二元一次方程教案讲课教案
初中二元一次方程数学教案三篇

【导语】教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。
⽆忧考准备了以下内容,供⼤家参考!篇⼀:应⽤⼆元⼀次⽅程组——鸡兔同笼 教学⽬标: 知识与技能⽬标: 通过对实际问题的分析,使学⽣进⼀步体会⽅程组是刻画现实世界的有效数学模型,初步掌握列⼆元⼀次⽅程组解应⽤题.初步体会解⼆元⼀次⽅程组的基本思想“消元”。
培养学⽣列⽅程组解决实际问题的意识,增强学⽣的数学应⽤能⼒。
过程与⽅法⽬标: 经历和体验列⽅程组解决实际问题的过程,进⼀步体会⽅程(组)是刻画现实世界的有效数学模型。
情感态度与价值观⽬标: 1.进⼀步丰富学⽣数学学习的成功体验,激发学⽣对数学学习的好奇⼼,进⼀步形成积极参与数学活动、主动与他⼈合作交流的意识. 2.通过"鸡兔同笼",把同学们带⼊古代的数学问题情景,学⽣体会到数学中的"趣";进⼀步强调课堂与⽣活的联系,突出显⽰数学教学的实际价值,培养学⽣的⼈⽂精神。
重点: 经历和体验列⽅程组解决实际问题的过程;增强学⽣的数学应⽤能⼒。
难点: 确⽴等量关系,列出正确的⼆元⼀次⽅程组。
教学流程: 课前回顾 复习:列⼀元⼀次⽅程解应⽤题的⼀般步骤 情境引⼊ 探究1:今有鸡兔同笼, 上有三⼗五头, 下有九⼗四⾜, 问鸡兔各⼏何? “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94⾜,问雉兔各⼏何? (1)画图法 ⽤表⽰头,先画35个头 将所有头都看作鸡的,⽤表⽰腿,画出了70只腿 还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿 四条腿的是兔⼦(12只),两条腿的是鸡(23只) (2)⼀元⼀次⽅程法: 鸡头+兔头=35 鸡脚+兔脚=94 设鸡有x只,则兔有(35-x)只,据题意得: 2x+4(35-x)=94 ⽐算术法容易理解 想⼀想:那我们能不能⽤更简单的⽅法来解决这些问题呢? 回顾上节课学习过的⼆元⼀次⽅程,能不能解决这⼀问题? (3)⼆元⼀次⽅程法 今有鸡兔同笼,上有三⼗五头,下有九⼗四⾜,问鸡兔各⼏何? (1)上有三⼗五头的意思是鸡、兔共有头35个, 下有九⼗四⾜的意思是鸡、兔共有脚94只. (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只; 鸡⾜有2x只;兔⾜有4y只. 解:设笼中有鸡x只,有兔y只,由题意可得: 鸡兔合计头xy35⾜2x4y94 解此⽅程组得: 练习1: 1.设甲数为x,⼄数为y,则“甲数的⼆倍与⼄数的⼀半的和是15”,列出⽅程为_2x+05y=15 2.⼩刚有5⾓硬币和1元硬币各若⼲枚,币值共有六元五⾓,设5⾓有x枚,1元有y枚,列出⽅程为05x+y=65. 三、合作探究 探究2:以绳测井。
二元一次方程教案

二元一次方程教案二元一次方程教案(精选8篇)作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,教案有助于学生理解并掌握系统的知识。
怎样写教案才更能起到其作用呢?下面是店铺为大家整理的二元一次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
二元一次方程教案篇1一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880。
2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程做一做:1.根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价,设苹果的单价x元/kg ,梨的单价y元/kg;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2.判定哪些式子是二元一次方程方程。
合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人,团支书拟安排8个劳动组,2个文艺,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等,得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
二元一次方程教案

二元一次方程教案
二元一次方程教案
一、教学内容:
本节课我们将学习二元一次方程的概念、解法和应用。
二、教学目标:
1.了解二元一次方程的定义和表示方法;
2.掌握二元一次方程的解法;
3.能够灵活应用二元一次方程解决实际问题。
三、教学重难点:
1.掌握二元一次方程的解法;
