数学面试试讲真题《用公因式法解一元二次方程》教案、教学设计
九年级数学上册(人教版)21.2.2解一元二次方程(公式法)优秀教学案例

3.学生能够在教师引导下,运用转化思想,将实际问题转化为一元二次方程,从而解决问题。
(三)情感态度与价值观
1.学生树立自信心,相信自己能够掌握一元二次方程的公式法求解方法。
2.学生培养良好的学习习惯,积极主动地参与课堂讨论,提高自主学习能力。
3.学生体验到数学在实际生活中的运用,增强对数学学科的兴趣和热爱。
在教学过程中,我会引导学生进行反思与评价。首先,让学生对自己的学习过程进行反思,总结自己在学习一元二次方程公式法求解过程中的优点和不足,明确今后需要改进的地方。其次,组织学生进行相互评价,让学生在评价中学会客观、全面地认识自己,提高自我评价能力。最后,我会对学生的学习情况进行总结性评价,鼓励优秀学生,鼓励暂时遇到困难的学生,激发学生的学习动力。
4.学生学会合作共赢,培养团队精神,提高人际交往能力。
作为特级教师,我深知教学目标的重要性,它不仅是教学活动的出发点和归宿,更是评价学生学习成果的重要依据。因此,在教学过程中,我将紧紧围绕上述教学目标,采用多种教学手段和评价方式,全面提高学生的知识与技能、过程与方法、情感态度与价值观。
三、教学策略
(一)情景创设
(三)小组合作
在教学过程中,我会组织学生进行小组合作学习。将学生分成若干小组,每组学生共同探讨、分工合作,完成一元二次方程的公式法求解任务。通过小组合作,培养学生团队协作能力、沟通能力,提高学生解决问题的效率。同时,小组合作学习也能够使学生在互相交流、互相学习中,取长补短,提高自己的学习能力。
(四)反思与评价
3.小组合作学习,提高学生团队协作能力:我将学生分成若干小组,每组学生共同探讨、分工合作,完成一元二次方程的公式法求解任务。通过小组合作,培养学生团队协作能力、沟通能力,提高学生解决问题的效率。
《用因式分解法求解一元二次方程》教案分析

《用因式分解法求解一元二次方程》教案分析《用因式分解法求解一元二次方程》教案分析学习目标:1思考活动二中的问题,参与小组讨论,会用自己的语言叙述适合因式分解法的一元二次方程的特征。
2会熟练运用因式分解法(提公因式法、公式法)解决简单的数字系数的一元二次方程;3会根据方程特点选用合适的方法解一元二次方程。
设置的依据:1.《课程标准》的要求(1)理解因式分解法解数字系数的一元二次方程。
(2)在解一元二次方程的过程中体会转化的数学思想,进一步培养学生分析问题、解决问题的意识和能力。
教材分析:1.本节课是在八年级学过因式分解,前面学习了用配方法和公式法解一元二次方程的基础上展开的。
2.因为对于某些特殊的一元二次方程,用因式分解法解起来更简便。
,又可以为后续的处理有关一元二次方程的问题提供多一些思路和方法。
学情分析:1.学生掌握了提公因式法及运用公式法(平方差、完全平方)熟练的分解因式;但把一个多项式当作一个整体有一部分学生掌握的不好。
对于配方法及公式法解一元二次方程,学生掌握了这两种方法的解题思路及步骤。
2.学习小组固定,具有一定的合作学习的经验。
评价任务的设计:1.会用自己的语言叙述适合因式分解法的一元二次方程的特征。
(目标1)2做自主检测一会用因式分解法解一元二次方程(目标2)3做自主检测二会用合适的方法解方程(目标3)4做课堂检测1(目标2)2(目标3)设计意图:本节课的重点用因式分解法解一元二次方程,难点用合适的方法解一元二次方程,也是贯穿于本节的一条主线,评价也要突出这一主线。
在活动中注重学生观察能力,分析能力,归纳能力,对能主动参与合作交流、勇于发言、善于创新的行为给予及时的评价和鼓励。
教学设计学习目标学习活动评价标准教师活动目标达成情况反思与评价目标1结合活动中的问题,会用自己的语言叙述适合因式分解法的一元二次方程的特征,提高观察、分析、概括等能力。
目标2会用因式分解法(提公因式法、公式法)解决简单的数字系数的一元二次方程目标3会根据方程特点用合适的方法解一元二次方程。
《公式法解一元二次方程》教案2

《公式法解一元二次方程》教案2 安福县城关中学曹经富一、温故知新(学生活动)1.用配方法解下列方程(1)6x2-7x+1=0 (2)2x2-8x-9=0(1)移项,得:6x2-7x=-1二次项系数化为1,得:x2-76x=-16配方,得:x2-76x+(712)2=-16+(712)2(x-712)2=25144x-712=±512x1=512+712=7512+=1x2=-512+712=7512-=16(2)二次项系数化为1得x2-4x-92=0;移项x2-4x=92;配方x2-4x+22=92+4;(x-2)2=172,x-2或x;解得x1,x2=2.总结用配方法解一元二次方程的步骤:(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.