不定积分换元法例题

合集下载

换元法球不定积分例题

换元法球不定积分例题

换元法球不定积分例题换元法是数学中用来解决多项式方程的一种有用方法。

在求解球不定积分时,也可以采用换元法求解。

换元法求解球不定积分,由于采用了不同的变量,可以使得球不定积分变得更加容易解决。

下面,将介绍一下如何使用换元法求解球不定积分的方法,并且介绍一下如何使用换元法解决一个具体的例题。

要使用换元法求解球不定积分,首先要找出公式中的变量,然后将变量换入另一个比较有利的变量,以便求解。

一般而言,可以将三度变量换为两度变量,例如:将x、y、z换为u、v;将θ、Φ换为θ、u,等等。

当变量换入后,要计算换元前后积分结果的关系,以便求解球不定积分。

下面介绍一个例题:求解:∫∫(x^2+y^2+z^2)dxdydz由于这里有三个变量,所以可以采用换元法求解。

首先,将变量换入一组新的变量:u = x^2 + y^2 + z^2v = x^2 + y^2将u、v换入原积分公式中,可得:∫∫u du dv = -1/3∫∫(v^3/3 + v^2/2 + v)dvdu积分得到:∫∫u du dv = -1/3[v^4/12 + v^3/6 + v^2/2]u + C将u、v再换回x、y、z,可得:∫∫(x^2+y^2+z^2)dxdydz = -1/3[(x^2+y^2)^4/12+ (x^2+y^2)^3/6 + (x^2+y^2)^2/2] + C根据换元法的解决方案,最终的结果为:∫∫(x^2+y^2+z^2)dxdydz = -1/3[(x^2+y^2)^4/12+ (x^2+y^2)^3/6 + (x^2+y^2)^2/2] + C从上面的例题中可以看出,使用换元法求解球不定积分,可以有效解决问题。

换元法虽然比较复杂,但是也是一种有效的求解球不定积分的方法。

换元法求解球不定积分有两个很重要的方面:一是找出公式中的变量,然后将变量换入另一组比较有利的变量;二是计算出换元前后积分结果的关系。

最后,将换元后的结果换回原变量,即可得到最终的结果。

第5章2不定积分换元积分(1)

第5章2不定积分换元积分(1)
3
例10 求 sin3 x dx.
解 sin3 x dx sin2 x sin x dx (1 cos2 x)d cos x
1 cos3 x cos x C 3
说明 当被积函数是三角函数相乘并有奇次幂 时,拆开奇次项去凑微分.
例11 求 sin2 x cos5 xdx.
积分: f [(x)](x)dx F[(x)d[(x)] dF[(x)
第一类换元法可表述为:
换元 ( x )u
积分
f [( x)]( x)dx f (u)duF(u) C
u ( x )还原
F[( x)] C
4
换元积分法
一、第一类换元法
例2 求 2xex2dx .
例3 求 x 1 - x2dx .
19
(1)
5
(1 3x)2 dx
2
(1
7
3x)2
C
21
(3)
1
x x
2
dx
1 ln(1 x2 ) C 2
(5) (ln x)2 dx 1x
(7)
ex x2
dx
1 ln( x)3 C 3
1
ex C
(9) dv 1 2v C 1 2v
(11)
x
2x 2
x
1
3
dx
ln x 2 x 3 C

tanxdx
sin cos
x x
dx
1 d cos x cos x
= - ln |cosx| + C
tanxdx = - ln |cosx| + C = ln |secx| + C
同理 cotxdx = ln |sinx| + C = - ln |cscx| + C

不定积分换元法例题

不定积分换元法例题

不定积分换元法例题一、不定积分换元法不定积分换元法是一种数学计算方法,主要用于求解某种函数的积分。

它是一种简单而有效的方法,在数学中被广泛应用,可以解决复杂的数学问题。

二、不定积分换元法的基本原理不定积分换元法的基本原理是:对于某个函数f(x),可将它分割为m个部分,每个部分都是一个函数。

那么积分就可以分解为m个部分的积分,即:积分f(x)dx = ∑[f(x_i)dx_i]其中,x_i是分解出来的第i个函数,dx_i表示第i个函数的积分。

这样,我们就可以通过不定积分换元法求出积分f(x)dx。

三、不定积分换元法的具体应用不定积分换元法可以用来求解各种复杂的数学问题,比如:1、求解未知函数的积分:例如,求解函数f(x)=x^2的积分,可以按照不定积分换元法的思路,将f(x)分解为m个部分,每个部分都是一个函数。

