命题的定义及四种命题(公开课)
充分条件和必要条件公开课

1. 若p q,则p是q的充分条件. 或说:“q是p的必要条件” 2.若p q,则p是q的充分必要条件. 简称p是q的充要条件. 3.若p q,且q p则p是q的充分不必要条件 4.若p q,且q 5.若p q,且q 要条件. p则p是q的既不充分也不必
p则p是q的必要不充分条件
例题:
利用定义解决问题,并寻找判断方法.
逆否命题 若﹁ q则﹁p
问 题 情 境
鱼生存需要水,没了水,鱼就无法生
存,但只有水,鱼能否生存?
探究:p:“有水”;q:“鱼能生存”。 判断: “若p,则q”
pq 1、我们约定:若p则q为真,记作: pq 若p则q为假,记作:
例如:
如果两个三形全等,那么两三角形面积相等。
第一组题:
(1)"a > 0,b > 0"是 "ab > 0"的什么条件?
p p p p
找 p、 q
q q q
(答:充分不必要条件)
(2)"四边行为平行四边形"是 "这个四边形为菱形 "的什么条件?
(答:必要不充分条件)
(3)在D ABC中,BC = AC是行 A= B的什么条件?
(答:充要条件)
(4)" a2 > b2 "是" a > b "的什么条件?
(D) p 是q 的既 不充分也不 必要条件
课堂小结
(1)充分条件、必要条件、充分必要 条件的概念。 (2)判断充分、必要条件的基本步骤: ①认清条件和结论; ②考察 p q和q p 的真假; ③下结论。
作 业 布 置
一、生活中的一些名言警句包含着充要关系, 如:“骄兵必败”、“玉不琢,不成器”、 “若要人不知,除非己莫为”等等。 请大家自己试着找一些,分析其关系。 感受数学的魅力。 二、完成第四课时、第五课时
四种命题及其关系

四种命题及其关系一、四种命题的概念1. 原命题- 定义:若用p表示条件,q表示结论,则原命题为“若p,则q”,例如“若x = 1,则x^2=1”。
2. 逆命题- 定义:将原命题的条件和结论互换得到的命题,即“若q,则p”。
对于上面的例子,其逆命题为“若x^2=1,则x = 1”。
3. 否命题- 定义:将原命题的条件和结论都进行否定得到的命题,即“若¬ p,则¬q”。
对于“若x = 1,则x^2=1”,其否命题为“若x≠1,则x^2≠1”。
4. 逆否命题- 定义:将逆命题的条件和结论都进行否定得到的命题,即“若¬ q,则¬p”。
对于“若x = 1,则x^2=1”,其逆否命题为“若x^2≠1,则x≠1”。
二、四种命题之间的关系1. 原命题与逆命题- 关系:原命题的条件和结论是逆命题的结论和条件,它们之间是互逆的关系。
原命题为真时,逆命题不一定为真。
例如原命题“若a = 0,则ab=0”是真命题,其逆命题“若ab = 0,则a = 0”是假命题(因为当b = 0时,a可以不为0)。
2. 原命题与否命题- 关系:原命题与否命题是互否的关系,原命题为真时,否命题不一定为真。
例如原命题“若x>2,则x>1”是真命题,其否命题“若x≤slant2,则x≤slant1”是假命题。
3. 原命题与逆否命题- 关系:原命题与逆否命题是同真同假的关系。
例如原命题“若a = b,则a^2=b^2”是真命题,其逆否命题“若a^2≠ b^2,则a≠ b”也是真命题;原命题“若x = 1且y = 2,则x + y=3”是真命题,其逆否命题“若x + y≠3,则x≠1或y≠2”也是真命题。
4. 逆命题与否命题- 关系:逆命题与否命题是互为逆否的关系,所以它们也是同真同假的关系。
例如对于原命题“若p,则q”,其逆命题“若q,则p”和否命题“若¬ p,则¬q”,若逆命题为真,则否命题也为真;若逆命题为假,则否命题也为假。