教师演示课件,给出题目.学生根据所学知识解答问题.【设计意图】复习用配方法解一元二次方程,归纳总结配方法解一元二次方程的一般步骤,为下面的学习做好铺垫.引导学生思考,前面方程中系数都是具体数字,我们是否可以把系数换成字母形式,根据上面的解题步骤一直推下去?从而激发了学生的兴趣.二、探索新知如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1x2分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-c a配方,得:x 2+b a x +(2b a )2=-c a +(2b a )2 即(x +2b a)2=2244b ac a -,∵b 2-4ac ≥0且4a 2>0,∴2244b ac a -≥0直接开平方,得:x +2b a=即x x 1x 2 由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a 、b 、c 代入式子x =2b a-就得到方程的根. (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.在学生归纳的基础上,老师完善以下几点:(1)当240b ac ->时, 20(0)ax bx c a ++=≠有两个不相等的实数根1x =,2x =; (2)当240b ac -=时, 20(0)ax bx c a ++=≠有两个相等的实数根 122b x x a==-; (3)当240b ac -<时, 20(0)ax bx c a ++=≠无实数根.【设计意图】先由学生独立完成,有困难时通过小组交流与探究解决,由于形式是一元二次方程的一般形式,得出一元二次方程的求根公式与根的判别式.三、学以致用例1.用公式法解下列方程(1)2x 2-4x -1=0 (2)5x +2=3x 2(3)4x 2-x +116=0 (4)4x 2-3x +1=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a =2,b =-4,c =-1b 2-4ac =(-4)2-4×2×(-1)=24>0∴方程有两个不相等的实数根.x =(4)422242--±==⨯∴x 1=x 2 (2)将方程化为一般形式3x 2-5x -2=0a =3,b =-5,c =-2b 2-4ac =(-5)2-4×3×(-2)=49>0∴方程有两个不相等的实数根.x 576±= x 1=2,x 2=-13(3)a =4,b =-1,c =116b 2-4ac =(-1)2-4×4×116=0 ∴方程有两个相等的实数根.∴x 1= x 2= 18= (4)a =4,b =-3,c =1b 2-4ac =(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根.例2.不解方程,判定方程根的情况(1)16x 2+8x =-3 (2)9x 2+6x +1=0(3)2x 2-9x +8=0 (4)x 2-7x -18=0分析:不解方程,判定根的情况,只需用b -4ac 的值大于0、小于0、等于0•的情况进行分析即可.解:(1)化为16x 2+8x +3=0a =16,b =8,c =3,b 2-4ac =64-4×16×3=-128<0所以,方程没有实数根.(2)a =9,b =6,c =1,b 2-4ac =36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8b2-4ac=(-9)2-4×2×8=81-64=17>0∴方程有两个不相等的实根.(4)a=1,b=-7,c=-18b2-4ac=(-7)2-4×1×(-18)=121>0∴方程有两个不相等的实根.例3.某养鸡厂的矩形鸡舍靠墙.现在有材料可以制作竹篱笆20米,若欲围成42平方米的鸡舍,鸡舍的长和宽应是多少?能围成52平方米的鸡舍吗,若可以求出长和宽,若不能说明理由.解:(1)设鸡舍的长为x米,则宽为202x-米,由题意得:x×202x-=42,解得:x1=14(14>10,故舍去),x2=6(此时宽大于长,舍去). 即可得鸡舍的长为6m,宽为7米.(2)由题意得:x×202x-=52,整理得:x2-20x+104=0,△=400-4×104<0,所以方程无解.故不可能围成面积为52平方米的矩形鸡舍.学生活动:学生首先独立思考,自主探索,然后交流教师活动:在学生解决问题的过程中,适时让学生讨论解决遇到的问题.【设计意图】通过解几个具体的问题,检查学生对知识的掌握情况,发挥学生的主体作用,引导学生探究利用公式法解一元二次方程的一般方法,进一步体会一元二次方程的根与24b ac-的关系.四、小结评价1.回顾与思考(1)本节课你学习了哪些知识?(2)本节课你掌握了哪些数学方法?(3)本节课你最大的体验是什么?2.