初三数学九下相似所有知识点总结和常考题型练习题

合集下载

初三数学下册(人教版)第二十七章相似27.2知识点总结含同步练习及答案

初三数学下册(人教版)第二十七章相似27.2知识点总结含同步练习及答案

分析:以 P 、B 、Q 为顶点的三角形和 △ABC 相似,有 △BP Q ∽ △BAC 和
△BP Q ∽ △BCA
△BP Q ∽ △BCA 两种情况.
解:① △BP Q ∽ △BAC,则
BP BQ ,即 2t = 2(6 − t),解得 t = 3 ; = AB BC BP BQ ② △BP Q ∽ △BCA,则有 ,6(6 − t) = 12 × 2t,解得 t = 1.2, = BC AB 所以当 t = 3 秒或 t = 1.2 秒时以 P 、B 、Q 为顶点的三角形和 △ABC 相似.
(
).
A.4 对
答案: C 解析: 图中有
B.5 对
C.6 对
D.7 对
6 对三角形相似:△ABD ∽ △ACE,△BP E ∽ △CP D,△CP D ∽ △CAE, △CP D ∽ △BAD,△BP E ∽ △BAD,△BP E ∽ △CAE.
高考不提分,赔付1万元,关注快乐学了解详情。
3. 如图,在平行四边形 ABCD 中,点 E 是边 AD 的中点,EC 交对角线 BD 于点 F ,则
(
)
EF : F C 等于 (
)
A.3 : 2
答案: D
B.3 : 1
C.1 : 1
D.1 : 2
4. 如图,△ABC 中,AB 、 AC 边上的高 CE 、 BD 相交于 P 点,图中所有的相似三角形共有
例题: 如果两个相似三角形对应高的比是 3 : 2,那么它们的面积比是________;它们的周长比是 ______;对应角平分线的比是_______. 解:9 : 4;3 : 2;3 : 2. 下列条件,不能判定 △ABC 与 △DEF 相似的是( ) ∘ ∘ ∘ A. ∠C = ∠F = 90 ,∠A = 55 ,∠D = 35 B. ∠C = ∠F = 90∘ ,AB = 10,BC = 6,DE = 15 ,EF = 9

九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)

九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)

①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ;知识点二、相似三角形的判定判定定理1:两角对应相等,两三角形相似.符号语言:拓展延伸: (1)有一组锐角对应相等的两个直角三角形相似。

(2)顶角或底角对应相等的两个等腰三角形相似。

例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出AD AEBD CE=吗?请说明理由。

(用两种方法说明)例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D.求证:(1)2AB BD BC =⋅;(2)2AD BD CD =⋅;(3)CB CD AC ⋅=2例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则BDBEAD AF =例题精讲AEDBCABCD吗?说说你的理由.例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C(1) 求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;3分之8倍根号3 (3)在(1)(2)条件下,若AD=3,求BF 的长。

2分之3倍根号3 随练: 一、选择题1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( )D A . 3对 B . 4对 C . 5对 D . 6对2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )CADCBEF G F E DCBA。

初三数学下册(人教版)第二十七章相似27.3知识点总结含同步练习及答案

初三数学下册(人教版)第二十七章相似27.3知识点总结含同步练习及答案

描述:例题:初三数学下册(人教版)知识点总结含同步练习题及答案
第二十七章 相似 27.3 位似
一、学习任务
1. 了解图形的位似,能利用位似将一个图形放大或缩小,会建立坐标系描述点的位置.
二、知识清单
位似
三、知识讲解
1.位似
两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫
做位似图形(homothetic figures ),这个点叫做位似中心.
如图, 各顶点坐标分别是:,,.以 为位似中心,在 轴下方将 放大为原来的 倍.
分析:根据位似变化的性质,即可求得 ,,的坐标,则可画出 .
解:
△ABC A (−4,4)B (−1,2)C (−5,1)O x
△ABC 2A 1B 1C 1△
A 1
B 1
C 1
()
高考不提分,赔付1万元,关注快乐学了解详情。

答案:解析:A .B .C .D .D 由题意知两矩形位似比为 ,矩形 如图所示:
4
(−2,3)
(2,−3)(3,−2)或(−2,3)
(−2,3)或(2,−3)1:2OA 'B 'C '答案:4. 如图,在平面直角坐标系中,以原点 为位中心,将 扩大到原来的 倍,得到 .
若点 的坐标是 ,则点 的坐标是
A .
B .
C .
D .C O △ABO 2△A 'B 'O A (1,2)A '(
)(2,4)
(−1,−2)(−2,−4)(−2,−1)。

九年级数学下册第二十七章相似易错知识点总结(带答案)

九年级数学下册第二十七章相似易错知识点总结(带答案)

