《数学模型概述》PPT课件
数学模型姜启源 ppt课件

《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介
《数学模型》PPT课件

建立数学模型的方法 ➢ 解析法 依据系统及元件各变量之间所遵循的物理或化 学规律列写出相应的数学关系式,建立模型。
➢ 实验法 人为地对系统施加某种测试信号,记录其输出 响应,并用适当的数学模型进行逼近。这种方 法也称为系统辨识。
控制工程基础
(第二章)
2010年
第二章 控制系统的动态数学模型
一、系统数学模型的基本概念 二、控制系统的运动微分方程 三、非线性系统数学模型的线性化 四、拉氏变换和拉氏反变换 五、传递函数以及典型环节的传递函数
六、系统函数方框图和信号流图 七、控制系统传递函数推导举例 八、系统数学模型的MATLAB实现 九、小结
进给传动装置示意图及等效力学模型
组合机床动力滑台及其力学模型
控制系统微分方程的列写
➢ 机械系统
机械系统中以各种形式出现的物理现象,都可 简化为质量、弹簧和阻尼三个要素:
✓ 质量
fm(t)
x (t) v (t)
m 参考点
fm (t)
m
d dt
v(t)
m
d2 dt 2
x(t)
✓ 弹簧
fk(t)
弹簧-阻尼系统
fi(t)
0
xo(t)
fi (t) fD (t) fk (t)
k
D
D
d dt
xo (t) kxo (t)
fi (t)
弹簧-阻尼系统
系统运动方程为一阶常系数 微分方程。
机械旋转系统
i(t)0
o(t) 0
k Tk(t)
J TD(t)
《数学模型电子教案》课件

《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。
《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。
机械工程控制基础课件 第2章: 系统的数学模型

控制系统的状态空间模型
要点一
总结词
控制系统的状态空间模型
要点二
详细描述
状态空间模型是一种描述控制系统动态行为的数学模型, 它通过建立系统的状态方程和输出方程来描述系统的动态 特性。在状态空间模型中,系统的状态变量、输入变量和 输出变量都被表示为矩阵和向量的形式,从而能够方便地 描述系统的动态行为。状态空间模型具有直观、易于分析 和设计等优点,因此在控制工程中得到了广泛应用。
传递函数模型的求解
通过求解传递函数模型中的代数方程或超 越方程,得到系统在给定输入下的输出响 应。
04
控制系统的数学模型
控制系统的定义与分类
总结词
控制系统的定义与分类
详细描述
控制系统的定义是:控制系统是一种能够实现自动控制和调节的装置或系统,它能够根 据输入信号的变化,自动调节输出信号,以实现某种特定的控制目标。控制系统可以分 为开环控制系统和闭环控制系统两类。开环控制系统是指系统中没有反馈环节的控制系
状态空间模型的求解
通过数值计算方法求解状态空间模型中的微分方程或差分方程,得到 系统状态变量的时间响应。
非线性系统的传递函数模型
总结词
传递函数模型的建立、性质和求解
传递函数模型的性质
传递函数模型是非线性的,具有频率响应 特性,可以描述系统在不同频率下的行为
特性。
传递函数模型的建立
通过拉普拉斯变换将非线性系统的微分方 程或差分方程转换为传递函数的形式,从 而建立非线性系统的传递函数模型。
03
非线性系统的数学模型
非线性系统的定义与性质
总结词
非线性系统的定义、性质和特点
非线性系统的定义
数学模型第01章第五版ppt课件

3)据连续函数的基本性质, 必存在0 ( 0< 0 < /2) , 使h(0)=0, 即 f(0) = g(0) . 4)因为 f(0) • g(0)=0, 所以 f(0) = g(0) = 0.
结论:在模型假设条件下,将椅子绕中心旋转, 一定能找到四只脚着地的稳定点.
表现特性 建模目的
确定和随机
静态和动态
离散和连续
线性和非线性
描述、优化、预报、决策、…
了解程度 白箱
灰箱
黑箱
1.8 怎样学习数学建模—— 学习课程和参加竞赛
数学建模与其说是一门技术,不如说是一门艺术.
技术大致有章可循. 艺术无法归纳成普遍适用的准则.
• 着重培养数学建模的意识和能力 数学建模的意识 对于日常生活和工作中那些需要 或者可以用数学知识分析、解决的实际问题,能够 敏锐地发现并从建模的角度去积极地思考、研究.
用 x 表示船速,y 表示水速,列出方程:
(x y) 30 750
x=20
( x y) 50 750 求解 y =5
答:船速为20km/h.
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数) • 用符号表示有关量(x, y分别表示船速和水速) • 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程) • 求解得到数学解答(x=20, y=5)
1.4 建模示例之二 路障间距的设计
背景 校园、居民小区道路需要限制车速——设置路障 问题 限制车速≤40km/h, 相距多远设置一个路障?
分析 汽车过路障时速度接近零, 过路障后加速.
车速达到40km/h时让司机看到下一路障而 减速, 至路障处车速又接近零. 如此循环以达到限速的目的.
数学建模介绍PPT课件