评价:本节课从以下几个方面进行教学评价:1)反映学生数学学习的成就和进步.2)诊断学生在学习中存在的困难,及时调整和改善教学过程.【设计意图】以“回顾与思考”的方式让学生总结本节课的收获,增强学生归纳总结能力. 通过评价全面了解学生数学学习的历程,帮助学生认识到自己在解题策略、思维或习惯上的长处和不足;使学生形成对数学积极的态度、情感和价值观,帮助学生认识自我,树立信心.课后作业1.用公式法求一元二次方程的根时,首先要确定a 、b 、c 的值.对于方程﹣4x 2+3=5x ,下列叙述正确的是( )A .a =﹣4,b =5,c =3B .a =﹣4,b =﹣5,c =3C .a =4,b =5,c =3D .a =4,b =﹣5,c =﹣32.方程x 2﹣3x ﹣5=0的根的情况是( )A 、只有一个实数根B 、有两个不相等的实根C 、有两个相等的实数根D 、没有实数根3.方程x 2+x ﹣1=0的根是( )A .1﹣5B .152-+C .﹣1+5D .152-± 4.下列方程有实数根的是( )A 、2501x x +=-B 、12x -=-C 、x 2﹣x +1=0D 、2x 2+x ﹣1=05.已知直角三角形的三个边长为a 、b 、c ,∠C=90°,那么关于x 的方程(a +c )x 2﹣2bx +(c ﹣a )=0的根的情况是( )A 、无实数根B 、有两个相等的实数根C 、有两个不相等的实根D 、不能确定6.已知一元二次方程2x 2﹣3x =1,则b 2﹣4ac =7.方程ax 2+bx +c =0(a ≠0)的判别式是 ,求根公式是8.一元二次方程x 2﹣x +4=0的解是9.用公式法解方程2x 2﹣7x +1=0,其中b 2﹣4ac = ,x 1= ,x 2=10.一元二次方程a 2﹣4a ﹣7=0的解为11.关于x 的一元二次方程﹣x 2+(2k +1)x +2﹣k 2=0有实数根,则k 的取值范围是12.解方程:(1)5x (x -3)=6-2x ; (2)3y 2+1=23y ; (3)(x -a )2=1-2a +a 2(a 是常数)13.解方程x 2=4x +2时,有一位同学解答如下:解:∵a =1,b =4,c =2,b 2﹣4ac =42﹣4×1×2=8,∴x 24b b ac -±-48222-=-±即:即x 1=22-+x 2=22-分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.14.(1)解下列方程:①x 2﹣2x ﹣2=0;②2x 2+3x ﹣1=0;③2x 2﹣4x +1=0;④x 2+6x +3=0;(2)上面的四个方程中,有三个方程的一次项系数有共同特点,请你用代数式表示这个特点,并推导出具有这个特点的一元二次方程的求根公式.参考答案1.B2.B3.D4.D5.B 解:∵直角三角形的三个边长为a 、b 、c ,∠C=90°, ∴c 2=a 2+b 2①∴△=4b 2﹣4×(a +c )(c ﹣a )=4(a 2+b 2﹣c 2)=0,∴关于x 的方程(a +c )x 2﹣2bx +(c ﹣a )=0有两个相等的实数根.故选B .6.177. b 2﹣4ac 24b b ac -±-8. 无实数解9. 41 7414+ 7414- 10. 2+ 11 2﹣11 11. k ≥94- 12.(1)3,25-;(2)3;(3)1,2a -1 13.解:有错误.没有把x 2=4x +2变成一般式,b 、c 的值是错的.正确的解题过程如下:x 2﹣4x ﹣2=0,∵a =1,b =﹣4,c =﹣2,b 2﹣4ac =(﹣4)2﹣4×1×(﹣2)=24>0,∴x =24b b ac -±-=424262±=-±. 即:x 1=2+6,x 2=2﹣6.14.解:(1)①解方程x 2﹣2x ﹣2=0①,∵a =1,b =﹣2,c =﹣2,∴x =242b b ac a -±-=212132±=±, ∴x 1=1+3,x 2=1-3.②解方程2x 2+3x ﹣l=0,∵a =2,b =3,c =﹣1,∴x =242b b ac a -±-=3174-±, ∴x 1=317-+=,x 2=317--=. ③解方程2x 2﹣4x +1=0,∵a =2,b =﹣4,c =1,∴x ===,x1=,x2=.④解方程x2+6x+3=0,∵a=1,b=6,c=3,∴x===﹣3,∴x1=,x2=.(2)其中方程①③④的一次项系数为偶数2n(n是整数).一元二次方程ax2+bx+c=0,其中b2﹣4ac≥0,b=2n,n为整数.∵b2﹣4ac≥0,即(2n)2﹣4ac≥0,∴n2﹣ac≥0,∴x====∴一元二次方程ax2+2nx+c=0(n2﹣ac≥0)的求根公式为.教学反思本节课在学生练习配方法的基础上,再讨论如何用配方法解一元二次方程的一般形式ax2+bx+c=0(a≠0),就得到一元二次方程的求根公式,于是有了直接利用的公式,并引出用判别式确定一元二次方程的根的情况..