一元二次方程讲课教案

合集下载

《一元二次方程》数学教案8篇

《一元二次方程》数学教案8篇

《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。

元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。

本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。

教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。

还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。

同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。

因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

一元二次方程优秀教案

一元二次方程优秀教案

一元二次方程优秀教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元二次方程优秀教案标题:一元二次方程优秀教案一、教学目标:1.理解一元二次方程的概念和性质;2.掌握解一元二次方程的方法和步骤;3.能够应用一元二次方程解决实际问题。

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。

直接开平方法很简单,在这里不做过多的介绍。

为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。

我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。

在解一元二次方程的几种方法中,均需要用到转化的思想方法。

如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。

在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。

教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。

2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。

过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。

2.在探究一元二次方程的过程中体会转化、降次的数学思想。

情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。

教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。

难点:根据方程的特点灵活选择适当的方法解一元二次方程。

教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。

3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。

二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

《一元二次方程》参考教案

《一元二次方程》参考教案

《一元二次方程》参考教案第一篇:《一元二次方程》参考教案21.1 一元二次方程教学内容本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.教学目标知识技能探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识.数学思考在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.解决问题培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.情感态度通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.重难点、关键重点:一元二次方程的定义、各项系数的辨别,根的作用.难点:根的作用的理解.关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、情境引入【问题情境】问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?【活动方略】教师演示课件,给出题目.学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题.【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.二、探索新知【活动方略】学生活动:请口答下面问题.(1)上面几个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【设计意图】主体活动,探索一元二次方程的定义及其相关概念.三、范例点击例1 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并指出各项系数.解:去括号得3x2-3x=5x+1,移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.【活动方略】学生活动:学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.教师活动:在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题).【设计意图】进一步巩固一元二次方程的基本概念.例2 猜测方程x2-x-56=0的解是什么?【活动方略】学生活动:学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x =1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.教师活动:教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).【设计意图】探究一元二次方程根的概念以及作用.四、反馈练习课本P4 练习1、2题补充习题:1.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.2.你能根据所学过的知识解出下列方程的解吗?(1)x2-36=0;【活动方略】学生独立思考、独立解题.教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)【设计意图】检查学生对基础知识的掌握情况.五、应用拓展例3:求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.例4:有人解这样一个方程(x+5)(x-1)=7.解:x+5=1或x-1 = 7,所以x1=-4,x2 =8,你的看法如何?由(x+5)(x-1)=7得到x+5=1或x-1=7,应该是x+5=1且x-1=7,同时成立才行,此时得到x=-4且x=8,显然矛盾,因此上述解法是错误的.【活动方略】教师活动:操作投影,将例3、例4显示,组织学生讨论.学生活动:合作交流,讨论解答。

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《解一元二次方程》教学设计【优秀9篇】在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。

一元二次方程教案

一元二次方程教案

一元二次方程教案教案:一元二次方程教学目标:1. 理解一元二次方程的定义和特点;2. 学会解一元二次方程;3. 掌握一元二次方程在实际问题中的应用。

教学步骤:一、导入1. 引入一元二次方程的概念,让学生了解方程的定义,并回顾线性方程的解法。

2. 提出以下问题:如何解决无法用线性方程解决的问题?二、概念讲解1. 介绍一元二次方程的定义:形如ax² + bx + c = 0的方程,其中a、b、c是已知实数且a ≠ 0。

2. 解释一元二次方程的特点:二次项的指数为2,方程的解可能是一个、两个或无解。

3. 引导学生思考一元二次方程的解法,并与线性方程的解法进行比较。

三、解一元二次方程1. 介绍解一元二次方程的常见方法:因式分解和配方法。

2. 详细讲解因式分解法:将一元二次方程因式分解成两个一次因式,然后分别令每个因式等于零,得到方程的解。

3. 详细讲解配方法:通过“凑平方”的方法,将一元二次方程转化为完全平方式程,并求得方程的解。

四、应用实例1. 介绍一元二次方程在实际问题中的应用:如抛物线的形状、运动问题等。

2. 给出一些实际问题,让学生尝试用一元二次方程解决,并引导学生理解问题和方程之间的关系。

五、总结与拓展1. 总结一元二次方程的定义和解法。

2. 练习一元二次方程的解题方法,巩固所学知识。

3. 引导学生思考一元二次方程的应用领域,并进一步探讨实际问题与方程的对应关系。

六、作业布置设计一些练习题,要求学生独立完成并解答思考题。

教学反思:通过本节课的教学,学生应能掌握一元二次方程的定义、特点和解法。

通过实例的讲解和练习,学生能够将所学知识应用到实际问题中。

同时,通过引导学生思考,拓展了学生对一元二次方程的认识和应用领域的探索。

注:以上教案仅为参考,实际教学过程中可以根据学生的实际情况进行调整。

一元二次方程的相关教案【优秀3篇】

一元二次方程的相关教案【优秀3篇】

一元二次方程的相关教案【优秀3篇】元二次方程篇一[教材分析]中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。