2.能够灵活应用二元一次方程解决实际问题。
四、教学过程:
Step1:导入新知
1.老师通过提问引导学生回顾一元一次方程的解法,复习方程的概念和基本性质。
Step2:概念讲解
1.老师通过示例引入二元一次方程的概念,并给出二元一次方
程的定义和表示方法。
Step3:解法教学
1.老师通过实例讲解二元一次方程的解法。
2.介绍利用消元法和代入法解决二元一次方程的步骤和思路,
并通过实例演示解法过程。
Step4:练习巩固
1.设计一些课堂练习题,让学生在黑板上解答,并让学生到讲
台上解答题目,加深对解法的理解和掌握。
2.布置一些课后作业,让学生继续练习。
五、教学资源:
1.教材;
2.黑板、白板、彩色笔等。
六、评估方式:
1.课堂练习答题情况;
2.作业完成情况。
七、教学反思:
通过本节课的教学,学生能够了解二元一次方程的概念和解法,并能够应用二元一次方程解决实际问题。
但是,本节课的时间
安排较紧凑,课堂练习时间有限,学生的动手能力仍有待提高,可以适当增加一些练习题,以巩固所学知识。
同时,在教学过程中,应多采用启发式的教学方法,引导学生主动探索和发现问题的解决方法,提高学生的学习兴趣和动力。
初中二元一次方程教案

初中二元一次方程教案教学目标:1. 理解二元一次方程的概念和特点;2. 学会解二元一次方程的方法;3. 能够应用二元一次方程解决实际问题。
教学重点:1. 二元一次方程的概念和特点;2. 解二元一次方程的方法。
教学难点:1. 二元一次方程的解法;2. 应用二元一次方程解决实际问题。
教学准备:1. 教学课件或黑板;2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾一元一次方程的知识,复习解一元一次方程的方法。
2. 提问:一元一次方程中,我们是如何求解未知数的呢?二、新课讲解(15分钟)1. 介绍二元一次方程的概念:含有两个未知数的一次方程。
2. 示例讲解二元一次方程的特点:有两个未知数,每个未知数的最高次数都是1,方程是等式。
3. 讲解二元一次方程的解法:代入法、消元法等。
4. 演示解一个简单的二元一次方程,引导学生跟随解题过程。
三、课堂练习(15分钟)1. 布置练习题,让学生独立解答。
2. 引导学生互相讨论解题方法,解答过程中遇到问题可以寻求老师帮助。
四、巩固提高(15分钟)1. 出示一些实际问题,让学生应用二元一次方程解决。
2. 引导学生思考如何将实际问题转化为二元一次方程,并解答。
五、总结(5分钟)1. 回顾本节课所学内容,让学生总结二元一次方程的概念、特点和解法。
2. 强调二元一次方程在实际生活中的应用价值。
教学反思:本节课通过讲解和练习,让学生掌握了二元一次方程的概念、特点和解法。
在教学过程中,要注意引导学生思考,鼓励学生提问,及时解答学生的疑问。
同时,要注重练习题的布置和讲解,让学生能够灵活运用所学知识解决实际问题。
在今后的教学中,可以结合多媒体课件,增加一些互动环节,提高学生的学习兴趣和参与度。
七年级数学下册《二元一次方程》教案、教学设计

3.交流分享:鼓励小组成员相互交流解题思路,分享求解方法。
4.教师指导:在学生讨论过程中,教师应适时给予指导,引导学生正确求解二元一次方程。
(四)课堂练习,500字
在课堂练习环节,教师应:
1.设计练习题:设计具有梯度、层次的练习题,涵盖二元一次方程的定义、求解方法等方面。
七年级数学下册《二元一次方程》教案、教学设计
一、教学目标
(一)知识与技能
1.了解二元一次方程的定义,知道它由两个未知数和一次项组成。
2.学会使用代入法、消元法求解二元一次方程,并能熟练运用。
3.能够根据实际问题列出二元一次方程,并求解出未知数的值。
4.掌握二元一次方程组的解的概念,了解其几何意义。
(二)过程与方法
2.实践应用题:从生活中选取一个实际问题,将其转化为二元一次方程组,并求解。例如,家庭成员的年龄问题、购物优惠问题等。要求学生写出问题背景、方程建立过程和求解步骤。
3.提高挑战题:完成以下两个拓展题,旨在培养学生的逻辑思维和解决问题的能力。
-提示1:已知两个正数的和为10,它们的乘积为24,求这两个数。
三、教学重难点和教学设想
(一)教学重难点
1.重点:二元一次方程的定义及其求解方法(代入法、消元法)。
2.难点:如何将实际问题转化为二元一次方程,并求解出未知数的值。
(二)教学设想
1.创设情境,导入新课
-利用生活实例,如购物、分配任务等,引导学生发现其中的二元一次方程,激发学生的学习兴趣。
-通过对比一元一次方程,让学生理解二元一次方程的特点,为新课的学习做好铺垫。
-提示2:某商店举行打折活动,购买100元商品可享受8折优惠,购买200元商品可享受7折优惠,小明购买了一些商品,总共花费了210元,问他购买的商品原价是多少?