利用求根公式解一元二次方程的一般步骤:1、化成一般形式2、找出a,b,c的相应的数值3、判别式是否大于等于04、当判别式的数值符合条件,可以利用公式求根.学生第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多.主要的有:1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号2、求根公式本身就很难,形式复杂,代入数值后出错很多.通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,激发了学生思维的火花,具体有以下几个特点:1、让学生自主探究,交流合作,由浅入深,由易到难,让学生解决问题的能力得以提高,这是这节课中的一大亮点,将更多的时间留给学生,这样学生感觉到成功的机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流,相互学习,共同提高.2、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智.3、总之通过各种激励的教学手段,帮助学生形成积极的学习态度,课堂收效大.需要改进的方面,课堂中的布局有待提高,以后应最大限度的发挥学生的主体作用.。
《用因式分解解一元二次方程》教案

《用因式分解解一元二次方程》教案用因式分解解一元二次方程教案目标本教案旨在介绍如何使用因式分解的方法解一元二次方程。
知识回顾在开始讲解因式分解解一元二次方程之前,让我们先回顾一下相关的知识点:- 一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为常数且a≠0。
- 一元二次方程的解可以分为实数解和虚数解,实数解可以进一步分为有理数解和无理数解。
解题步骤接下来,我们将介绍使用因式分解解一元二次方程的步骤:步骤1:将一元二次方程化为标准形式(即将方程中的项按次数降序排列)。
步骤2:确定方程中的a、b和c的值。
步骤3:使用因式分解将方程进行分解。
步骤4:令因式中的每一个部分等于0,解方程得到各个因式对应的解。
步骤5:将得到的解进行验证,即代入原方程中检验是否满足。
实例演练下面我们通过一个实例来演示如何使用因式分解解一元二次方程:实例:解方程x^2 - 5x + 6 = 0步骤1:将方程化为标准形式,得到x^2 - 5x + 6 = 0。
步骤2:确定a、b和c的值,得到a = 1,b = -5,c = 6。
步骤3:使用因式分解将方程进行分解,得到(x - 2)(x - 3) = 0。
步骤4:令因式中的每一个部分等于0,解方程得到x - 2 = 0和 x - 3 = 0。
步骤5:求解得到x = 2 和 x = 3,将这些解代入原方程验证是否满足。
总结因式分解是解一元二次方程的一种常用方法,通过将方程进行因式分解,可以得到方程的解。
在使用因式分解解一元二次方程时,我们需要依次进行化简、确定值、分解、解方程和验证等步骤。
通过实例的演练,我们可以更好地理解和掌握这一方法。
希望本教案对你有所帮助!。
人教九上数学21.2.2公式法解一元二次方程教案

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元二次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-运用求根公式计算出一元二次方程的解,并理解其意义。
-根据判别式的值分析一元二次方程的根的情况(有两个不相等的实数根、两个相等的实数根、没有实数根)。
举例解释:以方程3x^2 - 5x + 2 = 0为例,重点讲解如何识别a、b、c的值(a=3, b=-5, c=2),并引导学生通过求根公式计算出具体的解(x1,2 = (5±√(25-4*3*2))/(2*3)),强调这一过程是解决一元二次方程的关键。
在小组讨论环节,虽然大部分同学都能够积极参与,但仍有个别同学显得较为沉默。我想在之后的课堂中,更多地关注这些同学,鼓励他们发表自己的观点,提高他们的自信心和表达能力。
最后,从整体来看,学生们对于一元二次方程的求解方法和应用有了基本的了解。但在教学过程中,我也意识到需要不断调整和优化教学方法,以提高教学效果。例如,增加课堂互动,让学生更多地参与到课堂教学中来;加强对重点难点的讲解,确保学生真正理解并掌握这些知识点。
3.增强学生的数据分析能力,使其能够根据判别式的值分析一元二次方程的根的情况,进而对问题进行深入理解与解决。在教学过程中,关注学生对于公式的理解与应用,引导他们形成系统的数学思维和方法。
三、教学难点与重点
1.教学重点
-理解并掌握一元二次方程求根公式的推导过程。
-能够准确地将一元二次方程转换为标准形式,识别出a、b、c的值。