九年级数学下册第二十七章相似易错知识点总结单选题1、如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法正确的有()个①S△ABC:S△A′B′C′=1:2②AB:A′B′=1:2③点A,O,A′三点在同一条直线上④BC∥B′C′A.1B.2C.3D.4答案:C分析:根据位似图形的概念和相似三角形的性质判断即可.解:以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,则△ABC∽△A′B′C′,且相似比为1:2,∴S△ABC:S△A′B′C′=1:4,故①选项说法错误;∴AB:A′B′=1:2,点A,O,A′三点在同一条直线上,BC∥B′C′,②③④说法正确;故选C.小提示:本题考查的是位似变换的概念和性质、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.2、如图,在△ABC中,点D、E分别在边AB、AC上,下列条件不能满足△ADE∽△ACB的条件是()A.∠AED=∠B B.ADAC =AEABC.AD·BC= DE·AC D.DE//BC答案:C分析:根据相似三角形的判定定理去判断分析即可.∵∠AED=∠B,∠A=∠A,∴△ADE∽△ACB,故A不符合题意;∵ADAC =AEAB,∠A=∠A,∴△ADE∽△ACB,故B不符合题意;∵AD·BC= DE·AC,无夹角相等,∴不能判定△ADE∽△ACB,故C符合题意;∵DE//BC,∴△ADE∽△ACB,故D不符合题意;故选C.小提示:本题考查了三角形相似的判定条件,熟练掌握判定三角形相似的基本方法是解题的关键.3、如图所示,网格中相似的两个三角形是()A.①与②B.①与③C.③与④D.②与③答案:B分析:分别根据网格的特点求得各三角形三边的长,根据三边对应成比例判断两三角形相似即可.解:根据网格的特点,①号三角形的三边长分别为:√2,2,√10,②号三角形的三边长分别为:√2,√5,3,③号三角形的三边长分别为:2,2√2,2√5,④号三角形的三边长分别为:√2,3,√17,∵√22=2√2=√102√5√22,∴①与③相似,故B选项正确,符合题意;其他选项不正确故选:B.小提示:本题考查了网格中判断相似三角形,分别求得各三角形的边长是解题的关键.4、如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是( )A.17.5m B.17m C.16.5m D.18m答案:A分析:先求得AC,再说明△ABE∽△ACD,最后根据相似三角形的性质列方程解答即可.解:∵AB=1.2m,BC=12.8m∴AC=1.2m+12.8m=14m∵标杆BE 和建筑物CD 均垂直于地面∴BE//CD∴△ABE ∽△ACD∴AB BE =AC CD ,即1.21.5=14CD ,解得CD=17.5m . 故答案为A .小提示:本题考查了相似三角形的应用,正确判定相似三角形并利用相似三角形的性质列方程计算是解答本题的关键.5、线段AB 的长为2,点C 是线段AB 的黄金分割点,则线段AC 的长可能是( )A .√5+1B .2﹣√5C .3﹣√5D .√5﹣2答案:C分析:根据黄金分割点的定义,知AC 可能是较长线段,也可能是较短线段,分别求出即可.解:分两种情况讨论(1)如图,∵点C 是线段AB 的黄金分割点,AB =2,∴AC =√5−12AB =√5−12×2=√5﹣1, 或如图,AC =2﹣(√5﹣1)=3﹣√5,故选:C .小提示:本题主要考查了黄金分割的定义,熟记黄金分割的比值是解题的关键.6、如图,将ΔABC 沿BC 边上的中线AD 平移到ΔA ′B ′C ′的位置.已知ΔABC 的面积为16,阴影部分三角形的面积9.若AA ′=1,则A ′D 等于( )A.2B.3C.4D.32答案:B分析:由S△ABC=16、S△A′EF=9且AD为BC边的中线知SΔA′DE=12SΔA′EF=92,SΔABD=12SΔABC=8,根据△DA′E∽△DAB知(A′DAD )2=SΔA′DESΔABD,据此求解可得.∵SΔABC=16、SΔA′EF=9,且AD为BC边的中线,∴SΔA′DE=12SΔA′EF=92,SΔABD=12SΔABC=8,∵将ΔABC沿BC边上的中线AD平移得到ΔA′B′C′,∴A′E//AB,∴ΔDA′E∼ΔDAB,则(A′DAD )2=SΔA′DESΔABD,即(A′DA′D+1)2=298=916,解得A′D=3或A′D=−37(舍),故选B.小提示:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.7、如图,在等腰△ABC中,∠ABC=∠ACB=α,BC=12,点D是边AB上一点,且BD=4,点P是边BC上一动点,作∠DPE=α,射线PE交边AC于点E,当CE=9时,则满足条件的P点的个数是()A.1B.2C.3D.以上都有可能答案:A分析:由已知得∠ABC=∠ACB=α,再证明∠EPC=∠PDB,则可判断△PDB∽△EPC,利用相似比得到BD:PC =PB:CE,设PB=x,则PC=10﹣x,CE=9时,所以x2﹣12x+36=0,根据判别式的意义得到Δ=0,即原方程只有一个实数根即可选出答案.解:∵△ABC为等腰三角形,∴∠ABC=∠ACB=α,∵∠DPC=∠B+∠PDB,即∠DPE+∠EPC=∠B+∠PDB,而∠DPE=α,∴∠EPC=∠PDB,而∠ABC=∠ACB,∴△PDB∽△EPC,∴BDPC =PBCE,设PB=x,则PC=12﹣x,当CE=9时,∴412−x =x9,∴x2﹣12x+36=0,∵Δ=(﹣12)2﹣4×36=0,原方程只有一个实数根,∴点P有且只有一个,故选A.小提示:本题主要考查了三角形外角的性质,等腰三角形的性质,相似三角形的性质与判定,一元二次方程根的判别式,解题的关键在于能够熟练掌握相关知识进行求解.8、如图,直线AB ∥CD ∥EF ,若AC =3,CE =4,则BD BF 的值是( )A .34B .43C .37D .47 答案:C分析:由平行线分线段成比例直接得到答案.解:∵AB ∥CD ∥EF∴BD BF =AC AE ∵AC =3,CE =4∴BD BF =37, 故选C .小提示:本题考查的是平行线分线段成比例,解题的关键在于能够熟练掌握平行线分线段成比例.9、神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )A .平移B .旋转C .轴对称D .黄金分割答案:D分析:根据黄金分割的定义即可求解.解:动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割.故选:D小提示:本题考查了黄金分割的定义,黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小,约等于0.618,这个比例被公认为是最能引起美感的比例,因此被称部分与较大部分的比值,其比值为√5−12为黄金分割.熟知黄金分割的定义是解题关键.10、生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感,若图中b为2米,则a约为()A.1.24米B.1.38米C.1.42米D.1.62米答案:A分析:根据a:b≈0.618,且b=2即可求解.解:由题意可知,a:b≈0.618,代入b=2,∴a≈2×0.618=1.236≈1.24.所以答案是:A小提示:本题考查了黄金分割比的定义,根据题中所给信息即可求解,本题属于基础题.填空题11、如图,已知△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,则AO:OD=_____.答案:4:3##43分析:根据位似图形具有相似三角形的性质即可得出结果.解:∵△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,∴AO:OD=4:3,所以答案是:4:3.小提示:本题考查了位似变换,正确掌握位似变换的性质是解题的关键.12、如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件_________,使△ADE∽△ABC.答案:∠ADE=∠B(答案不唯一).分析:已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定.解∶∵∠A=∠A,∴根据两角相等的两个三角形相似,可添加条件∠ADE=∠B或∠AED=∠C证△ADE∽△ABC相似;根据两边对应成比例且夹角相等,可添加条件ADAB =AEAC证△ADE∽△ABC相似.故答案为∶∠ADE=∠B(答案不唯一).小提示:此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法.13、△AOB三个顶点的坐标分别为A(5,0),O(0,0),B(3,6),以原点O为位似中心,相似比为23,将△AOB缩小,则点B的对应点B′的坐标是________.答案:(2,4)或(-2,-4)##(-2,-4)或(2,4).分析:根据位似变换的性质解答即可.解:∵△AOB 顶点B 的坐标为(3,6),以原点O 为位似中心,相似比为23,将△AOB 缩小, ∴点B 的对应点B ′的坐标为(3×23,6×23)或(3×(-23),6×(-23)),即(2,4)或(-2,-4), 所以答案是:(2,4)或(-2,-4).小提示:本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .14、如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,则EF 的长为_______.答案:34 分析:易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得EF AB =DF DB ,EF CD =BF BD ,从而可得EF AB +EF CD =BF BD+DF BD =1,然后把AB =1,CD =3代入即可求出EF 的值. 解:∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF ,∴△DEF ∽△DAB ,△BEF ∽△BCD ,∴EF AB =DF DB ,EF CD =BF BD , ∴EF AB +EF CD =BF BD +DF BD =1,∵AB =1,CD =3,∴EF 1+EF 3=1, ∴EF =34,所以答案是:34.小提示:本题考查相似三角形的判定与性质,解决本题的关键是掌握相似三角形对应边成比例.15、如图,D是ΔABC边AB延长线上一点,请添加一个条件_______,使ΔACD∽ΔABC.答案:AC=AB•AD(答案不唯一)分析:根据相似三角形的判定添加适当的条件即可.解:添加:AC=AB•AD∵AC=AB•AD∴ACAB =ADAC∵∠A=∠A∴ΔACD∽ΔABC.所以答案是:AC=AB•AD(答案不唯一).小提示:本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.解答题16、如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的△ABC 和格点0.(1)以点O为位似中心,将△ABC放大2倍得到ΔA1B1C1,在网格中画出ΔA1B1C1;(2)将△ABC绕点0逆时针旋转90°得ΔA2B2C2,画出ΔA2B2C2;答案:(1)作图见解析(2)作图见解析分析:(1)利用相似变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用旋转变换的性质分别作出A,B,C的对应点A2,B2,C2即可.(1)解:如图,△A1B1C1即为所求;(2)解:如图,△A2B2C2即为所求.小提示:本题考查作图﹣旋转变换,相似变换等知识,解题的关键是掌握旋转变换,相似变换的性质,属于中考常考题型.17、已知:a:b:c=2:3:5.(1)求代数式3a−b+c2a+3b−c的值;(2)如果3a−b+c=24,求a,b,c的值.答案:(1)1;(2)a=6,b=9,c=15分析:(1)设a=2k,b=3k,c=5k(k≠0),代入代数式3a−b+c2a+3b−c,即可求出答案;(2)把a、b、c的值代入,求出即可.∵a:b:c=2:3:5∴设a=2k,b=3k,c=5k(k≠0),(1)3a−b+c2a+3b−c =6k−3k+5k4k+9k−5k=8k8k=1;(2)∵3a−b+c=24∴6k-3k+5k=24,∴k=3,∴a=2×3=6,b=3×3=9,c=5×3=15.小提示:本题考查了比例的性质的应用,主要考查学生的计算能力.18、若xa−b =yb−c=zc−a,求x+y+z的值.答案:0分析:设xa−b =yb−c=zc−a=k,则x=k(a−b),y=k(b−c),z=k(c−a),然后计算即可得到答案.解:∵xa−b =yb−c=zc−a,设xa−b =yb−c=zc−a=k,∴x=k(a−b),y=k(b−c),z=k(c−a),∴x+y+z=k(a−b)+k(b−c)+k(c−a)=ka−kb+kb−kc+kc−ka=0;小提示:本题考查了比例的性质,求代数式的值,解题的关键是熟练掌握比例的性质进行解题.。