那么,积分f(x)dx就可以分解为m个部分的积分,即:∫f(x)dx = ∑[f(x_i)dx_i]2、求解复合函数的积分:例如,求解函数f(x)=x^2+2x+1的积分,可以按照不定积分换元法的思路,将f(x)分解为m个部分,每个部分都是一个函数。

那么,积分f(x)dx就可以分解为m个部分的积分,即:∫f(x)dx = ∑[f(x_i)dx_i]四、不定积分换元法的优势1、不定积分换元法可以有效地避免复杂的计算,使计算变得简单快捷;2、不定积分换元法可以解决多元函数的积分问题;3、不定积分换元法可以有效地提高计算效率,减少计算时间;4、不定积分换元法可以避免计算错误,提高计算精度。

总之,不定积分换元法是一种有效的数学计算方法,可以有效地解决复杂的数学问题,提高计算效率,减少计算时间,提高计算精度。

不定积分与定积分换元法

不定积分与定积分换元法

dx x + x4 + 1
1 1 令 x = , dx = − dt . 于是 则 t t2
I=∫ dx x + x4 + 1 = −∫ 1 ( + 4 + 1 )t 2 t t dt 1
= −∫
dt t + t2 +1
= −I
因为 I = − I ,
所以 I = 0 .
这个结论显然是错误的,但是问题发生在哪里? 这个结论显然是错误的,但是问题发生在哪里?
对于积分 ∫ f ( x )dx 进行换元 x = ϕ ( t ) ,
求出 ∫ f (ϕ ( t ))ϕ ′( t )dt = G ( t ) + c 之后, 必须用反函数 t = ϕ −1 ( x ) 回代 ,
1 . ∫ f ( x )dx = G (ϕ − ( x )) + c 才能得出最后结果
这个例题说明: 这个例题说明:
利用换元法 x = ϕ (t ) 计算定积分时 ,
必须注意新变量 t 的变化范围 , 明确 t 和 x 的取值对应关系 .
这一不仅关系到积分上下限的确定, 这一不仅关系到积分上下限的确定, 还可能涉及到被积函数的形式的确定. 还可能涉及到被积函数的形式的确定.
关于两个换元积分法的小结
积分换元法
不定积分换元法 定积分换元法 联系与区别 实例分析
定理1 (不定积分换元法) 定理1:(不定积分换元法)
假设 f ( x ) 连续 , 单调,连续, 函数 x−1 ( x ) . 如果 ∫ f (ϕ ( t ))ϕ ′( t )dt = G ( t ) + c , 则有
2 2 a
( a > 0)
详细分析不定积分换元法和定积分换元法的异同. 详细分析不定积分换元法和定积分换元法的异同 计算两种积分都需要作换元 x = a sin t dx = a cos tdt (1)两者的第一个区别是: (1)两者的第一个区别是: 两者的第一个区别是

不定积分第二类换元法题目

不定积分第二类换元法题目

不定积分第二类换元法题目换元法是积分学中使用最广泛的一种方法,它的本质是利用两种形式的变量之间的关系来求解不定积分的问题。

作为一类特殊的不定积分,称为不定积分第二类,第二类换元法就是应用这种不定积分解题的手段。

一般来说,在第二类换元法求解不定积分问题时,首先要把待求积分式转换为一阶微分式,其次把微分式中的自变量更换为另外一种形式,即换元式,最后求解换元式,从而解出不定积分式的解析解。

以下是一个典型的第二类换元法解题例子:求解:$$int frac{sin x}{1+cos x}dx$$解:将不定积分式转换为一阶微分式:$$frac{d(1+cos x)}{dx}=sin x$$引入另外一种形式的自变量替换:$$cos x=t,~dx=-frac{dt}{sin x}$$把原式换元:$$begin{aligned}int frac{sin x}{1+cos x}dx&=-int frac{dt}{t+1}&=-ln|t+1|+Cend{aligned}$$将换元式中变量替换回原来的形式:$$ln|1+cos x|+C$$以上便是利用第二类换元法解题的具体过程,可以看出,第二类换元法可以有效地解决不定积分类问题,其实在积分学中,还有其他一些方法可以用来求解更复杂的不定积分问题,比如积分变换、积分可分离和换元法等。