《公式法解一元二次方程》教案3

《公式法解一元二次方程》教案3安福县城关中学曹经富教学设计说明:根据教材的特点,把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.(1)教材分析“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华.(2)学情分析学生的知识技能基础:学生已经学习了一元一次方程、二元一次方程、一次函数以及二次根式的相关知识及应用,在本章中,又学习了一元二次方程的相关解法,初步体会了一元二次方程在解决实际问题中的具体应用,具备了利用数学知识解决实际问题的能力.学生活动经验基础:在相关知识的学习过程中,学生已经经历了由具体问题抽象出数学模型的过程,初步积累了一定的数学建模方法;同时在以往的数学学习中学生已经经历了很多合作学习的机会,具有一定的合作学习经验,具备了一定的合作与交流的能力.教学目标1.理解一元二次方程求根公式的推导过程和判别式,培养数学推理的严密性和逻辑性以及由特殊到一般的数学思想.2. 能够根据方程的各项系数,判断出方程的根的情况,并能正确、熟练的使用求根公式解一元二次方程.3.结合用公式法解一元二次方程的练习,培养快速准确的运算能力和运用公式解决实际问题的能力.4.体验到所有的一元二次方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识.教学重点、难点教学重点:正确、熟练地使用一元二次方程的求根公式解一元二次方程,提高学生的综合运算能力.关键是由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形式展开,利用学生已有的知识,通过自学让学生主动参与到教学活动中来,让学生处于主导地位.通过比较合理的问题设计、小组讨论形式让学生更好的掌握知识.教学难点:正确地推导出一元二次方程的求根公式,理解b2-4ac判别式对一元二次方程根的影响和应用.关键是在教师的指导下,经历观察、推导、交流归纳等活动导出一元二次方程的求根公式和灵活运用根的判别式课时设计一课时.教学策略整节课以“复习回顾——自学提要——分析探究——学以致用——总结升华”为主线,使学生亲身体验求根公式的探索过程,采用教师引导启发、学生独立思考、自主探究、师生讨论交流相结合的方式,为学生提供观察、思考、探索、发现的时间和空间.教学过程一 复习回顾1、一元二次方程 的一般形式是 .2、方程2410x -+= 的二次项系数是 ,一次项系数是 ,常数项是 .3、若方程(x —1)2= -9,则此方程 .4、用配方法解下列方程(1)6x 2-7x +1=0 (2)2x 2-8x -9=0答案:1. ax 2+bx +c =0(a≠0) 2.4 - 1 3.无实数解4.(1)移项,得:6x 2-7x =-1 二次项系数化为1,得:x 2-76x =-16配方,得:x 2-76x +(712)2=-16+(712)2即 (x -712)2=25144,x -712=±512x 1=512+712=7512+=1 x 2=-512+712=7512-=16(2)二次项系数化为1得x 2-4x -92=0; 移项x 2-4x =92;配方x 2-4x +22=92+4;(x -2)2=172,x -2或x ;解得x 1,x 2=【设计意图】复习一般式的化简以及系数的区分,为公式法的推导铺垫,其次利用所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备.二 自学指导阅读课本,并思考:1、用配方法解一元二次方程ax 2+bx +c =0(a ≠0)2、什么叫做根的判别式?3、满足什么条件时一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的数根?两个相等的实数根?没有实数根?4、什么是求根公式?5、用公式法解一元二次方程的一般步骤有几步?答案:1.解:20ax bx c ++=方程两边都除以a ,得:20b c x x a a ++= 配方,得:222()()22b b c b x x a a a a++=-+,即:2224()24b b ac x a a -+=当24b ac -≥0时,开平方得:2b x a +=所以方程的解是:x = 当24b ac -<0时,方程无实数根.2.一元二次方程的根的判别式一元二次方程20ax bx c ++=(a ≠0)的根的情况由24b ac -来确定,我们把24b ac -叫做一元二次方程20ax bx c ++=(a ≠0)的根的判别式,通常用符号“△”表示,即△=24b ac -.3.一般地,方程20ax bx c ++=(a ≠0).当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.