相似三角形的应用与位似-九年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)(原卷版)

相似三角形的应用与位似-九年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)(原卷版)

相似三角形的应用与位似知识点一:相似三角形的应用:1.利用影长测量物体的高度:①测量原理:测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比和“在同一时刻物高与影长的比”的原理解决。

②测量方法:在同一时刻测量出参照物和被测量物体的影长来,再计算出被测量物的长度。

2.利用相似测量河的宽度(测量距离):①测量原理:测量不能直接到达的两点间的距离,常常构造“A”型或“X”型相似图,三点应在一条直线上,必须保证在一条直线上,为了使问题简便,尽量构造直角三角形。

②测量方法:通过测量便于测量的线段,利用三角形相似,对应边成比例可求出河的宽度。

3.借助标杆或直尺测量物体的高度:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度。

【类型一:利用相似求高度】1.某校同学参与“项目式学习”综合实践活动,小明所在的数学活动小组利用所学知识测量旗杆EF的高度,他在距离旗杆40米的D处立下一根3米高的竖直标杆CD,然后调整自己的位置,当他与标杆的距离BD为4米时,他的眼睛、标杆顶端和旗杆顶位于同一直线上,若小明的眼睛离地面高度AB为1.6米,求旗杆EF的高度.2.为了测量成都熊猫基地观光瞭望塔“竹笋”建筑物AB的高度,小军同学采取了如下方法:在地面上点C处平放一面镜子,并在镜子上做一个标记,然后人向后退,直至站在点D处恰好看到建筑物AB的顶端A在镜子中的像与镜子上的标记重合(如图所示).其中B,C,D三点在同一条直线上.已知小军的眼睛距离地面的高度ED的长约为1.75m,BC和CD的长分别为40m和1m,求建筑物AB的高度.(说明:由物理知识,可知∠ECF=∠ACF)3.小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器CD,测得∠ACD=135°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动到点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测量器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,则这棵古树的高度AB为多少米?(小平面镜的大小忽略不计)【类型二:利用相似求高度】4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在点B竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C,A共线.CB⊥AD,ED⊥AD,测得BC =1m,DE=1.5m,BD=9m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.如图,为了估算池塘的宽度AB,在池塘边不远处选定一个目标点C,在近河边分别选N,M.使得B,N,C三点共线,A,M,C三点共线且MN∥AB.经测量MN=38m,CM=21m,AM=63m,求池塘AB 的宽度.6.如图,为了估计河的宽度,我们可以在河对岸选定一个目标点A,在近岸取点B,使AB与河岸垂直,在近岸取点C,E,使BC⊥AB,CE⊥BC,AE与BC交于点D.已测得BD=30米,DC=10米,EC=11米,求河宽AB.【类型三:利用相似求其它】7.小明为了测量出一深坑的深度,采取如下方案:如图,在深坑左侧用观测仪AB从观测出发点A观测深坑底部P,且观测视线刚好经过深坑边缘点E,在深坑右侧用观测仪CD从测出发点C观测深坑底部P,且观测视线恰好经过深坑边缘点F,点B,E,F,D在同一水平线上.已知AB⊥EF,CD⊥EF,观测仪AB高2m,观测仪CD高1m,BE=1.6m,FD=0.8m,深坑宽度EF=8.8m,请根据以上数据计算深坑深度多少米?8.【学科融合】如图1,在反射现象中,反射光线,入射光线和法线都在同一个平面内;反射光线和入射光线分别位于法线两侧;入射角i等于反射角r.这就是光的反射定律.【同题解决】如图2.小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜,手电筒的灯泡在点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处,点E到地面的高度DE=3.5m,点F到地面的高度CF=1.5m,灯泡到木板的水平距离AC=5.4m,本板到墙的水平距离为CD=4m.图中点A,B,C,D在同一条直线上.(1)求BC的长;(2)求灯泡到地面的高度AG.9.如图①,有一块三角形余料△ABC,它的边BC=10,高AD=6.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,AD交PN于点E,则加工成的正方形零件的边长为多少?小颖解得此题的答案为415,小颖善于反思,她又提出了如下的问题: (1)如果原题中所要加工的零件是一个矩形,且此矩形由两个并排放置的正方形组成.如图②,此时,这个矩形零件的相邻两边长又分别是多少?(2)如果原题中所要加工的零件只是一个矩形,如图③,这样,此矩形零件的相邻两边长就不能确定,但这个矩形的面积有最大值,求这个矩形面积的最大值以及这个矩形面积达到最大值时矩形零件的相邻两边长又分别是多少?10.为了在校园内有效开展劳动教育,东方红学校利用学校东南边靠墙的一块面积为单位1的Rt △ABC 的空地,把这块空地划分成七八九年级三个部分,如图,在Rt △ABC 中,点P 是BC 边上任意一点(点P与点B,C不重合),矩形AFPE的顶点F,E分别在AB,AC上.七年级为矩形AFPE部分,八九年级为△PEC和△BPF两部分.(1)若BP:PC=2:3,求S△BPF;(2)已知BC=2,S△ABC=1.设BP=x,矩形AFPE的面积为y,求y与x的函数关系式.(3)在(2)的情形下,考虑实际情况,要求七年级所分面积最大.求出七年级所分矩形AFPE部分的面积在x为多少时取得最大值,并求出最大值是多少.知识点一:位似:1.位似的定义:如果两个图形不仅是相似图形,而且对应顶点的连线,对应边互相,那么这样的两个图形叫做位似图形,这个点叫做。

九年级相似三角形知识点总结及例题讲解

九年级相似三角形知识点总结及例题讲解

相似三角形基本知识知识点一:放缩与相似1.图形的放大或缩小,称为图形的放缩运动。

2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。

注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质 (1)有关概念1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a:b =m :n (或n m b a =)2、比的前项,比的后项:两条线段的比a:b 中.a 叫做比的前项,b 叫做比的后项. 说明:求两条线段的比时,对这两条线段要用同一单位长度.3、比例:两个比相等的式子叫做比例,如dc b a =4、比例外项:在比例dc b a =(或a :b =c :d )中a 、d 叫做比例外项. 5、比例内项:在比例d c b a =(或a :b =c:d)中b 、c 叫做比例内项。

6、第四比例项:在比例d cb a =(或a:b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为a bb a =(或a:b =b :c 时,我们把b 叫做a 和d 的比例中项。

8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段.(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质: bcad d cb a =⇔= (两外项的积等于两内项积)2.反比性质: c da b dc b a =⇒= (把比的前项、后项交换)3。

九年级数学下册第二十七章相似知识点归纳总结(精华版)(带答案)

九年级数学下册第二十七章相似知识点归纳总结(精华版)(带答案)