公式法解二元一次方程教案六篇

公式法解二元一次方程教案六篇教案一:用公式法解简单的二元一次方程一、教学目标1、理解并掌握二元一次方程的求根公式。
2、能够熟练运用公式法解二元一次方程。
二、教学重难点1、重点(1)求根公式的推导过程。
(2)运用求根公式解二元一次方程。
2、难点求根公式的推导。
三、教学方法讲授法、练习法四、教学过程1、复习导入(1)回顾一元二次方程的一般形式:$ax^2 + bx + c =0$($a≠0$)。
(2)提问一元二次方程的配方法。
2、公式推导(1)将一元二次方程$ax^2 + bx + c = 0$($a≠0$)进行配方:\\begin{align}ax^2 + bx + c &= 0\\ax^2 + bx &= c\\x^2 +\frac{b}{a}x &=\frac{c}{a}\\x^2 +\frac{b}{a}x +(\frac{b}{2a})^2 &=(\frac{b}{2a})^2 \frac{c}{a}\\(x +\frac{b}{2a})^2 &=\frac{b^2 4ac}{4a^2}\end{align}\(2)当$b^2 4ac≥0$时,开方得到求根公式:$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$3、公式讲解(1)强调公式中$a$、$b$、$c$的含义。
(2)说明判别式$b^2 4ac$的作用:判断方程根的情况。
4、例题讲解例 1:用公式法解方程$x^2 4x 5 = 0$(1)分析:$a = 1$,$b =-4$,$c =-5$(2)计算判别式:$b^2 4ac =(-4)^2 4×1×(-5) = 36 > 0$,方程有两个不相等的实数根。
(3)代入求根公式:$x =\frac{4 ±\sqrt{36}}{2×1} =\frac{4 ± 6}{2}$,解得$x_1 = 5$,$x_2 =-1$5、课堂练习让学生练习用公式法解下列方程:(1)$x^2 + 2x 3 = 0$(2)$2x^2 5x + 1 = 0$6、课堂小结(1)总结公式法解二元一次方程的步骤。
初中语文二元一次方程精品教案

初中语文二元一次方程精品教案一、教学目标1. 能够理解二元一次方程的含义2. 掌握利用联立方程求解实际问题的方法3. 发展学生数学思维,培养学生的解决实际问题的能力二、教学重难点1. 二元一次方程的变形和联立方法2. 实际问题的建立和解决方法三、教学过程1. 导入环节引入二元一次方程的概念和应用,通过实际例子引起学生的兴趣。
2. 讲解二元一次方程讲解方程中的系数、常数和未知数的含义,给出一些例子加深学生理解。
3. 联立方程的方法给出两个方程,利用消元法或代入法解方程。
4. 实际问题的建立和解决提供几个实际问题,让学生建立方程式,再利用联立方程求解。
5. 拓展应用让学生再联系实际问题,加深对二元一次方程的理解和应用。
四、课堂讲解1. 二元一次方程的概念例:两个数量相加等于某一定值,这就是一个方程式,方程中未知量只有1个,所以这是一元方程。
如果两个未知量的和等于某个定值,这就是二元一次方程,方程中未知量有2个。
2. 二元一次方程的变形和解法例:2x+3y=12; x-y=3等式两边同乘2,得到4x+6y=24; 2x-2y=6。
将两个方程式相加可以消去y,得到6x=30, x=5,带回第一式可以得出y=23. 实际问题的建立和解决例:周末去公园玩,大人票价为10元/人,小孩票价为5元/人。
8个人一共花了65元,请问有几个大人和小孩。
解析:设大人数为m,小孩数为n,则m+n=8, 10m+5n=65,由此建立方程组为:m + n = 810m + 5n = 65解得 m = 3,n = 5。
五、作业布置1. 练书上有关二元一次方程的例题2. 回家寻找实际生活中的相关问题,并用二元一次方程进行解答。
二元一次方程公开课教案(精选6篇)

二元一次方程公开课教案(精选6篇)七年级数学教案篇一一、目标1.用它们拼成各种形状不同的四边形,并计算它们的周长。