因此一元二次方程便成为了方程中研究的重要内容。

一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。

[学生分析]进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。

因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。

再加上我所执教的学生,他们有着较强的认知力与求知欲,基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。

[教学目标]在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。

能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。

理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。

[教学重难点]发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程[教学过程](一)复习导入请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。

(二)探求新知数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。

初探新知中,我将学生们分成两组,分别对二次项系数为1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。

我在这些方程中安排了两个无理根方程。

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。

(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。

过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。

二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。

难点:准确理解一元二次方程的意义。

三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。

解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教 案
第二十二章 一元二次方程
考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....
就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax
⑶难点:如何理解 “未知数的最高次数是2”:
①该项系数不为“0”;
②未知数指数为“2”;
③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:
例题1:方程:①13122
=-x x ②05222=+-y xy x ③0172=+x ④022
=y 中一元二次是 ( )
A. ①和②
B. ②和③
C. ③和④
D. ①和③
例题2:当a_______时,关于x 的方程0422=+++x x ax 是一元二次方程 变式:当k 时,关于x 的方程322
2+=+x x kx 是一元二次方程。

例题3:方程8)2(2)1(3++=-x x x 化成一般形式是__________________
例题4:方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是 .
例题5:下列方程中是关于x 的一元二次方程的是( )
A ()()12132+=+x x
B 02112=-+x x
C 02=++c bx ax
D 122
2+=+x x x 例题6:方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

课堂练习
知识点1:一元二次方程的概念
1、若0452=+-x ax 是一元二次方程,则不等式032>+a 的解集是 ( )
A 、23->a
B 、23-<a
C 、23->a 且0≠a
D 、2
3>a 2、若方程()013112=-+-+x x m m 是一元二次方程,则m 的值为 ( )
A 、1
B 、-1
C 、1或-1
D 、不能确定
3、已知关于x 的方程()
()032422=+-+-m x m x m ,当m 时,它是一元二次方程,当m 时,它是一元一次方程。

知识点2:一元二次方程的一般形式 1、把方程3
3212-=+x x 化成一般形式,正确的是 ( ) A 、()(
)32132-=+x x B 、09322=--x x C 、62332-=+x x D 、09322=-+x x
2、将()()45312++=-x x x 化为一元二次方程的一般形式为 ,其二次项系数是 ,一次项系数是 ,常数项是 。

针对练习:
★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程,
⑴求m 的值;⑵写出关于x 的一元一次方程。

★★3、若方程()112=∙+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +2x n -2x 2=0是一元二次方程,则下列不可能的是( )
A.m=n=2
B.m=2,n=1
C.n=2,m=1
D.m=n=1
课堂小结
通过本节课学习,让学生能真正理解一元二次方程的概念,看到题目能准确的判断是不是一元二次方程,并能化简成一般形式。

课后作业
A 组习题:
1.下列方程中的一元二次方程是( ).
A .3(x +1)2=2(x -1)
B .21x +x
1-2=0 C .ax 2+bx +c =0 D .x 2+2x =(x +1)(x -1)
2.把方程-5x 2+6x+3=0的二次项系数化为1,方程可变为( ).
A .x 2+56x +5
3=0 B .x 2-6x -3=0 C .x 2-56x -53=0 D .x 2-56x +5
3=0 3.将方程3x 2=2x -1化成一元二次方程的一般形式后,二次项系数、一次项 系数和常数项系数可以是( ) .
A . 3,2,-1
B .3,-2,-1
C .3,-2,1
D . -3,-2,1
4.把一元二次方程(x +2)(x -3)= 4化成一般形式,得( ).
A .x 2+x -10=0
B .x 2-x -6=4
C .x 2-x -10=0
D .x 2-x -6=0
5. 方程x 2+3x -x +1=0的一次项系数是( ).
A .3
B .-1
C .3-1
D .3x -x
6.若2530ax x -+=是关于x 的一元二次方程,则不等式360a +>的解集是 ( ).
A .2a >-
B .2a <-
C .2a >-且0a ≠
D .12a >
7.已知方程(m +2)x 2+(m +1)x -m =0,当m 满足__________时,它是一元一次方程; 当m 满足___________时,它是一元二次方程.
8.一元二次方程226x x -=的二次项系数、一次项系数及常数之和为 .
9.关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足什么条件?
10.已知关于x 的方程(m -3)72-m
x -x=5是一元二次方程,求m 的值.
B 组练习: 把方程2226332kx x k x kx -+=--整理为20ax bx c ++=的形式,并指出各项的系数.。

相关文档
最新文档