之所以把换元法分为不同的类别,是因为它的应用范围是不一样的;当某一类问题中存在多种解法时,也会根据其具体情况进行划分类别。

比如,第一类换元法是用来求解同角变换不定积分,而第二类换元法则是利用不同余弦变换解不定积分。

此外,第二类换元法还可以用来解决一些复杂的不同余弦变换的不定积分问题,比如:$$int sqrt{1+cos x+cos^2 x}dx$$由前面的变换可得:$$1+cos x +cos^2 x=frac{1+t}{1-t}$$由此,可以把这个式子以$ t=cos x $的形式变为:$$begin{aligned}int sqrt{frac{1+t}{1-t}}dt&=int frac{1+t}{sqrt{1-t^2}}dt &=frac{1}{2}ln|1-t^2|+Cend{aligned}$$将变量替换为原式中的形式,即$$frac{1}{2}ln|1-(cos x)^2|+C$$以上便是第二类换元法解题的过程,可以看出,换元法确实是一种有效的解题方法,它可以在不定积分的解题中发挥重要作用,但还有一些其他的解题方法,比如积分可分离和积分变换也是解决不定积分类问题中不可或缺的一种手段。

5-2 不定积分的换元积分法

5-2 不定积分的换元积分法

1 2 xdx (2) xe dx
(1)
5 x2
1 3 1 1 2 1 2 x 2 C (1 2 x ) 2 d (1 2 x ) 2 3 2

x (3) dx 2 2 3x
e 10
1
5 x2
1 5 x2 d (5 x ) e C 10
1 (2) 2 dx; a x
1 a 2 x 2 dx;
x a 2 x 2 dx
1 1 x x (3) dx; dx; dx; dx 3 2 2 5 1 x (1 x ) 1 x (1 x )
19
换元积分法
二、第二换元积分法
第一换元法中 ( x) u f [ ( x)] ( x)dx
1 ln1 2 ln x C 2

1 1 ln x d (ln x ) 1 x
x

1 1 1 d (1 2ln x ) 1 x (1 2ln x ) 2
x
11
换元积分法
利用基本积分表的公式把被积函数中的一部分凑成 中间变量的微分,常见的有:
1 dx d ax b a 1 n 1 x dx d x n n e x dx d(e x ) cos xdx d(sin x ) sec 2 xdx d(tan x ) 1
1 (t 1) 1 1 1 x dx 1 t 2tdt 2 1 t dt 1 2 (1 )dt 1 t
2t 2ln 1 t C
2 x 2 ln( 1 x) C
23
换元积分法
练习 求下列函数的不定积分 x 1 (1) x x 1dx; (2) 3 dx . 3x 1

不定积分换元法例题

不定积分换元法例题

【不定积分的第一类换元法】 已知()()f u du F u C =+⎰求()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰ 【凑微分】()()f u du F u C ==+⎰ 【做变换,令()u x ϕ=,再积分】(())F x C ϕ=+ 【变量还原,()u x ϕ=】【求不定积分()g x dx ⎰的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ϕϕ=⎰⎰(2)凑微分:()(())((')))(()x g x dx d x dx f x f x ϕϕϕϕ==⎰⎰⎰(3)作变量代换()u x ϕ=得:()(())'()()()()g x dx f x x x x dx f d ϕϕϕϕ==⎰⎰⎰()u f u d =⎰(4)利用基本积分公式()()f u du F u C =+⎰求出原函数:()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰()()d u u C f u F ==+⎰(5)将()u x ϕ=代入上面的结果,回到原来的积分变量x 得:()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰()()f u du F u C ==+⎰(())F x C ϕ=+【注】熟悉上述步骤后,也可以不引入中间变量()u x ϕ=,省略(3)(4)步骤,这与复合函数的求导法则类似。