(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)2.教师揭示以上这些工作实际上是在进行整式的加减运算3.回顾以上过程思考:整式的加减运算要进行哪些工作?生1:“去括号”生2:“合并同类项”师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,二、揭示如何进行整式的加减运算1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2.教学例二例2 求2a2-4a+1与-3a2+2a-5的差。
(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)解:(2a2-4a+1)-(-3a2+2a-5)=2a2-4a+1+3a2-2a+5=5a2-6a+63.拓展练习(1)求多项式2x -3 +7与6x -5 -2的和。
提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)(2)(-3x2 –x +2)+(4x2 +3x -5)(3)(4a2 -3a )+(2a2 +a -1)(4)(x2 +5x –2 )-(x2 +3x -22)(5)2(1-a +a2)-3(2-a –a2)4.教学例3先化简下式,再求值:(做此类题目应先与学生一起探讨一般步骤:(1)去括号。
(2)合并同类项。
(3)代值)解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3=15a2b –5ab2+4ab2 -12a2b)=3a2b –ab2三、小结1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2.进行化简求值计算时(1)去括号。
(2)合并同类项。
(3)代值3.通过本节课的学习你还有哪些疑问?四、布置作业习题4.5 2. (3);4. (2);5.。
五、课后反思省略元一次方程组篇二第1课 5.1二元一次方程组(1)教学目的1、使学生二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组
一、〖教学目标〗
1.认知目标:1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二、【教学重点、难点】
重点是二元一次方程组的意义和二元一次方程组解的概念。
难点是利用列表尝试的方法求简单二元一次方程组的解。
三、〖教学方法和手段〗
基于本节课内容的特点和七年级学生的心理及思维发展的特征,在教学中选择激趣法、讨论法和总结法相结合。
与学生建立平等融洽的互动关系,营造合作交流的学习氛围。
在引导学生进行观察分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣。
四、【教学过程】
1.创设情境,引入新课
小学时,我们就解答过著名的“鸡兔同笼”的问题,如“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”谁能用我们学过的知识来解答一下呢?
解:设鸡有x只,则兔有(35-x)只,根据题意,可得:
2x+4(35-x)=94
解得x=23
∵35-x=35-23=12
答:鸡有23只,兔有12只.
师:新的思路:在上面“鸡兔同笼”的问题中,我们会发现它有两个等量关系:鸡的只数+兔子的只数=35;鸡的腿数+兔子的腿数=94.
如果我设鸡有x只,兔子有y只,这时我们就得到了方程x+y=35和2x+4y=94.
这节课我们就来学习这样的方程及由它们组成的方程组.
2.讲授新课
知识点一:二元一次方程的概念
二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1的方程叫做二元一次方程。
有这么一段对话:老牛和小马驮着包裹走在路上.
老牛:累死我了!
小马:你还累?这么大的个儿,才比我多驮2个.
老牛:哼,我从你背上拿来1个,我的包裹数就是你的2倍!
小马:真的?!
请问:老牛和小马各驮了多少包裹呢?
思考:
设老牛驮了x 个包裹,小马驮了y 个包裹.从老牛和小马的对话中,我们可以探索到其中的等量关系:①老牛驮的包裹-小马驮的包裹数=2,②老牛驮的包裹数+1=(小马驮的包裹数-
1)×2.由此我们就可得到方程x -y =2和x +1=2(y -1).