四种命题 课件

否命题: 若四边形不是正方形,则 四边形两对角线不垂直。 逆否命题:若四边形两对角线不垂直,则四边形不是正方形。
3.知识巩固
把下列命题改写成“若p则q”的形式,并写出逆命题、否
命题、逆否命题。
1.负数的平方是正数 原命题: 若一个数是负数,则它的平方是正数。 逆命题: 若一个数的平方是正数,则它是负数。 否命题: 若一个数不是负数,则它的平方不是正数。 逆否命题: 若一个数的平方不是正数,则它不是负数。
假 原命题:若四边形对角线相等,则四边形是平行四边形。 假 否命题:若四边形对角线不相等,则四边形不是平行四边形。
结论2
原命题的真假和否命题的 真假没有关系。
3.互为逆否命题的真假关系
判断下列逆否命题的真假,并总结规律。
原命题:若a>b,则a+c>b+c 真 逆否命题:若a+c≤b+c,则a≤b 真
(1)命题:”若q则┐p”与命题”若┐q则p”互否 (2)命题:”若┐p则q”与命题”若q则┐p” 互逆 (3)命题:”若┐q则p”与命题”若┐p则q”互为逆否
原命题:若a>b,则a+c>b+c 真 逆命题:若a+c>b+c,则a>b 真
原命题:若四边形是正方形,则四边形两对角线垂直。 真 逆命题:若四边形两对角线垂直,则四边形是正方形。 假
原命题:若a>b,则ac2>bc2 假 逆命题:若ac2>bc2,则a>b 真
原命题:若四边形对角线相等,则四边形是平行四边形。假 逆命题:若四边形是平行四边形,则四边形对角线相等。假
3.知识巩固
分别写出下列命题。
高中数学《四种命题 四种命题间的相互关系》课件

课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
答案 (1)若 ab=0,则 a=0 (2)“若 p,则綈 q” (3)若|a|≠|b|,则 a≠b (4)若 a≤-4,则 a≤-3 真命题
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
答案
课堂互动探究
课前自主学习
课堂合作研究
随堂基础巩固
课后课时精练
探究 1 四种命题的定义 例 1 把下列命题写成“若 p,则 q”的形式,并写出它们的逆命题、否 命题与逆否命题. (1)正数的平方根不等于 0; (2)当 x=2 时,x2+x-6=0; (3)垂直于同一平面的两直线平行; (4)当 mn<0 时,方程 mx2-x+n=0 有实数根.
课前自主预习
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
答案
(3)原命题:若两条直线垂直于同一平面,则这两条直线平行. 逆命题:若两条直线平行,则这两条直线垂直于同一个平面. 否命题:若两条直线不垂直于同一平面,则这两条直线不平行. 逆否命题:若两条直线不平行,则这两条直线不垂直于同一平面. (4)原命题:若 mn<0,则方程 mx2-x+n=0 有实数根. 逆命题:若方程 mx2-x+n=0 有实数根,则 mn<0. 否命题:若 mn≥0,则方程 mx2-x+n=0 没有实数根. 逆否命题:若方程 mx2-x+n=0 没有实数根,则 mn≥0.
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
【跟踪训练 3】 证明:若 a2-4b2-2a+1≠0,则 a≠2b+1.
证明 “若 a2-4b2-2a+1≠0,则 a≠2b+1”的逆否命题为“若 a=2b +1,则 a2-4b2-2a+1=0”.