__________________________________________________________________________________________ 【第一换元法例题】1、9999(57)(57)(5711(57)(57)55)(57)dx d x d x dx x x x x +=+⋅=+⋅=+⋅++⎰⎰⎰⎰ 110091(57)(57)(57)10111(57)5550d C x x x x C =⋅=⋅+=+++++⎰ 【注】1(57)'5,(57)5,(57)5x d x dx dx d x +=+==+⇒⇒2、1ln ln ln ln dx d x x x dx x x x =⋅=⋅⎰⎰⎰221(l 1ln ln (ln )2n )2x x x d C x C =⋅=+=+⎰【注】111(ln )',(ln ),(ln )x d x dx dx d x x x x===⇒⇒3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x xx --====⎰⎰⎰⎰⎰cos ln |cos |c ln |co s |o s xx d C x C x=-=-+=-+⎰【注】(cos )'sin ,(cos )sin ,sin (cos )x x d x xdx xdx d x =-=-=-⇒⇒ 3(2)cos cos cot sin sin sin sin xdx x xdx dx d xx x x ===⎰⎰⎰⎰sin ln |si ln |sin |n |sin xx d C x C x==+=+⎰【注】(sin )'cos ,(sin )cos ,cos (sin )x x d x xdx xdx d x ==⇒=⇒ 4(1)1()11d dx a x a x a d x x a x =⋅=⋅++++⎰⎰⎰ ln |1(|)ln ||d C a x a x a x a xC ++=⋅=+=+++⎰【注】()'1,(),()a x d a x dx dx d a x +=+==+⇒⇒ 4(2)1()11d dx x a x x x d a a x a =⋅=⋅----⎰⎰⎰ ln |1(|)ln ||d C x a x a x a x aC --=⋅=+=--+⎰【注】()'1,(),()x a d x a dx dx d x a -=-==-⇒⇒4(3)22221111111212x a a x a dx dx x a x a dx dx a a a x dx x ⎛⎫- ⎪--+⎝⎛⎫=-+⎭==- ⎪-⎝⎭⎰⎰⎰⎰⎰ ()11ln ||ln ||ln22x ax a x a C C a a x a-=--++=++5(1)2sec ()sec tan sec sec tan sec tan sec sec tan x x x x xdx x x x xdx dx x x+==⋅+++⎰⎰⎰ tan sec tan sec sec ()()ln |sec tan |se tan c tan d x x x x x xd x x C x x +===+++++⎰⎰5(2)2221cos sec cos c cos sin os cos 1sin x xdx dx dx x xx dx d xx x ====-⋅⎰⎰⎰⎰⎰ 2sin si 1111sin 111sin ln ln 1n sin 2112sin 121s sin sin in d x x x x x xd C C x xx --⎛⎫==-⋅=+=+ ⎪--+++⎝⎭⎰⎰ 6(1)2csc ()csc cot csc csc cot csc cot csc csc cot x x x x xdx x x x xdx dx x x+==⋅+++⎰⎰⎰ ()()ln |csc cot |csc c cot csc csc cot csc o ot t c d d x x x x x xx x C x x --+=-==+-+++⎰⎰6(2)2csc ()csc cot csc csc cot csc cot csc csc cot x x x x xdx x x x xdx dx x x==⋅----⎰⎰⎰()(cot csc csc co )ln |csc t csc co cot |c t sc cot d x x x x d x x xx x C x -+-=---==+⎰⎰7(1)arcsin x C ==+7(2)arcsind xC ax d x =====+⎛⎫ ⎪⎛⎫ ⎪⎰⎰8(1)221arctan 11dx dx x C x x ==+++⎰⎰8(2)222222221111arctan 111d dx x dx C a x a x a a a x x x d dx x a x a a a a a a ⎛⎫⎛⎫⎪=====+++⎡⎤⎛⎫⎛⎫++⎝⎭⎛⎫⎪+⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎪⎝⎭⎰⎰⎰⎰⎰,(0a >)9(1)352525s sin cos sin cos sin i c s o c n o s xd x xdx x x x x x d x =⋅-⋅=⎰⎰⎰862575cos cos (1cos )cos cos (cos cos )cos 86x xx x d x x x d x C =--⋅⋅=-⋅=-+⎰⎰9(2)353434c sin cos sin cos sin cos os sin x x xdx x x x dx d x x =⋅=⋅⎰⎰⎰468322357sin sin sin sin (1sin )sin (sin 2sin sin )sin 438x x xx x d x x x x d x C =-⋅=-+⋅=-++⎰⎰10(1)1ln 111l l n ln ln l ln n n ln dx d x C x x x x dx d x x x x =⋅=⋅=⋅=+⋅⎰⎰⎰⎰ 10(2)222211111ln ln ln ln ln n ln l dx d C x x x