反过来,有当方程有两个不相等的实数根时,△>0;当方程有两个相等的实数根时,△=0;当方程没有实数根时, △<0.注意:一元二次方程根的判别式的应用:①不解方程判别根的情况;②根据方程解的情况确定系数的取值范围.4. 一元二次方程20ax bx c ++=(a ≠0)的求根公式为:x =(240b ac -≥),其中公式中的a 、b 、c 分别是一元二次方程的二次项系数、一次项系数及常数项.我们用求根公式法求一元二次方程解的方法称为公式法.5.用公式法解一元二次方程的一般步骤是:①首先把一元二次方程化为一般形式;②确定公式中a 、b 、c 的值;③求出24b ac -的值;④若24b ac -≥0,则把a 、b 、c 及24b ac -的值代入求根公式即可求解.当24b ac -<0时,此时方程无实数解.【设计意图】通过相关问题的自学与小组合作交流探讨,使学生认识到有的一元二次方程是没有实数根的,学生会很自然的产生为什么有的一元二次方程没有实数根的疑问,教师适时引导学生一元二次方程的根与一元二次方程什么有关系问题,从而激发学生的求知欲望. 让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.三. 分析探究【设计意图】学生对于字母的一元二次方程的一般形式用配方法解决有难度,教师可进行适当引导与点拨、提示,培养学生独立思考的能力和推导能力.四 学以致用例1:不解方程,判定方程根的情况(1)16x 2+8x =-3 (2)9x 2+6x +1=0(3)2x 2-9x +8=0 (4)x 2-7x -18=0分析:不解方程,判定根的情况,只需用b 2-4ac 的值大于0、小于0、等于0•的情况进行分析即可.解:(1)化为16x 2+8x +3=0这里a =16,b =8,c =3,b 2-4ac =64-4×16×3=-128<0所以,方程没有实数根.(2)a =9,b =6,c =1,b 2-4ac =36-36=0,∴方程有两个相等的实数根.(3)a =2,b =-9,c =8b 2-4ac =(-9)2-4×2×8=81-64=17>0∴方程有两个不相等的实根.(4)a =1,b =-7,c =-18b 2-4ac =(-7)2-4×1×(-18)=121>0∴方程有两个不相等的实根.例2.用公式法解下列方程(1)2x 2-4x -1=0 (2)5x +2=3x 2(3)4x 2-x +116=0 (4)4x 2-3x +1=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a =2,b =-4,c =-1b 2-4ac =(-4)2-4×2×(-1)=24>0∴方程有两个不相等的实数根.x =(4)422242--±==⨯∴x 1x 2 (2)将方程化为一般形式3x 2-5x -2=0a =3,b =-5,c =-2b 2-4ac =(-5)2-4×3×(-2)=49>0∴方程有两个不相等的实数根.x =(5)57236--±±=⨯ x 1=2,x 2=-13(3)a =4,b =-1,c =116b 2-4ac =(-1)2-4×4×116=0 ∴方程有两个相等的实数根.∴x 1= x 2= (1)1248--±=⨯ (4)a =4,b =-3,c =1b 2-4ac =(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根.例3.某养鸡厂的矩形鸡舍靠墙.现在有材料可以制作竹篱笆20米,若欲围成42平方米的鸡舍,鸡舍的长和宽应是多少?能围成52平方米的鸡舍吗,若可以求出长和宽,若不能说明理由..解:(1)设鸡舍的长为x 米,则宽为202x -米, 由题意得:x ×202x -=42, 解得:x 1=14(14>10,故舍去),x 2=6(此时宽大于长,舍去).即可得鸡舍的长为6m ,宽为7米.(2)由题意得:x ×202x -=52, 整理得:x 2-20x +104=0,△=400-4×104<0,所以方程无解.故不可能围成面积为52平方米的矩形鸡舍.【设计意图】对求根公式解方程与应用作进一步深化,使不同层次的学生都有不同提高,进一步巩固本节课所学知识.五、总结升华1、用公式法解一元二次方程时要注意什么?2、任何一个一元二次方程都能用公式法求解吗?举例说明.3、若解一个一元二次方程时,b 2-4ac <0,请说明这个方程解的情况.【设计意图】采用学生小结教师补充的方式来概括本节课的知识.回答学生在学完本课后发现的未能解决的问题及创新性问题,给学生自由思考的空间.适当给以指导,培养学生归纳和语言表达能力,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.课后作业1.用公式法求一元二次方程的根时,首先要确定a 、b 、c 的值.