《四种命题的概念》课件

符号表述方式
符号表述方式是数学中常用的命题表述方式,它通过数学符号和公式来表示数学 概念、定理和性质等。
符号表述方式具有表达精确、简练的特点,但有时候对于初学者来说不太容易理 解。
图形表述方式
图形表述方式是通过几何图形来表示数学概念、定理和性质等。 图形表述方式具有直观、形象的特点,能够帮助人们更好地理解抽象的数学概念。
05
四种命题的练习题与解析
练习题一及解析
练习题一:写出下列 命题的否定
所有的猫都是动物。
存在一个实数x,使 得x^2 + x + 1 < 0 。
练习题一及解析
3是一个偶数。 解析
存在一个实数x,使得x^2 + x + 1 ≥ 0。
练习题一及解析
存在一个动物不是猫。
3是一个奇数。
练习题二及解析
四种命题是指:原命题、逆命题、逆否命题和等价命题。
在此添加您的文本16字
原命题指的是条件和结论都为真的命题,如“若a>b,则 a+c>b+c”。
在此添加您的文本16字
逆命题是将原命题的条件和结论互换得到的命题,如“若 a+c>b+c,则a>b”。
在此添加您的文本16字
逆否命题是逆命题的否命题,即同时否定条件和结论得到 的命题,如“若a≤b,则a+c≤b+c”。
在此添加您的文本16字
等价命题是与原命题等价的命题,即两者可以相互推导。
命题的分类依据
01
根据条件和结论的真假值,可以 将命题分为真命题和假命题两类 。
02
真命题是指条件为真且结论为真 的命题,假命题则是条件或结论 至少有一个为假的命题。
《命题及四种命题》课件

总结词
如果两个命题中,一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个否定后的条件和结论交换了位置,则这两个命题称互为逆否命题。
详细描述
互为逆否命题是四种命题中的一种,它指的是两个命题之间的一种关系。如果一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个否定后的条件和结论交换了位置,那么这两个命题就是互为逆否命题。例如,“所有动物都是生物”和“所有非生物都不是动物”就是一对互为逆否命题。
互逆命题和互否命题的关系
互逆命题之间不一定是互否命题,互否命题之间也不一定是互逆命题。互逆命题和互否命题的真假性没有必然联系。
互为逆否命题:如果两个命题中,一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个命题的真假性相反,则这两个命题称互为逆否命题。如:原命题为“若a=b,则a^2=b^2”,其逆否命题为“若a^2≠b^2,则a≠b”。
在解决代数方程时,常常需要使用四种命题来推导和证明方程的解。例如,可以通过逆命题或否命题来证明一个代数方程是否有解。
在代数方程中的应用
在几何学中的应用
四种命题在推理逻辑中有着广泛的应用。例如,通过使用四种命题,可以构建有效的推理链条,从而证明某个结论的正确性。
在推理逻辑中的应用
在决策制定过程中,可以使用四种命题来分析各种可能性和结果。例如,可以通过分析命题的真假来评估某个决策的风险和收益。
反归纳推理
命题逻辑与推理
一个明确的陈述,具有真或假两种状态。
命题
由简单命题通过逻辑联结词组合而成的命题。
复合命题
不能再分解为更简单形式的命题。
原子命题
从一般到特殊的推理,必须保证前提真实和推理形式正确。
演绎推理
高二数学《命题与四种命题》(课件)
设原命题是“已知a、b、c、d是实数, 若a=b, c=d, 则a+c=b+d”.写出它的逆命题、 否命题和逆否命题, 并分别判断其真假性。
(1)教材P8 习题1.1A组T1, T2, T3;
P30 复习参考题A组T1.