x d x xx x d x x ⋅=⋅=⋅=⋅=-+⎰⎰⎰⎰11(1)242424222222()arctan(21)222)121122(xdx d x C x x x x x x x x dx x dx ====+++++++++++⎰⎰⎰⎰ 11(2)2242422422121()2521112252524()xdx d x xdx d x x x x x x x x +===++++++++⎰⎰⎰⎰ 2222222121(1)111arctan()8442111122x d d x x C x x ⎛⎫+ ⎪++⎝⎭===+⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭⎰⎰12、s 22dx dx dx =⋅=⋅=⎰⎰⎰2s i 2s C C =⋅=-+=-+⎰13、222211222122xx xx e dx e d x d e x C e ===+⎰⎰⎰14、 43333co sin sin cos sin sin s sin i 4sin s n xx xdx x x d C dx x x x d x =⋅=⋅=⋅=+⎰⎰⎰⎰15、100(25)x dx +⎰10010010011(25)(25)2(25)(25)(25)2dx d x x x x d x =+⋅=+++⋅+⋅=⎰⎰⎰ 1001100111(25)(25)(25)101111(25)22202x x x d C x C =⋅=⋅+=+++++⎰16、2222222111sin sin s 2in sin cos 22x x x x x dx x xdx dx x d C =⋅=⋅=⋅=-+⎰⎰⎰⎰ 17、ln 1ln dx d d x x x ===⎰3122ln ln (1ln )(1ln )2(1ln )2(1ln )3d x d xd x d x x x C =-=+-+=+-++⎰⎰18、arctan arctan arctan arc arct 2tan 2an arcta 11arct 1n an x x x xx e dx e e e d e C x dx d x xx +=⋅=⋅=⋅=++⎰⎰⎰⎰ 19、22(1)x d xd dx x ===--2(1)d x C -=-=20、si n cos x dx d x =-=3221coscos 2cosx C x d x --=-=+⎰21、111()ln(22222)2x x x x x xx x x e dx d e e dx d e C e e e ee =⋅=⋅==+++++++⎰⎰⎰⎰22、23222ln ln ln l 1ln ln ln n 3x x dx x x x x d C x dx d x x =⋅=⋅=⋅=+⎰⎰⎰⎰ 23、C ====+24、2221()177(112()()()2224224d x dx x x x x d x dx -===-+-+-+-⎰⎰⎰1()1d x C C x -==-+=+⎰ 25、计算⎰,22a b ≠【分析】因为:22222222(sin cos )'2sin cos 2cos (sin )2()sin cos a x b x a x x b x x a b x x +=+-=- 所以:222222(sin cos )2()sin cos d a x b x a b x xdx +=- 2222221sin cos (sin cos )2()x xdx d a x b x a b =⋅+-【解答】2222221a b ==-2222221C a b =+-【不定积分的第二类换元法】 已知()()f t dt F t C =+⎰求()(())()(())'()g x dx g t d t g t t dt ϕϕϕϕ==⎰⎰⎰【做变换,令()x t ϕ=,再求微分】 ()()f t dt F t C ==+⎰ 【求积分】1(())F x C ϕ-=+ 【变量还原,1()t x ϕ-=】__________________________________________________________________________________________ 【第二换元法例题】1、22sin sin sin 2si 2n t x t t t tdt t t dt tdt =⋅=⋅=⎰⎰⎰⎰2cos t t C C =-+-+变量还原2(1)2211122111211t x t dt td t dt dt t t t t t =⎛⎫⋅=⋅==- ⎪++++⎝⎭⎰⎰⎰⎰⎰ ())2l n |1|l |t t t C C =-++-++变量还原2(2)22(1)(1)2(1)1111221t x t d t dt dt t t t t dt t t =--⎛⎫⋅=⋅==- ⎪⎝⎭--⎰⎰⎰⎰⎰令()()12ln ||21ln |1t t t C C ==-++-++变量还原3、343324332(1)1(1)(1)4(1)3tx t dx t t t d t t t dt =-⋅=--⋅⋅⋅-⎰ 746312()1274t t t t dt C ⎛⎫=-=-+ ⎪⎝⎭⎰12t C -+⎝=⎭变量还原4、222221112(1)(1)12t x t dt td dt t t t t t t =⋅====⋅=+++⎰⎰⎰2arctan t t C C =+变量还原5、ln 111111111(1)11ln xx e t x t dx dt dt e t t t t t t t t t d d =========⎛⎫⋅=⋅==- ⎪+++++⎝⎭=⎰⎰⎰⎰⎰令 l n ||l n |1|l n l n 11xxx t e te t t C C C te========-++=+++=+变量还原6、6223236522111661(1)(61)11t x t t dt dt t t t t t dt t t d t =⎛⎫⋅=⋅==- ⎪++++==⎝⎭⎰⎰⎰⎰6(arctan )t t t C C +=-+变量还原【注】被积函数中出现了两个根式时,可令t =,其中k 为,m n 的最小公倍数。

