所有计量经济学检验方法(全)
计量经济学的各种检验

主分量回归是将具有多重相关的变量集综合得出少数几个互不相关的主分量.两步:(1)找出自变量集的主分量,建立y与互不相关的前几个主分量的回归式.(2)将回归式还原为原自变量结果.详见,<<实用多元统计分析>>,方开泰;
主分量回归结果
Obs _MODEL_ _TYPE_ _DEPVAR_ _PCOMIT_ _RMSE_ Intercept x1 x2 x3 y 1 MODEL1 PARMS y 0.48887 -10.1280 -0.05140 0.58695 0.28685 –1 2 MODEL1 IPCVIF y 1 0.25083 1.00085 0.25038 –1 3 MODEL1 IPC y 1 0.55001 -9.1301 0.07278 0.60922 0.10626 –14 MODEL1 IPCVIF y 2 0.24956 0.00095 0.24971 -15 MODEL1 IPC y 2 1.05206 -7.7458 0.07381 0.08269 0.10735 -1
多重共线性检验方法(3)样本相关系数检验法
FG test results
fg=20.488013401 p=0.0001344625;拒绝零假设,认为存在多重共线性。具体那些变量之间存在多重共线性,除了上面提到的辅助回归的方法外,还有以下提到的条件数检验和方差膨胀因子法。
多重共线性检验方法:(4)特征值分析法所用的检验统计指标
补救措施
增加样本;岭回归或主分量回归;至少去掉一个具有多重共线性的变量;对具有多重共线性的变量进行变换.对所有变量做滞后差分变换(一般是一阶差分),问题是损失观测值,可能有自相关.采用人均形式的变量(例如在生产函数估计中)在缺乏有效信息时,对系数关系进行限制,变为有约束回归(Klein,Goldberger,1955),可以降低样本方差和估计系数的标准差,但不一定是无偏的(除非这种限制是正确的).对具有多重共线性的变量,设法找出其因果关系,并建立模型和原方程构成联立方程组.
所有计量经济学检验方法

所有计量经济学检验方法
1、回归分析:回归分析是用来确定两个变量之间相关关系的一种统计方法,它能够推断出一个变量对另一个变量的影响程度。
常用的回归检验包括偏直斜率检验、R平方检验、Durbin-Watson检验、自相关检验、Box-Cox检验等。
2、主成分分析:主成分分析(PCA)是一种统计分析方法,用于消除随机变量之间的相关性,从而简化数据分析过程。
常用的方法有二元主成分分析(BPCA)、多元主成分分析(MPCA)
3、因子分析:因子分析是一种统计学方法,用于确定从多个离散观测变量中提取的隐含变量。
常用的因子分析检验包括KMO检验、Bartlett 统计量检验、条件双侧门限统计量检验等。
4、多元分析:多元分析是一种统计学方法,用于探索随机变量之间的关系,常用的多元分析检验包括多元弹性网络(MANOVA)、多元回归(MR)以及结构方程模型(SEM)。
5、聚类分析:聚类分析是一种用于探索研究数据中的结构和特征的统计学方法。
它主要是将数据集分组,以便对数据集中的每组信息单独进行分析。
常用的聚类分析检验有K均值聚类、层次聚类、嵌套聚类等。
6、特征选择:特征选择是一种数据分析技术,用于从大量可能的特征中,选择有效的特征变量。
期末精华:计量经济学针对三种误差检验方法