(2)自学教材P6-P8, 想一想命题学习 的目的或作用。
的条件, q叫命题的结论;
原命题: 若p, 则q;
4.四种命题间相互关系:
逆命题: 若q, 则p; 否命题: 若¬p, 则¬q;
逆否命题: 若¬q, 则¬p;
3.命题的一般形式:“若p, 则q”, 命题中p叫命题
的条件, q叫命题的结论; 原命题: 若p, 则q;
4.四种命题间相互关系:
逆命题: 若q, 则p; 否命题: 若¬p, 则¬q;
1.命题的定义: 可以判断真假的陈述句;
1.命题的定义: 可以判断真假的陈述句;
①判断为真的命题叫真命题; 2.命题的真假
②判断为假的命题叫假命题;
3.命题的一般形式:“若p, 则q”, 命题中p叫命题 的条件, q叫命题的结论;
3.命题的一般形式:“若p, 则q”, 命题中p叫命题
的条件, q叫命题的结论;
数能被5整除; (2)若一个三角形的两条边相等, 则这个三
角形的两个角相等;
教材P6练习部分: 写出下列命题的逆命题、否命题和逆否
命题, 并判断其真假性: (1)若一个整数的末位数字是0, 则这个整
数能被5整除; (2)若一个三角形的两条边相等, 则这个三
角形的两个角相等; (3)奇函数的图象关于原点对称。
1.研读教材P2-P3 (1)命题的概念及其真假性; (2)命题构成的一般形式; (3)完成教材P3例2、例3, 并说明其目的。
《四种命题的概念》课件
总结与提高
命题是推理的基础,对于 逻辑思维的培养非常重要。
学习命题需要掌握分类、 逻辑运算、等价和蕴含等 概念。
通过练习,不断提高命题 推理的能力。
命题的分类
按照真值的不同分类
分为真命题、假命题和不确定命 题。
按照语法结构的不同分类
分为简单命题、复合命题和开放 命题。
分类时需要注意哪些问题?
注意排除歧义和重复,以及分类 的合理性。
命题的逻辑运算
1
命题有哪些逻辑运算符?
非、与、或、异或、蕴含和等价。
2
逻辑运算符的运算规则是什么?
按照真值表和优先级进行计算。
四种命题的概念
在这个PPT课件中,我们将探讨命题的定义、分类、逻辑运算以及等价和蕴含。 掌握这些概念非常重要,它们为逻辑思维提供了基础。
命题的定义
什么是命题?
命题是可以判断真假的陈述句。
命题的特点有哪些?
命题具有真假性、确定性和稳定性。
命题与语句的关系是什么?
命题是语句的一种,但不是所有语句都是命题。
3
逻辑运算符的真值表是怎样的?
根据运算规则,可以列出运算符的真值表。
命题的等价和蕴含
什么是等价命题?
两个命题在任何情况下的真假值均相同。
什么是蕴含命题?
如果一个命题的真,则另一个命题一定为真。
Байду номын сангаас
等价命题的特点有哪些?
其中一个命题可以替换为另一个命题,而不影响 命题间的逻辑关系。
蕴含命题的特点有哪些?
命题及常见的四种命题教学课件
1.1.1 命 题 1.1.2 四种命题
学习目标
1.了解命题的概念和分类. 2.能判断命题的真假. 3.了解命题的构成形式,能将命题改写为“若p,ห้องสมุดไป่ตู้q”的形式. 4.了解命题的概念,会写出所给命题的逆命题、否命题和逆否 命题.
内容索引
问题导学 题型探究 达标检测
问题导学
5.命题:3mx2+mx+1>0恒成立是真命题,求实数m的取值范围. 解 “3mx2+mx+1>0恒成立”是真命题,需对m进行分类讨论. 当m=0时,1>0恒成立,所以m=0满足题意; 当m>0,且Δ=m2-12m<0,即0<m<12时,3mx2+mx+1>0恒成立, 所以0<m<12满足题意. 综上所述,实数m的取值范围是0≤m<12.
12345
解答
规律与方法
1.根据命题的定义,可以判断真假的陈述句是命题.命题的条件与结论 之间属于因果关系,真命题需要给出证明,假命题只需举出一个反例 即可. 2.任何命题都是由条件和结论构成的,可以写成“若p,则q”的形式. 含有大前提的命题写成“若p,则q”的形式时,大前提应保持不变, 且不写在条件p中.
4.命题“函数y=log2(x2-mx+4)的值域为R”为真命题,则实数m的 取值范围为_(-__∞__,__-__4_]_∪__[4_,__+__∞__)_.
解析 由题意可知,满足条件时,需方程x2-mx+4=0的判别式Δ≥0, 即(-m)2-4×4≥0,解得m≤-4或m≥4.