不定积分的换元积分法4.2

不定积分的换元积分法4.2

f [j ( t )] j ( t )dt

最后将t =j1(x)代入f [j(t)]j(t) 的原函数中.
第二类换元法用于求特殊类型的不定积分.
例 21 例18

a
2
x
2
d x (a > 0 ).
x

2
a t
a x
2 2

设 x a sin t ,
a x
a
2
< t<
2 2
ln | x
x a
2
2
| C

三、积分公式小结
(1 ) kdx kx C ,
( 2 ) x dx
m
(k是常数),
x
m 1
1
m 1
C,
(m 1),
(3)
(4)
(5 )
1 x
dx ln | x | C ,
1 dx arctan x C ,
例 23 例21

dx x
2
x
2
(a > 0 ).
a
解 那么
当 x> a 时 , 设 x a se c t (0 < t<
x a
2 2

2
t
),
sec
2
a
t 1

a sec
2
2
ta
2
a
a tan t , 于是

dx x a
2 2

2

a sec t tan t a tan t
2
1 3
sin
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【不定积分的第一类换元法】 已知()()f u du F u C =+⎰求()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰ 【凑微分】()()f u du F u C ==+⎰ 【做变换,令()u x ϕ=,再积分】(())F x C ϕ=+ 【变量还原,()u x ϕ=】【求不定积分()g x dx ⎰的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ϕϕ=⎰⎰(2)凑微分:()(())((')))(()x g x dx d x dx f x f x ϕϕϕϕ==⎰⎰⎰(3)作变量代换()u x ϕ=得:()(())'()()()()g x dx f x x x x dx f d ϕϕϕϕ==⎰⎰⎰()u f u d =⎰(4)利用基本积分公式()()f u du F u C =+⎰求出原函数:()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰()()d u u C f u F ==+⎰(5)将()u x ϕ=代入上面的结果,回到原来的积分变量x 得:()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰()()f u du F u C ==+⎰(())F x C ϕ=+【注】熟悉上述步骤后,也可以不引入中间变量()u x ϕ=,省略(3)(4)步骤,这与复合函数的求导法则类似。

