O 的另一条切线PB ,切点为B .小云的画法是:①连接PO ,过点A 画出PO 的垂线交O 于点B ;②画出直线PB .直线PB 即为所求.(1)根据小云的画法,补全图形;(2)补全下面的证明.证明:连接OA ,OB .OA OB = ,AB PO ⊥,PO ∴垂直平分AB ,OAB OBA ∠∠=.PA ∴=①.PAB ∠∴=②.PAO PBO ∠∠∴=.PA 是O 的切线,A 为切点,OA AP ∴⊥.90PAO ∠∴= .90PBO ∠∴= .OB PB ∴⊥于点B .OB 是O 的半径,PB ∴是O 的切线(③)(填推理的依据)。

2024年北京石景山初三上学期期末数学试题和答案

2024年北京石景山初三上学期期末数学试题和答案

石景山区2023-2024学年第一学期初三期末试卷数 学第一部分 选择题一、选择题(共16分,每题2分)第1- 8题均有四个选项,符合题意的选项只有一个. 1.若34(0)x y y ,则xy的值是(A)34 (B)43(C)74(D)732.如图,在Rt ACB △中,90C °,3AC BC ,则sin A 为(A) 13 (B)4 (C)10(D) 103.如图,四边形ABCD 内接于⊙O ,AB 是直径,D 是 AC的 中点.若40B °,则A 的大小为 (A) 50° (B) 60° (C) 70°(D) 80°4.将抛物线23y x 向左平移1个单位长度,平移后抛物线 的解析式为 (A) 23(1)y x(B) 23(1)y x(C) 231y x(D) 231y x5.若抛物线229y xmx 与x 轴只有一个交点,则m 的值为(A) 3(B) 3(C)(D) 3AB C6.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能:“平距以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方”.其中“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”AFE 的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得8m BD , 1.6m AB . 若“矩”的边30cm EF a ,边60cm AF b ,则树高CD 为 (A) 4m (B) 5.3m (C) 5.6m (D) 16m7.在平面直角坐标系xOy 中,若点1(4)y ,,2(6)y ,在抛物线2(3)1(0)y a x a 上,则下列结论正确的是 (A) 121y y(B) 211y y(C) 211y y(D) 121y y8.如图,在ABC △中,CD AB 于点D ,给出下面三个条件: ①A BCD ; ②A BCD ADC ; ③AD CD CD BD. 添加上述条件中的一个,即可证明ABC △是直角三角形的条件序号是 (A) ①②(B) ①③(C) ②③(D) ①②③第二部分 非选择题二、填空题(共16分,每题2分)9.如图,在矩形ABCD 中,E 是边AD 的中点,连接BE 交 对角线AC 于点F .若6AC ,则AF 的长为 . 10.在平面直角坐标系xOy 中,若点1(3)y ,,2(7)y ,在反比例函数(0)ky k x的图象上,则1y 2y (填“>”“=”或“<”). DABCE F DCBA第6题 图1 第6题 图2DCH11.如图,正六边形ABCDEF 内接于⊙O ,12AB ,则 AB 的长为 .12.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,60P °,6PA ,则⊙O 的半径为 .13.如图,线段AB ,CD 分别表示甲、乙建筑物的高,两座建筑物间的距离BD 为30m .若在点A 处测得点D 的俯角 为30°,点C 的仰角 为45°,则乙建筑物的高CD 约为 m (结果精确到0.1m1.4141.732 ).14.如图,点A ,B 在⊙O 上,140AOB °.若C 为⊙O 上任一点(不与点A ,B 重合),则ACB 的大小为 .15.如图,E 是正方形ABCD 内一点,满足90AEB °,连接CE .若2AB ,则CE 长的最小值为 .16.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a的顶点为(1)P k ,,且经过点(30)A ,,其部分图象如图 所示,下面四个结论中, ①0a ; ②2b a ;③若点(2)M m ,在此抛物线上,则0m ; ④若点()N t n ,在此抛物线上且n c ,则0t . 所有正确结论的序号是 .A BCDENBDM第11题 第12题 第13题三、解答题(共68分,第17-21题,每题5分,第22题6分,第23题5分,第24-26题,每题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:20248sin 60(1)tan 45 °°.18.如图,在四边形ABCD 中,AC 平分BAD ,90ACD B °.(1)求证:ACD △∽ABC △; (2)若3AB ,4AD ,求AC 的长.19.已知二次函数223y x x .(1)将223y x x 化成2()(0)y a x h k a 的形式,并写出其图象的顶点坐标;(2)求此函数图象与x 轴交点的坐标;(3)在平面直角坐标系xOy 中,画出此函数的图象.20.如图,AB 是⊙O 的直径,弦CD AB 于点E ,6CD ,1BE .求⊙O 的半径.21.已知二次函数2y x bx c 的图象过点(10)A ,和(03)B ,. (1)求这个二次函数的解析式;(2)当14x 时,结合图象,直接写出函数值y 的取值范围.DABC22.如图,在四边形ABCD 中,AD ∥BC ,90B °,3cos 5C,10CD . 求AB 的长.23.已知某蓄电池的电压为定值,使用此电源时,用电器的电流I (单位:A )与电阻R (单位: )成反比例函数关系,即(0)kI k R ,其图象如图所示.(1)求k 的值;(2)若用电器的电阻R 为6 ,则电流I为 A ;(3)如果以此蓄电池为电源的用电器的电流I 不得超过10A ,那么用电器的电阻R应控制的范围是 .24.如图,在ABC △中,AB AC ,以AB 为直径的O 交BC 于点D ,交AC 于点E ,点F 在AC 的延长线上,12CBF BAC . (1)求证:BF 是O 的切线; (2)若5AB ,1tan 2CBF ,求CE 的长.I /AB CD25.投掷实心球是北京市初中学业水平考试体育现场考试的选考项目之一.实心球被投掷后的运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系, 实心球从出手(点A 处)到落地的过程中,其竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系.小石进行了三次训练,每次实心球的出手点A 的竖直高度为2m .