12345
解析 答案
解答
命题角度2 四种命题的真假判断 例5 写出下列命题的逆命题、否命题、逆否命题,并判断其真假. (1)若a>b,则ac2>bc2; 解 逆命题:若ac2>bc2,则a>b.真命题. 否命题:若a≤b,则ac2≤bc2.真命题. 逆否命题:若ac2≤bc2,则a≤b.假命题.
高中数学1.1.2四种命题优秀课件
再见
紧密高考
新课学习
命题方向1 ⇨四种命题的概念
[题目]:写出以下命题的逆命题、否命题与逆否命题. (1)正数的平方根不等于0; (2)当x=2时,x2+x-6=0; (3)假设a>b,那么ac2>bc2.
规律总结
新课学习
『规律总结』 写出四种命题的方法 (1)交换原命题的条件和结论,所得的命题是逆命题; (2)同时否认原命题的条件和结论,所得的命题是否命题; (3)交换原命题的条件和结论,并且同时否认,所得的命题是逆否命 题.
新课学习
否命题
互否命题: 对于两个命题,其中一个命题的条件和结论分别是另一个 命题的___条_件__的_否__认____和___结__论_的__否_认____.我们把这样的两 个命题叫做互否命题,如果把其中一个命题叫做原命题, 那么另一个命题叫做原命题的___否_命__题__. 假设原命题为“假设p,那么q〞,那么其否命题为 “____假_设__¬p_,__那_么__¬q_〞.
新课学习
[标准解答] (1)原命题:假设a是正数,那么a的平方根不等于0; 逆命题:假设a的平方根不等于0,那么a是正数; 否命题:假设a不是正数,那么a的平方根等于0; 逆否命题:假设a的平方根等于0,那么a不是正数; (2)原命题:假设x=2,那么x2+x-6=0; 逆命题:假设x2+x-6=0,那么x=2. 否命题:假设x≠2,那么x2+x-6≠0; 逆否命题:假设x2+x-6≠0,那么x≠2. (3)原命题:假设a>b,那么ac2>bc2; 逆命题:假设ac2>bc2,那么a>b; 否命题:假设a≤b,那么ac2≤bc2; 逆否命题:假设ac2≤bc2,那么a≤b.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
看看下列语句是不是命题?
1) 今天天气如何? 不是(疑问句)
2) 你是不是作业没交? 不是(疑问句) 3) 这里景色多美啊! 4) -2不是整数。 不是(感叹句) 是
5) 4>3。
6) x>4。
是
不是(开语句)
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。 (1) 空集是任何集合的子集. (是,真) (2)若整数a是素数,则a是奇数(是,假) . (3)指数函数是增函数吗?(不是命题)
(4)若平面上两条直线不相交,则这两条直线平行.
(是,真)
2 ( 2) 2 (5)
(是,假)
(6)x>15. (不是命题)
练习
( 2) x
2
判断下列语句是否是命题 .
2 x 1 0.
(1)求证 3 是无理数。
(3)你是高二学生吗?
(4)并非所有的人都喜欢苹果。
(5)一个正整数不是质数就是合数。 (6)若
若ab=0,则a=0
观察命题(1)与命题(3)的条件和结 1. 若f(x)是正弦函数,则 f(x)是周期函数; 论之间分别有什么关系? q
p 3. 若f(x)不是正弦函数,则f(x) 不是周期函数.
┐p ┐q
为书写简便,常把条件p的否定和结论q的否定 分别记作 “┐p” “┐q”。 互否命题 原命题:若p,则q 否命题:若┐p,则┐q
命题及其关系
1.1.1 命题
思考
下列语句的表述形式有什么特点?你能判断 它们的真假吗?
• • • • • •
(1) 12>5; (2) 3是12的约数; (3) 0.5是整数;
语句都是陈述句, 并且可以判断真假。
(4)对顶角相等;
(5)3 能被2整除; (6)若x2=1,则x=1.
命题的概念
一般地,在数学中,我们把用语言、符号 或式子表达的,可以判断真假的陈述句叫做 命题 判断为真的语句叫真命题。 判断为假的语句叫假命题。
(3)
原命题:奇函数的图像关于原点对称. 原命题:若一个函数是奇函数,则这个 真命题 函数的图象关于原点对称.