__________________________________________________________________________________________ 【第一换元法例题】1、9999(57)(57)(5711(57)(57)55)(57)dx d x d x dx x x x x +=+⋅=+⋅=+⋅++⎰⎰⎰⎰ 110091(57)(57)(57)10111(57)5550d C x x x x C =⋅=⋅+=+++++⎰ 【注】1(57)'5,(57)5,(57)5x d x dx dx d x +=+==+⇒⇒2、1ln ln ln ln dx d x x x dx x x x =⋅=⋅⎰⎰⎰221(l 1ln ln (ln )2n )2x x x d C x C =⋅=+=+⎰【注】111(ln )',(ln ),(ln )x d x dx dx d x x x x===⇒⇒3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x xx --====⎰⎰⎰⎰⎰cos ln |cos |c ln |co s |o s xx d C x C x=-=-+=-+⎰【注】(cos )'sin ,(cos )sin ,sin (cos )x x d x xdx xdx d x =-=-=-⇒⇒ 3(2)cos cos cot sin sin sin sin xdx x xdx dx d xx x x ===⎰⎰⎰⎰sin ln |si ln |sin |n |sin xx d C x C x==+=+⎰【注】(sin )'cos ,(sin )cos ,cos (sin )x x d x xdx xdx d x ==⇒=⇒4(1)1()11d dx a x a x a d x x a x =⋅=⋅++++⎰⎰⎰ln |1(|)ln ||d C a x a x a x a xC ++=⋅=+=+++⎰【注】()'1,(),()a x d a x dx dx d a x +=+==+⇒⇒ 4(2)1()11d dx x a x x x d a a x a =⋅=⋅----⎰⎰⎰ln |1(|)ln ||d C x a x a x a x aC --=⋅=+=--+⎰【注】()'1,(),()x a d x a dx dx d x a -=-==-⇒⇒4(3)22221111111212x a a x a dx dx x a x a dx dx a a a x dx x ⎛⎫- ⎪--+⎝⎛⎫=-+⎭==- ⎪-⎝⎭⎰⎰⎰⎰⎰ ()11ln ||ln ||ln22x ax a x a C C a a x a-=--++=++5(1)2sec ()sec tan sec sec tan sec tan sec sec tan x x x x xdx x x x xdx dx x x+==⋅+++⎰⎰⎰ tan sec tan sec sec ()()ln |sec tan |se tan c tan d x x x x x xd x x C x x +===+++++⎰⎰5(2)2221cos sec cos c cos sin os cos 1sin x xdx dx dx x x x dx d xx x ====-⋅⎰⎰⎰⎰⎰ 2sin si 1111sin 111sin ln ln 1n sin 2112sin 121s sin sin in d x x x x x xd C C x xx --⎛⎫==-⋅=+=+ ⎪--+++⎝⎭⎰⎰ 6(1)2csc ()csc cot csc csc cot csc cot csc csc cot x x x x xdx x x x xdx dx x x+==⋅+++⎰⎰⎰ ()()ln |csc cot |csc c cot csc csc cot csc o ot t c d d x x x x x xx x C x x --+=-==+-+++⎰⎰6(2)2csc ()csc cot csc csc cot csc cot csc csc cot x x x x xdx x x x xdx dx x x==⋅----⎰⎰⎰ ()(cot csc csc co )ln |csc t csc co cot |c t sc cot d x x x x d x x xx x C x -+-=---==+⎰⎰7(1)arcsin x C ==+7(2)arcsind xC ax d x =====+⎛⎫ ⎪⎛⎫ ⎪⎰⎰8(1)221arctan 11dx dx x C x x ==+++⎰⎰8(2)222222221111arctan 111d dx x dx C a x a x a a a x x x d dx x a x a a a a a a ⎛⎫⎛⎫⎪=====+++⎡⎤⎛⎫⎛⎫++⎝⎭⎛⎫ ⎪+⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎪⎝⎭⎰⎰⎰⎰⎰,(0a >)9(1)352525s sin cos sin cos sin i c s o c n o s xd x xdx x x x x x d x =⋅-⋅=⎰⎰⎰862575cos cos (1cos )cos cos (cos cos )cos 86x xx x d x x x d x C =--⋅⋅=-⋅=-+⎰⎰9(2)353434c sin cos sin cos sin cos os sin x x xdx x x x dx d x x =⋅=⋅⎰⎰⎰468322357sin sin sin sin (1sin )sin (sin 2sin sin )sin 438x x xx x d x x x x d x C =-⋅=-+⋅=-++⎰⎰10(1)1ln 111l l n ln ln l ln n n ln dx d x C x x x x dx d x x x x =⋅=⋅=⋅=+⋅⎰⎰⎰⎰ 10(2)222211111ln ln ln ln ln n ln l dx d C x