九年级数学下册第二十七章相似知识点归纳总结(精华版)单选题1、如图,在四边形ABDC中,不等长的两对角线AD、BC相交于O点,且将四边形ABDC分成甲、乙、丙、丁四个三角形.若OA:OB=OC:OD=2:3,则此四个三角形的关系,下列叙述正确的是()A.甲与丙相似,乙与丁相似B.甲与丙相似,乙与丁不相似C.甲与丙不相似,乙与丁相似D.甲与丙不相似,乙与丁不相似答案:A分析:利用已知条件得到即OAOC =OBOD,加上对顶角相等,则可判断△AOB∽△COD;再利用比例性质得到AOOB=OCOD,而∠AOC=∠BOD,所以△AOC∽△BOD.解:∵OA:OB=OC:OD=2:3,即OAOC =OBOD,而∠AOB=∠COD,∴△AOB∽△COD,∵OAOC =OBOD,∴AOOB =OCOD,∵∠AOC=∠BOD,∴△AOC∽△BOD.故选:A.小提示:本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.2、两个相似六边形,若对应边之比为3:2,则这两个六边形的周长比为()A.9:4B.9:2C.3:1D.3:2答案:D分析:根据相似图形的性质求解即可.解:因为这两个六边形相似,所以这两个六边形的周长比=对应边之比=3:2,故选:D.小提示:本题考查相似多边形的性质,熟练掌握相似多边形的周长比等于相似比,即相似多边形的周长比等于对应边的比是解题的关键.3、若ab =cd=−2,则a−cb−d=()A.−2B.2C.−12D.12答案:A分析:根据ab =cd=−2,可知a=﹣2b,c=﹣2d,将a和c的值代入求值的代数式化简即可.解:∵ab =cd=−2,∴a=﹣2b,c=﹣2d,∴a−cb−d =−2b+2db−d=−2(b−d)(b−d)=−2.故选:A.小提示:本题考查了比例的性质,解题的关键是根据已知将a和c用b和d正确表示.4、在比例尺为1:50的图纸上,长度为10cm的线段实际长为()A.50cmB.500cmC.150cm D.1500cm答案:B分析:根据成比例线段的性质求解即可.解:∵1:50=10:500,∴长度为10cm 的线段实际长为500cm , 故选B .小提示:本题考查了成比例线段,掌握比例的性质是解题的关键.5、线段AB 的长为2,点C 是线段AB 的黄金分割点,则线段AC 的长可能是( ) A .√5+1B .2﹣√5C .3﹣√5D .√5﹣2 答案:C分析:根据黄金分割点的定义,知AC 可能是较长线段,也可能是较短线段,分别求出即可. 解:分两种情况讨论 (1)如图,∵点C 是线段AB 的黄金分割点,AB =2, ∴AC =√5−12AB =√5−12×2=√5﹣1, 或如图,AC =2﹣(√5﹣1)=3﹣√5,故选:C .小提示:本题主要考查了黄金分割的定义,熟记黄金分割的比值是解题的关键.6、如图,在△ABC 中,∠ABC =90°,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论正确的是( )A.DE垂直平分AC B.△ABE∽△CBAC.BD2=BC⋅BE D.CE⋅AB=BE⋅CA答案:D分析:根据作图可知AP是∠BAC的角平分线,AB=AD,根据SAS证明△ABE≌△ADE,可得EB=ED,∠ADE=∠ABE=90°,根据面积法可得S△ABES△AEC =12AB⋅BE12AC⋅DE=12AB⋅BE12AB⋅EC,可得ABAC=BEEC即可判断D选项正确,其他选项无法证明.解:根据作图可知AP是∠BAC的角平分线,AB=AD,∴∠EAB=∠EAD,在△ABE与△ADE中,{AE=AE∠EAB=∠EADAB=AD,∴△ABE≌△ADE,∴EB=ED,∵∠ABC=90°,∴∠ADE=∠ABE=90°,∴BE⊥AB,ED⊥C,∵S△ABES△AEC =12AB⋅BE12AC⋅DE=12AB⋅BE12AB⋅EC,∴ABAC =BEEC,即CE⋅AB=BE⋅CA.A,B,C选项无法证明.故选:D.小提示:本题考查了作角平分线,全等三角形的性质与判定,三角形面积公式,证明两三角形相似,垂直平分线的性质,理解基本作图是解题的关键.7、如图,AG:GD=3:1,BD:DC=2:3,则AE:EC的值是()A.8:7B.6:5C.3:2D.8:5答案:B分析:过点作DF∥BE交AC于点F,根据平行线分线段成比例定理分别求出CFFE =CDDB=32,AEFE=AGGD=3,进而得到答案.解:如图,过点作DF∥BE交AC于点F,由平行线分线段成比例定理得,则CFEF =CDDB=32,AEEF=AGGD=3,∴CF=32EF,AE=3EF∴EC=CF+EF=52EF∴AE∶EC=3EF∶52EF=6:5,故选:B小提示:本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.8、如图,l1∥l2∥l3,若ABBC =23,DF=15,则EF=()A.5B.6C.7D.9答案:D分析:根据平行线分线段成比例定理可得ABBC =DEEF,根据题意,DE=DF−EF,进而求解.∵l1∥l2∥l3,∴ABBC =DEEF.∵ABBC =23,∴DEEF =23,∵DE=DF−EF,DF=15,∴15−EFEF =23,∴EF=9.故选:D.小提示:本题考查的是平行线分线段成比例定理的应用,灵活运用平行线分线段成比例定理是解本题的关键.9、如图,C为线段AB的黄金分割点(AC<BC),且BC=2,则AB的长为()A.2√5+2B.2√5﹣2C.√5+1D.√5﹣3答案:C分析:黄金分割比定理:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值为√5−12,叫黄金分割比,由此进行求解即可.解:C为线段AB的黄金分割点,BC=2 ,AC<BC∴ACBC =BCAB=√5−12∴AC=2×√5−12=√5−1∴AB=AC+BC=√5−1+2=√5+1故选:C小提示:本题考查黄金分割定理,理解黄金分割定理的概念,熟悉比值是解题的关键.10、如图,点D、E分别在△ABC的边AB、BC上,下列条件中一定能判定DE∥AC的是()A.ADDB =BECEB.BDAD=BEECC.ADAB=CEBED.BDBA=DEAC答案:B分析:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.根据平行线分线段成比例定理对各个选项进行判断即可.A.由ADDB =BECE,不能得到DE∥BC,故本选项不合题意;B.由BDAD =BEEC,能得到DE∥BC,故本选项符合题意;C.由ADAB =CEBE,不能得到DE∥BC,故本选项不合题意;D.由BDBA =DEAC,不能得到DE∥BC,故本选项不符合题意;故选B.小提示:本题考查了平行线分线段成比例定理的应用,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.填空题11、如图,在△ABC中,点E在BC上,且BE=3EC.D是AC的中点,AE、BD交于点F,则AFEF的值为______.答案:43分析:过E点作EH∥AC交BD于点H,根据平行线分线段成比例定理,由EH∥CD得到EHCD =34,由于AD=CD,则EH AD =34,然后利用平行线分线段成比例定理得到AFEF的值.过E点作EH∥AC交BD于点H,如图:∵EH∥AC,∴EHCD =BEBC,∵BE=3EC,∴EHCD =3CE4CE=34,∵D为AC的中点,∴AD=CD,∴EHCD =EHAD=34,∵EH∥AD,∴AFEF =ADEH=43.故答案为43.小提示:本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.12、如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.答案:100分析:由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴ABEC =BDCD,即AB=BD×ECCD,解得:AB=120×5060=100(米).故答案为100.小提示:本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.13、如图,矩形ABCD中,AB=6,BC=8,对角线BD的垂直平分线EF交AD于点E、交BC于点F,则线段EF的长为 __.答案:152##7.5分析:根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出EF即可.