逆命题:若一个函数的图象关于原点对 称,则这个函数是奇函数. 真命题
否命题:若一个函数不是奇函数,则这 个函数的图象不关于原点对称. 真命题 逆否命题:若一个函数的图象不关于原点 对称,则这个函数不是奇函数. 真命题
┐q ┐p
互为逆否命题
原命题: 若p, 则q 逆否命题: 若┐q, 则┐p
例如,原命题:同位角相等,两直线平行。 逆否命题:两直线不平行,同位角不相等。
逆否命题
如“若a=0,则ab=0”的逆否命题为: 若ab≠0,则a≠0.
原命题,逆命题,否命题,逆否命题 四种命题形式: • 原命题: 若 p, 则 q
• 逆命题: 若 q, 则 p ┐p, 则┐q 若 • 否命题: ┐q, 则┐p 若 • 逆否命题:
例 设原命题是“当c >0 时,若a >b ,则ac >bc ”,写出 它的逆命题、否命题、逆否命题,并分别判断它们的真假:
解: 逆命题:当c >0 时,若ac >bc ,则a >b. 逆命题为真. 否命题:当c >0 时,若a ≤b ,则ac ≤ bc . 否命题为真. 逆否命题:当c >0 时,若ac ≤ bc ,则a ≤b . 逆否命题为真.
如何判断一个语句是不是命题?
1) 2) 3)
4)
7是23的约数吗? X>5. -2<a<3. 画线段AB=CD.
疑问句 开语句 祈使句
判断一个语句是不是命题,关键看这语句是否符合 “是陈述句”和“可以判断真假” 这两个条件。 有些语句中含有变量,在不给定变量的值之前,我 们无法确定这语句的真假,这样的语句叫开语句。
课堂小结
定义1:一般地,对于两个命题,如果
一个命题的条件和结论 分别是另一个命
题的结论和条件 ,那么我们把这样的两
个命题叫做 互逆命题 .其中一个命题叫
做原命题,另一个命题叫做原命题的逆
命题.
课堂小结
定义2:一般地,对于两个命题,如果
一个命题的 条件和结论恰好是另一个命
题的条件的否定和结论的否定 ,那么我
解:a>0时,若x增加,则函数y=ax+b的值也 随之增加,它是真命题.
在本题中,a>0是大前提,应单独给出, 不能把大前提也放在命题的条件部分内.
2、把下列命题改写成“若p,则q”的形式, 并判断它们的真假.
(1)等腰三角形两腰的中线相等;
(2)偶函数的图象关于y轴对称;
(3)垂直于同一个平面的两个平面平行。 (1)若三角形是等腰三角形,则三角形两边上的中线相等。 这是真命题。 (2)若函数是偶函数,则函数的图象关于y轴对称,这是真 命题。 (3)若两个平面垂直于同一平面,则这两个平面互相平行。 这是假命题。
q p
互逆命题:一个命题的条件和结论分别是另一个命题的 结论和条件,这两个命题叫做互逆命题。 原 命 题:其中一个命题叫做原命题。 逆 命 题:另一个命题叫做原命题的逆命题。
即 原命题:若p,则q 逆命题:若q,则p 例如,原命题:同位角相等,两直线平行。
逆命题:两直线平行,同位角相等。
例:命题“若a=0,则ab=0”的逆命题
(2) 原命题:若一个三角形有两条边相等,
则这个三角形有两个角相等;
真命题 逆命题:若一个三角形有两个角相等, 则这个三角形有两条边相等. 真命题 否命题:若一个三角形没有两条边相等, 则这个三角形没有两个角相等. 真命题 逆否命题:若一个三角形没有两个角相等, 则一个三角形没有两条边相等. 真命题
例2 指出下列命题中的条件p和结论q:
1) 若整数a能被2整除,则a是偶数; 2) 菱形的对角线互相垂直且平分。
பைடு நூலகம்
解:1) 条件p:整数a能被2整除, 结论q:整数a 是偶数。 2) 写成若p,则q 的形式:若四边形是菱形, 则它的对角线互相垂直且平分。 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
们把这样的两个命题叫做互否命题.其
中一个命题叫做原命题,另一个命题叫
做原命题的否命题.