•对任意的,有f()、 g()
•至少有一个为0,
16
本问题归为证明如下数学命题: 数学命题:(本问题的数学模型)
已知f()、 g()都是的非负连续函数,对任意的 ,有f() g()=0,且f(0) >0、 g(0)=0 ,则有存在0, 使f(0)= g(0)=0
模型求解 证明:将椅子旋转90°,对角线AC与BD互换,由 f(0)>0、 g(0)=0 变为f(/2) =0、 g(/2) >0
的解答
解
释
数学模型 的解答
12
实践
理论
实践
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译”成 数学问题 选择适当的数学方法求得数学模型的解答
将数学语言表述的解答“翻译”回实际对 象 用现实对象的信息检验得到的解答
13
4、建模实例:
例1、椅子能在不平的地面上放稳吗?
• 模型假设 • 1、椅子的四条腿一样长,椅子脚与地面
• 要学习数学建模,应该了解如下与数学建模 有关的概念:
3
• 原型(Prototype)
• 人们在现实世界里关心、研究、或从事生产、 管理的实际对象称为原形。原型有研究对象、 实际问题等。
• 模型(Model)
• 为某个目的将原型的某一部分信息进行简缩、 提炼而构成的原型替代物称为模型。模型有 直观模型、物理模型、思维模型、计算模型、 数学模型等。
• 一个原型可以有多个不同的模型。
4
数学模型:
由数字、字母、或其他数学符号组成、描 述实际对象数量规律的数学公式、图形或算 法称为数学模型
数学建模:
建立数学模型的全过程 (包括表述、求解、解释、检验等)
5
第1讲 数学建模简介 PPT课件