解:如图:∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD=√AB2+AD2=10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴ΔBOF∽ΔBCD,∴OFCD =BOBC,∴OF6=58,解得,OF=154,∵四边形ABCD是矩形,∴AD//BC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分线,∴BO=DO,EF⊥BD,在ΔDEO和ΔBFO中,{∠EDO=∠FBOBO=DO∠EOD=∠FOB,∴ΔDEO≅ΔBFO(ASA),∴OE=OF,∴EF=2OF=15.2.所以答案是:152小提示:本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.14、如图,在▱ABCD中,点E在AB上,CE,BD交于点F,若AE:BE=4:3,且BF=2,则DF=_________.答案:143分析:由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,继而可判定△BEF∽△DCF,根据相似三角形的对应边成比例,即可得BF:DF=BE:CD问题得解.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE:BE=4:3,∴BE:AB=3:7,∴BE:CD=3:7.∵AB∥CD,∴△BEF∽△DCF,∴BF:DF=BE:CD=3:7,即2:DF=3:7,∴DF=14.3故答案为14.3小提示:此题考查了相似三角形的判定与性质与平行四边形的性质.此题比较简单,解题的关键是根据题意判定△BEF∽△DCF,再利用相似三角形的对应边成比例的性质求解.15、如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,则EF的长为_______.答案:34分析:易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得EFAB =DFDB,EFCD=BFBD,从而可得EFAB+EFCD=BF BD +DFBD=1,然后把AB=1,CD=3代入即可求出EF的值.解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴EFAB =DFDB,EFCD=BFBD,∴EFAB +EFCD=BFBD+DFBD=1,∵AB=1,CD=3,∴EF1+EF3=1,∴EF=34,所以答案是:34.小提示:本题考查相似三角形的判定与性质,解决本题的关键是掌握相似三角形对应边成比例.解答题16、如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上、已知纸板的两条边DF=0.5m,EF=0.3m,测得边DF离地面的高度AC =1.5m,CD=10m,求树高AB.答案:树高AB是9米分析:先证得△DEF∽△DCB,可得BCEF =DCDE,再由勾股定理可得DE=0.4m,可得BC=7.5m,即可求解.解:∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BCEF =DCDE,∵DF=0.5 m,EF=0.3 m,AC=1.5m,CD=10 m,由勾股定理得DE=√DF2−EF2=0.4 m,∴BC0.3=100.4,∴BC=7.5m,∴AB=AC+BC=1.5+7.5=9(m),答:树高AB是9m.小提示:本题主要考查了相似三角形的应用,熟练掌握相似三角形的判定和性质是解题的关键.17、如图,ΔABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切:(2)若EFAC =58,求BEOC的值;(3)在(2)的条件下,若⊙O的半径为4,PD=OD,求EC的长.答案:(1)见解析;(2)54;(3)6−√13.分析:(1)要证PG与⊙O相切只需证明∠OBG=90°,由∠BAC与∠BDC是同弧所对圆周角且∠BDC=∠DBO可得∠CBG=∠DBC,结合∠DBC+∠OBC=90°即可得证;(2)求BEOC需将BE与OC或OC相等线段放入两三角形中,通过相似求解可得,作OM⊥AC、连接OA,证△BEF∽△OAM得EFAM =BEOA,由AM=12AC、OA=OC知EF12AC=BEOC,结合EFAC=58即可得;(3)Rt△DBC中求得BC=4√3、∠DCB=30°,在Rt△EFC中设EF=x,知EC=2x、FC=√3x、BF=4√3﹣√3x,继而在Rt△BEF中利用勾股定理求出x的,从而得出答案.(1)证明:如图,连接OB,∵OB=OD,∴∠BDC=∠DBO,∵∠BAC=∠GBC、∠BDC=∠BAC,∴∠GBC=∠BDC,∵CD是⊙O的直径,∴∠DBC=90°,∴∠DBO+∠OBC=90°,∴∠GBC+∠OBC=90°,∴∠GBO=90°,∴PG与⊙O相切;(2)解:过点O 作OM ⊥AC 于点M ,连接OA ,∵OC =OA ,OM ⊥AC ,∴∠AOM =∠COM =12∠AOC ,∵ AC ⌢=AC ⌢,∴∠ABC =12∠AOC ,∴∠EBF =∠AOM ,又∵∠EFB =∠OMA =90°,∴ΔBEF ∽ΔOAM ,∴ EF AM =BE OA ,∵AM =12AC ,OA =OC ,∴ EF 12AC =BE OC ,又∵ EF AC =58,∴ BE OC =2×EF AC =2×58=54;(3)解:∵PD =OD ,∠PBO =90°,∴BD =OD =4,在RtΔDBC中,BC=√CD2−BD2=√82−42=4√3,又∵OD=OB,∴ΔDOB是等边三角形,∴∠DOB=60°,∵∠DOB=∠OBC+∠OCB,OB=OC,∴∠OCB=12∠DOB=30°,∴EC=2EF,由勾股定理FC=√EC2−EF2=√4EF2−EF2=√3EF ∴设EF=x,则EC=2x、FC=√3x,∴BF=4√3−√3x,∵BEOC =54,且OC=4,∴BE=5,在RtΔBEF中,BE2=EF2+BF2,∴25=x2+(4√3−√3x)2,整理得4x2−24x+23=0△=242-16×23=208>0解得:x=24±4√132×4=6±√132,∵6+√132>4,舍去,∴x=6−√132,∴EC=6−√13.小提示:本题主要考查圆的综合问题,涉及圆周角定理、圆心角定理、相似三角形的判定与性质、直角三角形的性质,一元二次方程的解法等知识,熟练掌握和运用相关的性质与定理进行解题是关键.18、如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O.BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.答案:(1)证明见解析(2)△ECF,△BAF与△OBF相似,理由见解析(3)3+√19分析:(1)根据矩形的性质和角平分线的定义即可得出结论;(2)根据判定两个三角形相似的判定定理,找到相应的角度相等即可得出;(3)根据△OBF∽△ECF得出3OA=2BF+9,根据△OBF∽△BAF得出BF2=3(OA+3),联立方程组求解即可.(1)证明:如图所示:∵四边形ABCD为矩形,∴∠2=∠3=∠4,∵DE=BE,∴∠1=∠2,∴∠1=∠3,又∵BE平分∠DBC,∴∠1=∠6,∴∠3=∠6,又∵∠3与∠5互余,∴∠6与∠5互余,∴BF⊥AC;(2)解:△ECF,△BAF与△OBF相似.理由如下:∵∠1=∠2,∠2=∠4,∴∠1=∠4,又∵∠OFB=∠BFO,∴△OBF∽△BAF,∵∠1=∠3,∠OFB=∠EFC,∴△OBF∽△ECF;(3)解:∵△OBF∽△ECF,∴EFOF =CFBF,∴23=CFBF,∴3CF=2BF,∵在矩形ABCD中对角线相互平分,图中OA=OC=OF+FC=3+FC,∴3OA=2BF+9①,∵△OBF∽△BAF,∴OFBF =BFAF,∴BF2=OF⋅AF,∵在矩形ABCD中AF=OA+OF=OA+3,∴BF2=3(OA+3)②,由①②,得BF=1±√19(负值舍去),∴DE=BE=2+1+√19=3+√19.小提示:本题考查矩形综合问题,涉及到矩形的性质、角平分线的性质、角度的互余关系、两个三角形相似的判定与性质等知识点,熟练掌握两个三角形相似的判定与性质是解决问题的关键.。