x x x d x xx x d x x ⋅=⋅=⋅=⋅=-+⎰⎰⎰⎰11(1)242424222222()arctan(21)222)121122(xdx d x C x x x x x x x x dx x dx ====+++++++++++⎰⎰⎰⎰ 11(2)2242422422121()2521112252524()xdx d x xdx d x x x x x x x x +===++++++++⎰⎰⎰⎰2222222121(1)111arctan()8442111122x d d x x C x x ⎛⎫+ ⎪++⎝⎭===+⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭⎰⎰12、s 22dx dx dx =⋅=⋅=⎰⎰⎰2C C ==-=-⎰13、222211222122xx xx e dx e d x d e x C e ===+⎰⎰⎰14、 43333co sin sin cos sin sin s sin i 4sin s n xx xdx x x d C dx x x x d x =⋅=⋅=⋅=+⎰⎰⎰⎰15、100(25)x dx +⎰10010010011(25)(25)2(25)(25)(25)2dx d x x x x d x =+⋅=+++⋅+⋅=⎰⎰⎰1001100111(25)(25)(25)101111(25)22202x x x d C x C =⋅=⋅+=+++++⎰16、2222222111sin sin s 2in sin cos 22x x x x x dx x xdx dx x d C =⋅=⋅=⋅=-+⎰⎰⎰⎰17、ln 1ln dx d d x x x ===⎰3122ln ln (1ln )(1ln )2(1ln )2(1ln )3d x d xd x d x x x C =-=+-+=+-++⎰⎰18、arctan arctan arctan arc arct 2tan 2an arcta 11arct 1n an x x x xx e dx e e e d e C x dx d x xx +=⋅=⋅=⋅=++⎰⎰⎰⎰ 19、22(1)x d xd dx x ===--2(1)d x C -=-=20、si n cos x dx d x =-=⎰3221coscos 2cosx C x d x --=-=+⎰21、111()ln(22222)2x x x x x xx x x e dx d e e dx d e C e e e ee =⋅=⋅==+++++++⎰⎰⎰⎰22、23222ln ln ln l 1ln ln ln n 3x x dx x x x x d C x dx d x x =⋅=⋅=⋅=+⎰⎰⎰⎰23、C ====+24、2221()177112()()()22424d x dx x x x x d x dx -===-+-+-+-⎰⎰⎰1()1d x C C x -==-+=+⎰25、计算,22a b ≠【分析】因为:22222222(sin cos )'2sin cos 2cos (sin )2()sin cos a x b x a x x b x x a b x x +=+-=- 所以:222222(sin cos )2()sin cos d a x b x a b x xdx +=- 2222221sin cos (sin cos )2()x xdx d a x b x a b =⋅+-【解答】2222221a b ==-2222221C a b ==-【不定积分的第二类换元法】 已知()()f t dt F t C =+⎰求()(())()(())'()g x dx g t d t g t t dt ϕϕϕϕ==⎰⎰⎰【做变换,令()x t ϕ=,再求微分】 ()()f t dt F t C ==+⎰ 【求积分】1(())F x C ϕ-=+ 【变量还原,1()t x ϕ-=】__________________________________________________________________________________________ 【第二换元法例题】1、22sin sin 2si 2n t x t t t tdt t t dt tdt =⋅=⋅=⎰⎰⎰⎰2cos t t C C =-+-+变量还原2(1)22111122111211t x t dt td t dt dt t t t t t =⎛⎫⋅=⋅==- ⎪++++⎝⎭⎰⎰⎰⎰⎰ ())2ln |1|2ln |1|t t t C C =-++-++变量还原2(2)22(1)(11)2(1)1111221t x t d t dt dt t t t t dt t t =--⎛⎫⋅=⋅==- ⎪⎝⎭--⎰⎰⎰⎰⎰令()()12ln ||21ln |1|t t t C C ==-++++变量还原3、343324332(1)111(1)(1)4(1)3tx t dx t t t d t t t dt =-⋅⋅=--⋅⋅⋅-⎰746312()1274t t t t dt C ⎛⎫=-=-+ ⎪⎝⎭⎰1274t C -+⎝=⎭变量还原4、222221112(1)(1)12t x t dt td dt t t t t t t =⋅====⋅=+++⎰⎰⎰2arctan t t C C =+变量还原5、ln 111111111(1)11ln xx e t x t dx dt dt e t t t t t t t t t d d =========⎛⎫⋅=⋅==- ⎪+++++⎝⎭=⎰⎰⎰⎰⎰令 ln ||ln |1|ln ln 11x xxt e t e t t C C C t e ========-++=+++=+变量还原6、6223236522111661(1)(61)11t x t t dt dt t t t t t dt t t d t =⎛⎫⋅=⋅==- ⎪++++==⎝⎭⎰⎰⎰⎰6(arctan )t t t C C +=-+变量还原【注】被积函数中出现了两个根式t =,其中k 为,m n 的最小公倍数。

相关文档
最新文档