对于方程﹣4x 2+3=5x ,下列叙述正确的是( )A .a =﹣4,b =5,c =3B .a =﹣4,b =﹣5,c =3C .a =4,b =5,c =3D .a =4,b =﹣5,c =﹣32.方程x 2﹣3x ﹣5=0的根的情况是( )A 、只有一个实数根B 、有两个不相等的实根C 、有两个相等的实数根D 、没有实数根3.方程x 2+x ﹣1=0的根是( )A .1﹣5B .15-+C .﹣1+5D .15-± 4.下列方程有实数根的是( )A 、2501x x +=-B 、12x -=-C 、x 2﹣x +1=0D 、2x 2+x ﹣1=05.已知直角三角形的三个边长为a 、b 、c ,∠C=90°,那么关于x 的方程(a +c )x 2﹣2bx +(c ﹣a )=0的根的情况是( )A 、无实数根B 、有两个相等的实数根C 、有两个不相等的实根D 、不能确定6.已知一元二次方程2x 2﹣3x =1,则b 2﹣4ac =7.方程ax 2+bx +c =0(a ≠0)的判别式是 ,求根公式是8.一元二次方程x 2﹣x +4=0的解是9.用公式法解方程2x 2﹣7x+1=0,其中b 2﹣4ac = ,x 1= ,x 2=10.一元二次方程a 2﹣4a ﹣7=0的解为11.关于x 的一元二次方程﹣x 2+(2k +1)x +2﹣k 2=0有实数根,则k 的取值范围是12.解方程:(1)5x (x -3)=6-2x ; (2)3y 2+1=23y ; (3)(x -a )2=1-2a +a 2(a 是常数)13.解方程x 2=4x +2时,有一位同学解答如下:解:∵a =1,b =4,c =2,b 2﹣4ac =42﹣4×1×2=8,∴x 24b b ac -±-4822-±=-±即:即x 1=22-x 2=22-分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.14.(1)解下列方程:①x 2﹣2x ﹣2=0;②2x 2+3x ﹣1=0;③2x 2﹣4x +1=0;④x 2+6x +3=0;(2)上面的四个方程中,有三个方程的一次项系数有共同特点,请你用代数式表示这个特点,并推导出具有这个特点的一元二次方程的求根公式.参考答案1.B2.B3.D4.D5.B 解:∵直角三角形的三个边长为a 、b 、c ,∠C=90°, ∴c 2=a 2+b 2①∴△=4b 2﹣4×(a +c )(c ﹣a )=4(a 2+b 2﹣c 2)=0,∴关于x 的方程(a +c )x 2﹣2bx +(c ﹣a )=0有两个相等的实数根.故选B.6.177. b 2﹣4ac8. 无实数解9. 4174-10. 2+ 2 11. k ≥94-12.(1)3,25-;(2)3;(3)1,2a -113.解:有错误.没有把x 2=4x +2变成一般式,b 、c 的值是错的.正确的解题过程如下:x 2﹣4x ﹣2=0,∵a =1,b =﹣4,c =﹣2,b 2﹣4ac =(﹣4)2﹣4×1×(﹣2)=24>0,∴x =2b a -=422=-即:x 1,x 2=2.14.解:(1)①解方程x 2﹣2x ﹣2=0①,∵a =1,b =﹣2,c =﹣2,∴x 212±=∴x 1x 2=1.②解方程2x 2+3x ﹣l=0,∵a =2,b =3,c =﹣1,∴x =2b a -∴x 1=34-=,x 2=34-=.③解方程2x 2﹣4x +1=0,∵a=2,b=﹣4,c=1,∴x===,x1=,x2=.④解方程x2+6x+3=0,∵a=1,b=6,c=3,∴x===﹣3,∴x1=,x2=.(2)其中方程①③④的一次项系数为偶数2n(n是整数).一元二次方程ax2+bx+c=0,其中b2﹣4ac≥0,b=2n,n为整数.∵b2﹣4ac≥0,即(2n)2﹣4ac≥0,∴n2﹣ac≥0,∴x====∴一元二次方程ax2+2nx+c=0(n2﹣ac≥0)的求根公式为.板书设计教学反思1.充分利用教材,在练习题与例题的编排上打破常规,通过设置自学提要—自学—探索—归纳—总结出公式法,再让学生用求根公式解决问题,深刻地体现了新教材的课改理念.2.在学习过程中,给学生留下了很大的思维空间,通过学生自主学习,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生.无论是公式的推导,还是公式的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼.3.在巩固新知识的阶段中,习题的编排上有梯度上,即注重了双基训练,又注重了能力的培养.使学生在掌握基础的前提下,循序渐进,步入公式的大家庭中.同时在探索升级中,进一步锻炼,培养了学生的猜想能力.。
《用因式分解法求解一元二次方程》示范课教学设计【数学九年级上册北师大】

《用因式分解法求解一元二次方程》教学设计
一、教学目标
1.理解用因式分解法解一元二次方程的依据.