九年级数学下册第二十七章相似重点知识归纳(带答案)

九年级数学下册第二十七章相似重点知识归纳(带答案)

九年级数学下册第二十七章相似重点知识归纳单选题1、如图,在△ABC中,点D、E分别在边AB、AC上,下列条件不能满足△ADE∽△ACB的条件是()A.∠AED=∠B B.ADAC =AEABC.AD·BC= DE·AC D.DE//BC答案:C分析:根据相似三角形的判定定理去判断分析即可.∵∠AED=∠B,∠A=∠A,∴△ADE∽△ACB,故A不符合题意;∵ADAC =AEAB,∠A=∠A,∴△ADE∽△ACB,故B不符合题意;∵AD·BC= DE·AC,无夹角相等,∴不能判定△ADE∽△ACB,故C符合题意;∵DE//BC,∴△ADE∽△ACB,故D不符合题意;故选C.小提示:本题考查了三角形相似的判定条件,熟练掌握判定三角形相似的基本方法是解题的关键.2、如图,四边形ABCD ∽四边形EFGH ,∠A =80°,∠C =90°,∠F =70°,则∠D 的度数为( )A .100°B .110°C .120°D .130°答案:C分析:利用相似多边形的对应角相等求得答案即可.解:∵四边形ABCD ∽四边形EFGH , ∠F =70°,∴∠B =∠F =70°.∵四边形ABCD 的内角和为(4−2)×180°=360°,∠A =80°,∠C =90°,∴∠D =360°−∠A −∠B −∠C =360°−80°−70°−90°=120° .故选:C .小提示:本题主要考查了相似多边形的性质,解题的关键是了解相似多边形的对应角相等.3、如图,在矩形ABCD 中,E ,F ,G 分别在AB ,BC ,CD 上,DE ⊥EF ,EF ⊥FG ,BE =3,BF =2,FC =6,则DG 的长是( )A .4B .133C .143D .5答案:B分析:先运用勾股定理可求得EF, 过G作GH⊥DE垂足为H,则四边形EFGH是矩形可得HG=EF,再说明△EBF∽△DAE、△DAE∽△GHD,进一步可得△EBF∽△GHD,最后运用相似三角形的性质解答即可. 解:∵在Rt△BEF中,BF=2,BE=3∴EF=√BE2+BF2=√32+22=√13如图:过G作GH⊥DE垂足为H,∵DE⊥EF,EF⊥FG∴四边形EFGH是矩形∴HG=EF=√13∵矩形ABCD∴∠A=∠B=90°∴∠AED+∠ADE=90°∵DE⊥EF∴∠AED+∠BEF=90°∴∠BEF=∠ADE又∵∠A=∠B=90°∴△EBF∽△DAE同理:△DAE∽△GHD∴△EBF∽△GHD∴DGEF =HGBE,即√13=√133,解得DG=133.故选B.小提示:本题主要考查了矩形的判定与性质、运用勾股定理解直角三角形、相似三角形的判定与性质等知识点,灵活运用相似三角形的判定与性质是解答本题的关键.4、如图,点A,B的坐标分别为A(√2,0)、B(0,√2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,当OM最大时,M点的坐标为()A.(√22,1+√22)B.(√22,√22)C.(3√24,3√24)D.(1+√24,1+√24)答案:C分析:根据同圆的半径相等可知,点C在半径为1的⊙B上运动,取OD=OA,根据三角形的中位线定理知,点C在BD与⊙B的交点时,OM最小,在DB的延长线与⊙B的交点时,OM最大,根据平行线分线段成比例定理求得C的坐标,进而确定中点M的坐标即可.解:∵点C在坐标平面内,BC=1,∴C在半径为1的⊙B上,如图所示,取OD=OA=√2,连接CD,∵AM=CM,OD=OA,∴OM为△ACD的中位线,∴OM=12CD,当OM最大时,即CD最大,此时D,B,C三点共线,∵OB=OD=√2,∠BOD=90°,∴BD=2,∴CD=2+1=3,作CE⊥x轴于E点,∵CE∥OB,∴OBCE =ODDE=BDCD,即:√2CE=√2DE=23,∴CE=DE=3√22,∴OE=DE−OD=√22,∴C(√22,3√22),∵M是AC的中点,∴M(3√24,3√24),故选:C.小提示:本题考查了坐标与图形的性质,三角形的中位线定理等,确定OM最大时动点C的位置关系是解题关键.5、如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,AC与BD相交于点E,连接AB,CD,则△ABE与△CDE的周长比为()A.1:4B.4:1C.1:2D.2:1答案:D分析:运用网格图中隐藏的条件证明四边形DCBM为平行四边形,接着证明△ABE∽△CDE,最后利相似三角形周长的比等于相似比即可求出.如图:由题意可知,DM=3,BC=3,∴DM=BC,而DM∥BC,∴四边形DCBM为平行四边形,∴AB∥DC,∴∠BAE=∠DCE,∠ABE=∠CDE,∴△ABE∽△CDE,∴C△ABEC△CDE =ABCD=√22+42√12+22=√5√5=21.故选:D.小提示:本题考查了平行四边形的判定与性质、相似三角形的判定与性质及勾股定理,熟练掌握相关知识并正确计算是解题关键.6、已知△ABC与△A1B1C1是位似图形,位似比是1:3,则△ABC与△A1B1C1的面积比()A.1 :3B.1:6C.1:9D.3:1答案:C分析:根据位似图形的面积比等于位似比的平方,即可得到答案.∵△ABC与△A1B1C1是位似图形,位似比是1:3,∴△ABC与△A1B1C1的面积比为1:9,故选:C.小提示:本题主要考查位似图形的性质,熟练掌握位似图形的面积比等于位似比的平方是解题的关键.7、如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①DEBC =12;②SΔDOESΔCOB=12;③ADAB=OEOB;④SΔODESΔADC =13,其中正确的个数有()A.1个B.2个C.3个D.4个答案:C分析:由BE、CD是△ABC的中线,可得DE=12BC,即DEBC=12,从而可判断①;由DE是△ABC的中位线,可得△DOE∽△COB,从而可判断②;由△ADE∽△ABC与△DOE∽△COB,利用相似三角形的性质可判断③;由△ABC的中线BE与CD交于点O.可得点O是△ABC的重心,根据重心性质,BO=2OE,△ABC中BC上的高=△BOC中BC上的高的3倍,且△ABC与△BOC同底(BC),可得S△ABC=3S△BOC,由②和③知,S△ODE=1 4S△COB,S△ADE=34S△BOC,从而可判断④.解:①∵BE、CD是△ABC的中线,即D、E是AB和AC的中点,∴DE是△ABC的中位线,∴DE=12BC,即DEBC=12,故①正确;②∵DE是△ABC的中位线,∴DE∥BC,∴△DOE∽△COB,∴S△DOES△COB =(DEBC)2=(12)2=14,故②错误;③∵DE∥BC,∴△ADE∽△ABC,∴ADAB =DEBC,∵△DOE∽△COB,∴OEOB =DEBC,∴ADAB =OEOB,故③正确;④∵△ABC的中线BE与CD交于点O,∴点O是△ABC的重心,根据重心性质,BO=2OE,△ABC中BC上的高=3△BOC中BC上的高,且△ABC与△BOC同底(BC),∴S△ABC=3S△BOC,由②和③知,S△ODE=14S△COB,ADAB=DEBC=12,∴S△DAES△BAC =(ADAB)2=(12)2=14,∴S△ADE=34S△BOC,∴S△ODES△ADE =13,∵E是AC的中点,∴S△ADC=2S△ADE∴SΔODESΔADC =16.故④错误.综上,①③正确.故选B.小提示:本题考查的三角形的中线与三角形的中位线的性质,三角形的重心的性质,相似三角形的判定与性质,掌握利用以上知识解决三角形的面积问题是解题的关键.8、如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,若BE=1,则EC=()A.32B.2C.3D.4答案:C分析:过点D作DF∥AE交BC于F,根据平行线分线段成比例定理可得,BEEF =BOOD,EFFC=ADDC=12,再根据O是BD的中点,可得BE=EF,进而解答即可.解:过点D作DF∥AE交BC于F,如图,∵OE∥DF,∴BEEF =BOOD,∵O是BD的中点,∴BO=OD,∴BE=EF,∵DF∥AE,∴EFFC =ADDC=12,∴CF=2EF,∴BE:EC=BE:3BE=1:3,∵BE=1,∴EC=3,故选:C.小提示:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.过分点作平行线构建平行线分线段成比例定理的基本图形是解决问题的关键.9、生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感,若图中b为2米,则a约为()A.1.24米B.1.38米C.1.42米D.1.62米答案:A分析:根据a:b≈0.618,且b=2即可求解.解:由题意可知,a:b≈0.618,代入b=2,∴a≈2×0.618=1.236≈1.24.所以答案是:A小提示:本题考查了黄金分割比的定义,根据题中所给信息即可求解,本题属于基础题.10、如图,已知每个小正方形的边长均为1,△ABC与△DEF的顶点都在小正方形的顶点上,那么△DEF与△ABC相似的是()A.B.C.D.答案:A分析:首先由勾股定理求得各三角形的三边长,然后根据三组对应边的比相等的两个三角形相似,即可求得答案.注意排除法在解选择题中的应用.解:AB=√12+22=√5,BC=√12+12=√2,AC=3,A、∵ED=√12+32=√10,EF=2,DF=√32+32=3√2,∴DEAB =EFBC=DFAC,∴△DEF与△ABC相似;B、∵DE=√12+22=√5,EF=1,DF=√22+22=2√2,∴DEAB ≠EFBC≠DFAC,∴△DEF与△ABC不相似;C、∵DE=√12+12=√2,EF=1,DF=√12+22=√5,∴DEAB ≠EFBC≠DFAC,∴△DEF与△ABC不相似;D、∵DE=√12+22=√5,EF=2,DF=√22+32=√13,∴DEAB ≠EFBC≠DFAC,∴△DEF与△ABC不相似.故选:A.小提示:此题考查了相似三角形的判定与勾股定理.此题难度适中,注意掌握三组对应边的比相等的两个三角形相似定理的应用.填空题11、如图,为了测量某古城墙的高度,数学兴趣小组根据光的反射定律,把一面镜子放在离古城墙(CD)16m的点P处,然后观测者沿着直线DP后退到点B处.这时恰好在镜子里看到城墙顶端C,并量得BP=3m.已知观测者目高AB=1.5m,那么该古城墙(CD)的高度是_____m.答案:8分析:先证明△CPD∽△APB,继而得到CDDP =ABBP,代入求解即可.解:由题意知∠CPD=∠APB,∠CDP=∠ABP=90°,∴△CPD∽△APB,∴CDDP =ABBP,∴CD16=1.53,∴CD=8.所以答案是:8.小提示:本题考查相似三角形的应用,解题的关键是找出相似的三角形.12、如图,在平面直角坐标系中,点A、B的坐标分别为(−4,0)、(0,4),点C(3,n)在第一象限内,连接AC、BC.已知∠BCA=2∠CAO,则n=_________.