什么是数学建模 数学建模步骤及分类 建模竞赛及其意义 建模实例讲解
什么是数学建模
什么是数学模型 一般意义上的“模型”
为了一定目的,对客观事物的一部分进行简缩、抽象、提 炼出来的原型的替代物。
水箱中的舰艇; 风洞中的飞机等;
实物模型
符号模型
物理模型
什么是数学建模
数学模型(mathematical model)
引例
第二块钢板的故事,来自一位将军。 诺曼底登陆时,美军101空降师副师长唐·普拉特准将
乘坐的是滑翔机。起飞前,有人自作聪明,在副师长的座 位下,装上厚厚的钢板,用来防弹。由于滑翔机自身没有 动力,与牵引的运输机脱钩后,必须保持平衡滑翔降落, 沉重的钢板却让滑翔机头重脚轻,一头扎向地面,普拉特 准将成为美军在当天阵亡的唯一将领。
什么是数学建模
数学建模(mathematical modeling)
“新”名词 你是什么时候开始知道有这个名词的?
历史悠久 •《九章算术》— 最早的数学建模专著、 收集了246个应用题 • 以问题集形式出现: 一“问” —提出问题 二“答” —给出问题的数值答案 三“术” —讨论同类问题的普遍方法或算法 四“注” —说明“术”的理由,实质指证明或佐证
飞行员们一看就明白了,如果座舱中弹,飞行 员就完了;尾翼中弹,飞机失去平衡,就会坠落— ——这两处中弹,轰炸机多半回不来,难怪统计数 据是一片空白。
因此,结论很简单:只给这两个部位焊上钢板。
引例
• 第一块钢板是机智的飞行员用它挽救了自己 的生命。 • 第二块钢板则是教训,它是用宝贵的生命换 来的。 • 第三块钢板是升华,用科学的方法,从实战 经验中提炼出规律,这块讲科学的钢板,挽救 了众多飞行员的生命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
9
1. 图解建模法
a
10
管道铺设情况
关键路法(CriticalaPath Method---CPM)
11
3. 因次分析法
① 自然界物理现象的规律,可以用完整的物 理公式来表示;
② 完整的物理公式不随所采用的单位不同而 改变公式的形式;
③ 完整的物理公式必须符合因次和谐的条件;
④ 因次和谐的条件为各个变量积的基本因此 指数彼此相等。
• 按变量之间的关系:线性模型和非线性模型 • 按变量的变化规律:确定性模型和随机模型 • 按模型的用途:模拟模型和管理模型 • 按模型参数的性质:集中参数模型和分布参数模型
a
3
2.2 模型的建立
一、基本方法与思想
1. 演绎法
机理模型
--------对系统的结构和性质的认识和理解
2. 归纳法
经验模型
离散变量--------连续变量
• 改变变量的函数关系;
• 注意特征尺度。
3. 模型中应有可控变量(可操纵变量)
应该有一个或多个可控变量,否则a不能付诸实用
5
二、建立模型的过程
• 数据的收集与分析 • 模型结构的选择
白箱模型(机理模型)——质量平衡建立微分方程 灰箱模型(半机理模型) 黑箱模型(输入-输出模型,纯经验模型) 工程实际中,应用较多的是灰箱模型
~ N (0, 2 )
① 一元线性回归 i 1, , n
yi abix
②
③
多元线性回归 非线性回归
n
n
z di2
yi yi
2
i 1
i 1
2)时间序列预测
n
2
yi a bxi
① 滑动平均法
i 1
y axb
② 加权滑动平均法 ln y lnabln x
z a
0
z
b
0
③ 指数平均法
z ln y
A
ln
a
at ln x
zAbt
14
某工厂污水量逐月记录及滑动平均预测
月 实际污水量(t) 三个月的滑动平均预测值 四个月的滑动平均预测值
1
200
2
210
3
230
4
(230+210+200)/3=213
5
250
(240+230+210)/3=220 (240+230+210+200)/3=220
局限性 ——抽象和简化 ——失真
K
Y 2/3 e2
人的认识能力有限;
求解计算过程中的累积误差; 系统结构与参数的不确定性(------适用区间)
建立和应用数学模型的重要原则——尊重客观、尊重实际
a
2
二、数学模型的分类
➢从不同的角度可以对模型作各种形式的分类:
• 按变量与时间的关系:动态模型和静态模型
---------对系统的输入和输出的观测数据
a
4
二. 建立模型的基本要求
1. 真实可靠 理论推导-----严谨 数据资料-----可靠(质量保证) 检验合格
2. 精确易解
精确
复杂
易解
简单
• 考虑主要变量,分析主要问题;
• 改变变量的性质:不重要的变量--------常量
连续变量--------线性
6
270
(250+240+230)/3=240 (250+240+230+210)/3=233
7
260
(270+270+240)/3=253 (270+250+240+230)/3=248
8
250
(260+270+250)/3=260 (260+270+270+240)/3=255
9
260
(250+260+270)/3=260 (250+260+270+250)/3=258
t 1
Ft wi xi
i t n
a
16
F tF t 1(xt 1F t 1)
③指数平均法 指数平均法法实际上也是一种加权平均法,它的权数是由实际值与预测值的误 差来确定,且它在整个时间序列中是有规律排列的。指数平滑法的数学模型为:
Ft Ft 1 ( xt1 Ft1 ) 式中, —平滑系数(0≤ ≤1),其他符号同前。
第二章 数学模型基础(I)
2.1 数学模型的定义和分类
2.2 模型的建立
2.3 模型参数的估值方法
2.4 模型的验证与误差分析
2.5 灵敏度分析
a
1
2.1 数学模型的定义和分类
一、数学模型的定义和特征
1. 定义: 数学模型 = 公式+算法
2. 特征:
抽象性 ——简洁明晰;
多变量模拟;
方便考察; 节省费用、研究周期短;
10
280
(260+250+260)/3=256 (260+250+260+270)/3=260
11
270
(280+260+250)/3=263 (280+260+250+260)/3=263
12
290
(270+280+260)/3=270 (270+280+260+250)/3=265
F txt 1xt 2n xt n
yx1k1x2k2xnkn
hf
f(R e),l v2 l v2
a
d d2g d212g
• 因次分析的主要作用
(1)帮助认识物理现象之内在规律,有助于 判断模型定律之选择;
(2)指导实验方向,减少分析实验资料的变 量数目;
(3)校核公式。
a
13
4. 概率统计法 yi a bx i
1)回归分析
• 模型参数的估计 • 模型的检验和修正
a
6
观测数据组Ⅰ
模型结构选择
参数估计
观测数 据组Ⅱ
检验和验证
模型应用
a
7
A : y ln x , B : y ae x , C : y ax 2 , D : y ax 1
a
8
三. 建模的几种方法
1. 图解建模法 2. 质量平衡法 3. 因次分析法 4. 概率统计法 5. 数量化理论预测法 6. 灰色系统建模法
(tn )
a
15
加权滑动平均预测
月
实 际 污 水 量 (t)
三个月的滑动平均预测值
1
200
2
210
3
230
4
240
5
250
6
270
7
260
8
250
9
260
10
280
11
270
12
290
0.5× 230+0.3× 210+0.2× 200=218 0.5× 240+0.3× 230+0.2× 210=232 0.5× 250+0.3× 240+0.2× 230=243 0.5× 270+0.3× 270+0.2× 240=258 0.5× 260+0.3× 270+0.2× 250=262 0.5× 250+0.3× 260+0.2× 270=257 0.5× 260+0.3× 250+0.2× 260=257 0.5× 280+0.3× 260+0.2× 250=268 0.5× 270+0.3× 280+0.2× 260=272