记实心球运动路线的最高点为P ,训练成绩(实心球落地点的水平距离)为d (单位:m ).训练情况如下:根据以上信息,(1)求第二次训练时满足的函数关系式; (2)小石第二次训练的成绩2d 为 m ; (3)直接写出训练成绩1d ,2d ,3d 的大小关系.2OA26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a 经过点(33)A a c ,. (1)求该抛物线的对称轴;(2)点1(12)M a y ,,2(2)N a y ,在抛物线上.若12c y y ,求a 的取值范围.27.如图,在Rt ACB △中,90ACB °,60BAC °.D 是边BA 上一点(不与点B重合且12BD BA),将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接DE ,AE . (1)求CAE 的度数;(2)F 是DE 的中点,连接AF 并延长,交CD 的延长线于点G ,依题意补全图形.若G ACE ,用等式表示线段FG ,AF ,AE 之间的数量关系,并证明.DABCE28.在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和点C 给出如下定义:若点C 在弦AB 的垂直平分线上,且点C 关于直线AB 的对称点在⊙O 上,则称点C 是弦AB 的“关联点”. (1)如图,点1(22A ,,1(22B ,. 在点1(00)C ,,2(10)C ,,3(11)C ,,4(20)C ,中,弦AB 的“关联点”是 ;(2)若点1(0)2C ,是弦AB 的“关联点”,直接写出AB 的长; (3)已知点(02)M ,,(0)15N ,.对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.石景山区2023-2024学年第一学期初三期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三上学期数学期末试题
(完卷时间:120分钟 满分:150分)
一、选择题(每小题3分,共30分)
1.下列二次根式中,最简二次根式是 ( )
A . 2
B .8
C .12
D .18 2.一元二次方程x (x -1)=0的解是 ( )
A .x =0
B .x =1
C .x =0或x =1
D .x =0或x =-1 3.下列图形中,既是轴对称图形又是中心对称图形的是 ( )
4.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,若∠A =15°,则∠BOC 的度数是( )
A .15°
B .300°
C .45°
D .75° 5.下列事件中,必然发生的是( )
A .某射击运动射击一次,命中靶心
B .通常情况下,水加热到100℃时沸腾
C .掷一次骰子,向上的一面是6点
D .抛一枚硬币,落地后正面朝上 6.如图所示,△ABC 中,D
E ∥BC ,AD =5,BD =10,DE =6,则BC 的值为( )
A .6
B .12
C .18
D .24
7.如图所示,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB 的长为( )
A .8cm 了
B .6cm
C .5cm
D .4cm
8.若两圆的圆心距为5,两圆的半径分别是方程x 2-4x +3=0的两个根,则两圆的位置关系是 ( )
A .相交
B .外离
C .内含
D .外切
A
B
C
D
第4题图
A
B
C
D
E 第6题图
第7题图
9.将一副直角三角板(含45°角的直角三角板ABC 与含30°角的直角三角板DCB )按图示方式叠放,斜边交点为O ,则△AOB 与△COD 的面积之比等于 A .1∶ 2 B .1∶2 C .1∶ 3 D .1∶3 10.已知b a ≠,0122=--a a ,0122
=--b b ,则b a +( )
A .0
B .1
C .2
D .3
二、填空题(每小题4分,共20分)
11.二次根式x 2-1 有意义,则x 的取值范围是__________________.
12.关于x 的方程()0212
=++-m mx x m 有实数根,则m 的取值范围是____ ____.
13.如图所示,某公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影
部分是黑色石子,小华随意向其内部抛一个小球,则小球落点在黑色石子区域内概率是_____________.
14.某小区2011年绿化面积为2000平方米,计划2013年底绿化面积要达到2880平方米.如
果每年的增长率相同,那么这个增长率是__________________.
15.如图所示,n +1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B 2D 1C 1的面积为S 1,△B 3D 2C 2的面积为S 2,…,△B n +1D n C n 的面积为S n ,则S 1=________,S n =__________(用含n 的式子表示).
三、解答题(共7小题,共70分) 16.计算:(每小题8分,共16分)
(1) 27×50÷ 6 (2) 2
3 9x +6x
4 -2x 1x
A
B
O
第9题图
D
第13题图
A C 1 第15题图
C 2 C 3 C 4
C 5
17.(10分)已知△ABC 在平面直角坐标系中的位置如图所示.
(1) 分别写出图中点A 和点C 的坐标; (2) 画出△ABC 绕点A 按逆时针方向旋转90°后的△AB'C'; (3) 在(2)的条件下,求点C 旋转到点C' 所经过的路线长(结果保留π).
18.(10分)在一个不透明的纸箱里装有2个红球、1个白球,它们除颜色外完全相同.小明
和小亮做摸球游戏,游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.
19.(10分)如图所示,AB 是⊙O 的直径,∠B =30°,弦BC =6,∠ACB 的平分线交⊙O 于
D ,连AD .
(1) 求直径AB 的长;
(2) 求阴影部分的面积(结果保留π).
1 2 3 4 5 6 7 8
第17题图
D
第19题图
20.(12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%,经试销发现,销售量y(件)与销售单价x(元)的关系符合一次函数y=-x+140.
(1) 直接写出销售单价x的取值范围.
(2) 若销售该服装获得利润为W元,试写出利润W与销售单价x之间的关系式;销售
单价为多少元时,可获得最大利润,最大利润是多少元?
(3) 若获得利润不低于1200元,试确定销售单价x的范围.
21.(12分)如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?。

相关文档
最新文档