答案:145分析:过点C作CD⊥y轴,交y轴于点D,则CD∥AO,先证△CDE≌△CDB(ASA),进而可得DE=DB=4-n,再证△AOE∽△CDE,进而可得43=2n−44−n,由此计算即可求得答案.解:如图,过点C作CD⊥y轴,交y轴于点D,则CD∥AO,∴∠DCE=∠CAO,∵∠BCA=2∠CAO,∴∠BCA=2∠DCE,∴∠DCE=∠DCB,∵CD⊥y轴,∴∠CDE=∠CDB=90°,又∵CD=CD,∴△CDE≌△CDB(ASA),∴DE=DB,∵B(0,4),C(3,n),∴CD=3,OD=n,OB=4,∴DE=DB=OB-OD=4-n,∴OE=OD-DE=n-(4-n)=2n-4,∵A(-4,0),∴AO=4,∵CD∥AO,∴△AOE∽△CDE,∴AOCD =OEDE,∴43=2n−44−n,解得:n=145,所以答案是:145.小提示:本题综合考查了全等三角形的判定与性质,相似三角形的判定与性质以及点的坐标的应用,熟练掌握相似三角形的判定与性质是解决本题的关键.13、已知点P是线段AB的黄金分割点(AP>BP),若AB=4,则AP−BP=______.答案:4√5−8分析:根据黄金分割的定义得到AP=√5−12AB,再把把AB=6代入可计算出AP的长,然后计算AB-AP即可.解:∵点P是线段AB的黄金分割点(AP>BP),AB=4,∴AP=√5−12AB=4×√5−12=2√5−2,∴BP=AB-AP=4-(2√5−2)=6−2√5,∴AP−BP=2√5−2−(6−2√5)=4√5−8.故答案为4√5−8.小提示:本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=√5−12AB≈0.618AB,,并且线段AB的黄金分割点有两个,熟记黄金分割的定义是解题的关键.14、《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么井深AC为______米.答案:7分析:由题意易得△ACE∽△BDE,则有ACBD =AEBE,然后问题可求解.解:∵AC//BD,∴△ACE∽△BDE,∴ACBD =AEBE,∵AB=1.6米,BD=1米,BE=0.2米,∴AC1=1.6−0.20.2,解得AC=7米,故答案为7.小提示:本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.15、如图,在平面直角坐标系中,正方形A1B1C1A2与正方形A2B2C2A3是以O为位似中心的位似图形,且位似比为,点A1,A2,A3在x轴上,延长A3C2交射线OB1与点B3,以A3B3为边作正方形A3B3C3A4;延长A4C3交射线OB1与点B4,以A4B4为边作正方形A4B4C4A5;…按照这样的规律继续下去,若OA1=1,则正方形A2021B2021C2022A2022的面积为________.答案:24040分析:根据位似图形的概念求出OA2,根据正方形的面积公式计算,总结规律,根据规律解答即可.解:∵正方形A1B1C1A2与正方形A2B2C2A3是以原点O为位似中心的位似图形,且相似比为12,∴A1B1A2B2=12,∵A1B1⊥x轴,A2B2⊥x轴,∴A1B1∥A2B2,∴OA1B1∽△OA2B2,∴OA1OA2=A1B1A2B2=12,∵OA1=1,∴OA2=2,∴A1A2=1,∴正方形A1B1C1A2的面积=1=40,∵OA1=A1A2=A1B1=1,∴∠B1OA1=45°,∴OA2=A2B2=2,∴正方形A2B2C2A3的面积=2×2=41,∵A3B3⊥x轴,∴OA3=A3B3=4,∴正方形A3B3C3A4的面积=4×4=16=42,……则正方形A2021B2021C2021A2022的面积为42021-1=42020=24040,所以答案是:24040.小提示:本题考查的是位似图形的性质、图形的变化规律,掌握位似图形的性质、相似多边形的性质是解题的关键.解答题16、如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的△ABC 和格点0.(1)以点O为位似中心,将△ABC放大2倍得到ΔA1B1C1,在网格中画出ΔA1B1C1;(2)将△ABC绕点0逆时针旋转90°得ΔA2B2C2,画出ΔA2B2C2;答案:(1)作图见解析(2)作图见解析分析:(1)利用相似变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用旋转变换的性质分别作出A,B,C的对应点A2,B2,C2即可.(1)解:如图,△A1B1C1即为所求;(2)解:如图,△A2B2C2即为所求.小提示:本题考查作图﹣旋转变换,相似变换等知识,解题的关键是掌握旋转变换,相似变换的性质,属于中考常考题型.17、问题背景:如图1,在矩形ABCD 中,AB =2√3,∠ABD =30°,点E 是边AB 的中点,过点E 作EF ⊥AB 交BD 于点F .实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF 绕点B 按逆时针方向旋转90°,如图2所示,得到结论:①AE DF =_____;②直线AE 与DF 所夹锐角的度数为______.(2)小王同学继续将△BEF 绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF 旋转至D 、E 、F 三点共线时,则△ADE 的面积为______.答案:(1)√32,30°;(2)成立,理由见解析;拓展延伸:13√3+√398或13√3−√398 分析:(1)通过证明ΔFBD ∽ΔEBA ,可得AE DF =BE BF =√32,∠BDF =∠BAE ,即可求解; (2)通过证明ΔABE ∽ΔDBF ,可得AE DF =BE BF =√32,∠BDF =∠BAE ,即可求解;拓展延伸:分两种情况讨论,先求出AE ,DG 的长,即可求解.解:(1)如图1,∵∠ABD =30°,∠DAB =90°,EF ⊥BA ,∴cos∠ABD=BEBF =ABDB=√32,如图2,设AB与DF交于点O,AE与DF交于点H,∵ΔBEF绕点B按逆时针方向旋转90°,∴∠DBF=∠ABE=90°,∴ΔFBD∽ΔEBA,∴AEDF =BEBF=√32,∠BDF=∠BAE,又∵∠DOB=∠AOF,∴∠DBA=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°,所以答案是:√32,30°;(2)结论仍然成立,理由如下:如图3,设AE与BD交于点O,AE与DF交于点H,∵将ΔBEF绕点B按逆时针方向旋转,∴∠ABE=∠DBF,又∵BEBF =ABDB=√32,∴ΔABE∽ΔDBF,∴AEDF =BEBF=√32,∠BDF=∠BAE,又∵∠DOH=∠AOB,∴∠ABD=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°.拓展延伸:如图4,当点E在AB的上方时,过点D作DG⊥AE于G,∵AB=2√3,∠ABD=30°,点E是边AB的中点,∠DAB=90°,∴BE=√3,AD=2,DB=4,∵∠EBF=30°,EF⊥BE,∴EF=1,∵D、E、F三点共线,∴∠DEB=∠BEF=90°,∴DE=√BD2−BE2=√16−3=√13,∵∠DEA=30°,∴DG=12DE=√132,由(2)可得:AEDF =BEBF=√32,√13+1=√32,∴AE=√39+√32,∴ΔADE的面积=12×AE×DG=12×√39+√32×√132=13√3+√398;如图5,当点E在AB的下方时,过点D作DG⊥AE,交EA的延长线于G,同理可求:ΔADE 的面积=12×AE ×DG =12×√39−√32×√132=13√3−√398; 所以答案是:13√3+√398或13√3−√398. 小提示:本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.18、某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边ABC 中,点P 是边BC 上任意一点,连接AP ,以AP 为边作等边△APQ ,连接CQ ,BP 与CQ 的数量关系是________;(2)变式探究:如图2,在等腰△ABC 中,AB =BC ,点P 是边BC 上任意一点,以AP 为腰作等腰△APQ ,使AP =PQ ,∠APQ =∠ABC ,连接CQ ,判断∠ABC 和∠ACQ 的数量关系,并说明理由;(3)解决问题:如图3,在正方形ADBC 中,点P 是边BC 上一点,以AP 为边作正方形APEF ,Q 是正方形APEF 的中心,连接CQ .若正方形APEF 的边长为5,CQ =√22,求正方形ADBC 的边长. 答案:(1)BP =CQ ;(2)∠ABC =∠ACQ ;理由见解析;(3)4.分析:(1)利用SAS 定理证明△BAP ≌△CAQ ,根据全等三角形的性质解答;(2)先证明△BAC ∽△PAQ ,得到AB AC =AP AQ ,再证明△BAP ≌△CAQ ,根据相似三角形的性质解答即可;(3)连接AB 、AQ ,根据相似三角形的性质求出BP ,根据勾股定理列出方程,解方程得到答案. 解:(1)问题发现:∵ΔABC 和ΔAPQ 都是等边三角形,∴A B=AC,AP=AQ,∠BAC=∠PAQ=60°,∴∠BAP=∠CAQ,在△BAP和ΔCAQ中,{AB=AC∠BAP=∠CAQAP=AQ,∴△BAP≌△CAQ(SAS),∴BP=CQ,所以答案是:BP=CQ;(2)变式探究:∠ABC=∠ACQ,理由如下:∵AB=BC,∴∠BAC=180°−∠ABC2,∵AP=PQ,∴∠PAQ=180°−∠APQ2,∵∠APQ=∠ABC,∴∠BAC=∠PAQ,∴△BAC∽△PAQ,∴ABAC =APAQ,∵∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ,∴△BAP∽△CAQ,∴∠ABC=∠ACQ;(3)解决问题:连接AB、AQ,如图所示:∵四边形ADBC是正方形,∴ABAC=√2,∠BAC=45°,∵Q是正方形APEF的中心,∴APAQ=√2,∠PAQ=45°,∴∠BAP+∠PAC=∠PAC+∠CAQ,即∠BAP=∠CAQ,∵ABAC =APAQ,∴△ABP∽△ACQ,∴CQBP =ACAB=√2,∵CQ=√22,∴BP=1,设PC=x,则BC=AC=1+x,在Rt△APC中,AP2=AC2+PC2,即52=(1+x)2+x2,解得,x1=−4(舍去),x2=3,∴正方形ADBC的边长为:3+1=4.小提示:本题考查的是正方形的性质、三角形全等的判定和性质、三角形相似的判定和性质、勾股定理的应用,掌握相似三角形的判定定理和性质定理、正方形的性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似知识点
一、比例的性质
b
a
n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 二、相似三角形:
1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