师:同学们可以观察并判断一下这两个方程符合二元一次方程的定义吗?
生:符合,都含有两个未知数并且未知数的次数都是1.
例题1:已知下列方程,其中是二元一次方程的有( )
(1)2x-5=y (2)x-4=3 (3)2xy=3
(4)2x+y+z=7 (5)5x+y 1=2 (6)x+2
1y=4 知识点二:二元一次方程组的概念
二元一次方程组的定义:把两个二元一次方程联立在一起,就组成了二元一次方程组。
例题2:下列方程组中,二元一次方程组有( )
(1)⎩⎨⎧+==-1372z y y x (2)⎩⎨⎧==+23xy y x (3)⎩
⎨⎧==-6232y y x (4)⎪⎩
⎪⎨⎧==-=63021y y x x (5)⎩⎨⎧=+=+y y x x 122 (6)⎩⎨⎧==01y x 知识点三:二元一次方程(组)的解
二元一次方程的解的定义:一般地,使二元一次方程两边的值相等的两个未知数的值叫做二元一次方程的解。
(一般情况下,二元一次方程有无数组解,每一
组解都可以表示成⎩⎨⎧==b
y a x 的形式)
二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。
例题3:以⎩⎨⎧-==1
1y x 为解的二元一次方程组是()
(1)|⎩⎨⎧=-=+10y x y x (2)⎩⎨⎧-=-=+10y x y x (3)⎩⎨⎧=-=+20y x y x (4)⎩
⎨⎧-=-=+20y x y x 例题4:已知⎩⎨⎧==4
3y x 是二元一次方程3x-ky=5一个解,求k 的值。
例题5:已知⎩⎨⎧==1
2y x 是二元一次方程ax+by+2=0的解,则2a+b-6= ----。
3.即学即练
要点1:二元一次方程(组)概念的应用
(1)已知方程2x m +2+3y 1-2n =17是一个二元一次方程,则m =________,n =________.
(2)方程①y =3x 2+x ;②3x +y =1;③2x +4z =5z ;④xy =2;⑤
3
y x ++y =0;⑥x +y +z =1;⑦y 1+x =4中,是二元一次方程的有_________. (3)若2x 32+m +3y 95-n =1是关于x 、y 的二元一次方程。
求m 和n 的值。
(4)已知方程(k+2)x+(k-6)y=k+8是关于x 、y 的方程。
当k 为何值时,方程为一元一次方程?
当k 为何值时,方程为二元一次方程?
要点2:二元一次方程的变形
(1)已知二元一次方程4x+6y=3
用含x 的式子表示y
用含y 的式子表示x 。
(2)已知方程3x+2=10.
用含x 的代数式表示y
用含y 的代数式表示x
当x=-2,0,3时,求对应的y 的值。
要点3:列简单的二元一次方程(组)
(1)甲的2倍比乙数少2。
(2)甲数比乙数的三倍多7。
(3)甲乙两数的和的二倍是13,两数的差比乙数的一半少7。
(4)甲数的三倍比乙数的一半少2。
(5)甲数与乙数的3倍的和比乙数大30。
(6)甲数的一半比乙数的四倍多2,甲数的二倍比乙数的三倍少6。
要点4:求二元一次方程的特殊解
(1)求二元一次方程4x+y=10的正整数解。
(2)求二元一次方程3x+2y=12的非负整数解。
4.课时小结
这节课通过对实际问题的分析,使学生进一步体会到了方程是刻画现实世界的有效模型.在此基础上,我们了解了二元一次方程.二元一次方程组及其解等概念,并学会了判断一组数是不是某个二元一次方程组的解.
5.课后作业
五.教学设计说明
了解二元一次方程的解,是本节课学习的重点和难点。
由浅入深、由易到难,通过辨析是不是方程的解,到由观察直接写出简单二元一次方程的一些解,让学生先感悟二元一次方程解的不唯一性,再到如何求二元一次方程的部分解,在寻求解的过程中了解和体会二元一次方程的解的不唯一性,也知道了两个未知数之间不是独立的而是对应的,适合学生的认知规律。
六.板书设计
七.教学反思。