2.能用因式分解法(提公因式法、公式法)求解某些数字系数的一元二次方程.
3.能根据具体的一元二次方程的特征,灵活选择方程的解法.
4.体验解决问题的方法多样性,提升学习数学的兴趣,并建立学好数学的自信心.
二、教学重难点
重点:能用因式分解法(提公因式法、公式法)求解某些数字系数的一元二次方程.
难点:能根据具体的一元二次方程的特征,灵活选择方程的解法.
三、教学用具
电脑、多媒体、课件、教学用具等
四、教学过程设计
思维导图的形式呈现本节课的主要内容:教科书第48页习题2.7第2、3题。
九年级数学上册《用公式法求解一元二次方程》教案、教学设计

难点:判断根的情况,并解释其对应的实际意义。
3.重点:培养学生运用一元二次方程解决实际问题的能力。
难点:将复杂问题简化为一元二次方程,并进行有效求解。
(二)教学设想
1.创设情境,激发兴趣:
结合生活实例,如抛物线运动、面积计算等,引入一元二次方程,激发学生的学习兴趣。
-小组研究题:选取一个话题,小组合作研究一元二次方程在该话题中的应用,并准备课堂分享。
作业布置时,我会强调以下几点:
-作业量适中,确保学生有足够的时间进行思考和练习。
-鼓励学生独立完成作业,遇到困难时可以寻求同学或老师的帮助。
-强调作业的完成质量,要求学生书写规范,步骤清晰。
-鼓励学生在作业中展现自己的思考过程,包括解题思路、遇到的困难和解决方案。
-对作业进行及时反馈,指导学生改正错误,提高解题能力。
-探究题:给定一个开放性问题,要求学生通过建立和求解一元二次方程来探究问题的不同解决方案。
-拓展题:鼓励学生探索一元二次方程在其他学科领域的应用,如经济学、生物学等。
4.小组合作题:这类题目要求学生在课后小组合作完成,旨在培养学生的团队协作能力。
-小组讨论题:小组共同讨论一元二次方程的实际应用案例,并撰写总结报告。
4.巩固练习,提高解题能力:
设计不同难度的习题,让学生在练习中巩固所学知识,提高解题能力。针对学生的个体差异,进行分层指导,使每个学生都能得到提高。
5.课堂小结,强化重点:
通过对本节课内容的总结,强调一元二次方程公式法的求解步骤、根的判别式等关键知识点。
6.拓展延伸,提高素养:
将一元二次方程与实际应用相结合,如几何图形、物理运动等,提高学生运用数学知识解决实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学面试试讲真题《用公因式法解一元二次方程》教案、教学设
计
一、教学目标
【知识与技能】
理解并掌握一元二次方程求根公式的推导过程,能正确、熟练地运用公式法解一元二次方程。
【过程与方法】
经历探究求根公式的过程,发展合情推理能力,提高运算能力并养成良好的运算习惯。
【情感、态度与价值观】
通过公式法解一元二次方程,感受解法的多样性,在学习活动中获取成功的体验。
二、教学重难点
【教学重点】
用公式法解一元二次方程。
【教学难点】
一元二次方程求根公式的推导。
三、教学过程
(一)引入新课
复习回顾:用配方法解一元二次方程。
配方,得
(四)小结作业
小结:引导学生做知识总结:本节课学习了什么叫公式法,怎样运用公式法解一元二次方程。
如何判断一个方程是否有实数根?
作业:课后练习题,试着用多种方法解答。
四、板书设计。