5.相似三角形的判定定理:
(1)三角形相似的判定方法与全等的判定方法的联系列表如下:
类型 斜三角形
直角三角形
全等三角形的判定
SAS SSS
AAS (ASA )
HL
相似三角形的判定
两边对应成比
例夹角相等
三边对应成比例 两角对应相等
一条直角边与斜边
对应成比例
6.直角三角形相似:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理:
(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

c
d a b = d
b c a a c b d ==或 合比性质:d
d c b b a ±=± ⇒=⇔=bc ad d c b a (比例基本定理)
(5)相似三角形的面积比等于相似比的平方。

8.相似三角形的传递性如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2
相似练习
一.选择题
1.如图,DE∥BC,AD:DB=2:1,那么△ADE与△ABC的相似比为( )
A.1
2
B.
2
3
C.
1
4
D.2
2.如图,AB∥CD,AD与BC相交于点O,那么在下列比例式中,正确的是( )
A.AB OA
CD AD
=B.
OA OB
OD BC
=C.
AB OB
CD OC
=D.
BC OB
AD OD
=
3.下列叙述中,不正确的是( ) A.在Rt△ABC中,∠C=90°,∠B=20°,在Rt△A′B′C′中,∠C′=90°,∠A′=20°,则△ABC ∽△A′B′C′
B.△ABC的两个角分别是35°和100°,△A′B′C′的两个角分别是45°和35°,则这两个三角形相似
C.等腰△ABC和等腰△A′B′C′都有一个角为90°,则△ABC与△A′B′C′相似
D.等腰△ABC和等腰△A′B′C′都有一个角为105°,则△ABC与△A′B′C′相似
4.如图,AB∥CD,AD与BC相交于点P,AB=3,CD=6,AP=4,则DP的长为( ) A.3 B.4 C.6 D.8
5.如图,AB∥CD∥EF,则图中相似的三角形共有( ) A.4对B.3对C.2对D.1对
6. 如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )
A.1
3
B.
2
3
C.3
4
D.
4
5
7. 如图,在直角坐标系中,有两点A (6,3)、B (6,0).以原点O 为位似中心,相似比为3
1,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( ) A .(2,1) B .(2,0)
C .(3,3)
D .(3,1)
8. 如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD ,CD =AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( )
A .
B .
C .
D .
二、填空题
6.如图,△ADE ∽△ABC ,则AD :DB=__________.
7.已知在△ABC 中,∠A=40°,∠B=75°,则在如图所示的三角形中,与△ABC 相似的是_______. 8.如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件,使△ADE 与△ABC 相似.你添加的条件是_______________.
9.如图,DE ∥BC ,若AD=3,BD=2.AE=6,则AC=__________.
10. 如果k
f e
d c b a ===(0≠++f d b ),且)(3f d b
e c a ++=++,那么k =_
11. 在□ABCD 中,M ,N 是AD 边上的三等分点,连接BD ,MC 相交于O 点,则S △MOD :S △COB = . 三、解答题
11.如图,D 、E 分别是△ABC 的边AC 、AB 上的点,若∠A=38°,∠C=82°,∠1=60°,则
AD AB
AE AC
=成立吗?为什么?
12
.请设计三种不同的分法,将如图所示的直角三角形分割成四个小三角形,使得每个小三角形与原三角形都相似(要求画出分割线段,标出能够说明分法的必要记号,不要求写出画法,不要求说明理由).
13.如图,在△ABC中,DE∥BC,EF∥AB,说明:△ADE∽△EFC.
14.已知:
b
c
c
a
b
a
-
-
=。

求证:
c
2
b
1
a
1
=
+。

15.如图,已知:AB//CD,AC、BD交于点O,OE//AB交BC于点E。

求证:
OE
1
DC
1
AB
1
=
+。

16.如图,已知:D是△ABC的边BC上一点,过D点的直线交AC于Q,交AB延长线于P,AE//BC,交PQ于E,PD:PE=DQ:QE。

求证:(1)D是BC的中点;(2)QA·PB=PA·QC。

(本题12分)
17. 如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂
A
B C
D E
F
线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BG C .
(1)求证:AD =BC ;
(2)求证:△AGD ∽△EGF ;
(3)如图2,若AD 、BC 所在直线互相垂直,求 AD
EF 的值.
A B
E C D
F G 第23题图1 第23题图2。

相关文档
最新文档