课堂小结
定义3:一般地,对于两个命题,如果一个
命题的条件和结论恰好是另一个命题的结论
的 否定 和条件的 否定 ,那么我们把这样的
两个命题叫做互为 逆否命题.其中一个命 题叫做原命题,另一个命题叫做原命题的逆 否命题.
x R ,则 x 2 4 x 7 0.
(7)x+3>0. (1)(3)(7)不是命题,(2)(4)(5)(6)是命题。
“若p则q”形式的命题
命题“若整数a是素数,则a是奇数。”具 q 有“若p则q”的形式。 p
通常,我们把这种形式的命题中的p叫做命
题的条件,q叫做命题的结论。
“若p则q”形式的命题是命题的一种形式
3. 把下列命题改写成“若p则q”的形 式,并判定真假。
(1) 负数的平方是正数. (2) 偶函数的图像关于y轴对称.
(3)垂直于同一条直线的两条直线平行
(4) 面积相等的两个三角形全等. (5) 对顶角相等.
真命题 真命题 假命题 假命题 真命题
命题及其 关系
1.1.2 四种命题
下列四个命题中,命题(1)与命题 (2)(3)(4)的条件和结论之间分别有什么 关系? 1. 若f(x)是正弦函数,则 f(x)是周期函数;
巩固练习 写出下列命题的逆命题,否命题和逆否 命题,并判断它们的真假 (1)若一个整数的末位数字是0,则这个整 数能被5整除; (2)若一个三角形的两条边相等,则这个 三角形有两个角相等; (3)奇函数的图像关于原点对称.
(1)
原命题:若一个整数的末位数字是0, 则这个整数能被5整除; 真命题
逆命题:若一个整数能被5整除,则这 个数的末位数字是0. 假命题 否命题:若一个数的末位数字不是0 , 则这个整数不能被5整除. 假命题 逆否命题:若一个整数不能被5整除, 则这个数的末位数字不是0. 真命题
2. 3. 4.
若f(x)是周期函数,则f(x)是正弦函数; 若f(x)不是正弦函数,则f(x)不是周期函数; 若f(x)不是周期函数,则f(x)不是正弦函数。
观察命题(1)与命题(2)的条件和结 1. 若f(x)是正弦函数,则 f(x)是周期函数; 论之间分别有什么关系?
2.
p是正弦函数; 若f(x)是周期函数,则f(x) q
(5) 对顶角相等 若两个角是对顶角,则这两个角相等。 真 (6) 能被2整除的整数是偶数 若一个整数能被2整除,则这个整数是偶数。 真 (7) 菱形的对角线互相垂直且平分 若四边形是菱形,则它的对角线互相垂直且平分。 真
练习y=ax+b的值随x值 1、将命题“a>0时,函数 的增加而增加”改写成“p则q”的形式,并 判断命题的真假。
例3 把下列命题改写成“若p则q”的 形式,并判定真假。
(1)垂直于同一条直线的两个平面平行; 若两个平面垂直于同一直线,则这两个平面平行。真 (2)两个全等三角形的面积相等; 真 若两个三角形全等,则这两个三角形的面积相等。 (3) 3能被2整除 若一个数是3,则这个数能被2整除。 假 (4) 负数的立方是负数 若一个数是负数,则这个数的立方是负数。真
而不是唯一的形式,也可写成“如果p,那么q” “只要p,就有q”等形式。
对于一些条件与结论不明显的命题,一般 采取先添补一些命题中省略的词句, 确定 条件与结论。 如命题:“垂直于同一条直线的两个平面 平行”。 写成“若p则q”的形式为: 若两个平面垂直于同一条直线,则这 两个平面平行。
“若p则q”形式的命题的书写
例如,原命题:同位角相等,两直线平行。