2、近似共线性下普通最小二乘法参数估计量 非有效
在一般共线性(或称近似共线性)下,虽然可以得 到OLS法参数估计量,但是由参数估计量方差的表达 式为
Cov(ˆ ) 2 (XX)1
RESET 检验是 Regression Specification Error Test (回归设定误差检验)的简写。
设 y x β zc ε 设定误差检验是检验上式中 c 是否为零。 但关键哪些变量应该进入 z 呢? (1)在缺失变量的情况下,那些缺失变量将构成 z。 (2)在方程设定有误时,应如何处理呢?
第五章 计量经济学检验 ——违背基本假设的情况
❖ 一方面,建立一个计量经济学模型要经过四 重检验,其中经济意义检验、统计检验、预 测检验已讲,这一章主要讲计量经济学检验 的范畴。
❖ 另一方面,前面讨论了最小二乘估计的优良 性质,但都是基于经典假设。如果这些假设 不满足,会出现什么问题呢?这一章对其进 行分析。
(3) 用F检验比较两个方程的拟合情况(类似于上一章中 联合假设检验采用的方法),如果两方程总体拟合情况 显著不同,则我们得出原方程可能存在误设定的结论。 使用的检验统计量为:
F (RSSM RSS ) / M RSS /(n k 1)
其中:RSSM为第一步中回归(有约束回归)的残差 平方和,RSS为第二步中回归(无约束回归)的残差 平方和,M为约束条件的个数,这里是M=3。
四、 解决解释变量误设定问题的原则
在模型设定中的一般原则是尽量不漏掉有关的解 释变量。因为估计量有偏比增大误差更严重。但如 果方差很大,得到的无偏估计量也就没有多大意义 了,因此也不宜随意乱增加解释变量。
在回归实践中,有时要对某个变量是否应该作为 解释变量包括在方程中作出准确的判断确实不是一 件容易的事,因为目前还没有行之有效的方法可供 使用。尽管如此,还是有一些有助于我们进行判断 的准则可用,它们是:
计量经济学第6章假设检验

i1
n
或直接取自输出结果2.2.1中的方差分析部分“回归分析(行) F(列)”(399.09999)。(见表2.4.4)
有时S(回归系数的标准差,有时也记为 S e )也可不写;t统计 量右上角*的表示显著性水平的大小,**一般表示在显著性水平 1%下显著,*一般表示在显著性水平5%下显著,无*表示5%下 不显著。
b1
L xx L yy
n
( x x ) ( y y ) 其 中 x y
i 1
L
n
L xx
L
yy
n
i 1
( xi x )2
i 1
( yi y )2
为x与y的简单线性相关系数,简称相关系数。它表示x和y的线 性相 关关系的密切程度。其取值范围为|r| 1,即-1 r 1。 当r=-1时,表示x与y之间完全负相关; 当r=1时,表示x与y之间完全正相关; 当r=0时,表示x与y之间无线性相关关系,即说明x与y可 能无相关关系或x与y之间存在非线性相关关系。 5、四种检验的关系 前面介绍了t检验、拟合优度( )检验、 F检验和相关 R 2 系数(r)检验,对于一元线性回归方程来说,可以证 明,这四种检验:
第二步:计算F统计量 因为ESS=1602708.6 (计算过程见表2.4.3) 或直接取自输出结果 2.2.1中的方差分析部分“回归分析(行) SS(列)”(1602708.6)。
ˆ= RSS ( yi y )2 40158.071 (计算过程见计算表2.3.3) 或直接取
所有计量经济学检验方法(全)

所有计量经济学检验方法(全)计量经济学所有检验方法一、拟合优度检验 可决系数TSSRSSTSS ESS R -==12 TSS 为总离差平方和,ESS为回归平方和,RSS 为残差平方和该统计量用来测量样本回归线对样本观测值的拟合优度。
该统计量越接近于1,模型的拟合优度越高。
调整的可决系数)1/()1/(12----=n TSS k n RSS R 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。
将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响。
二、方程的显著性检验(F 检验)方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。
原假设与备择假设:H 0:β1=β2=β3=…βk =0 H 1:βj 不全为0 统计量)1/(/--=k n RSS kESS F 服从自由度为(k , n-k-1)的F分布,给定显著性水平α,可得到临界值Fα(k,n-k-1),由样本求出统计量F的数值,通过F>Fα(k,n-k-1)或F≤Fα(k,n-k-1)来拒绝或接受原假设H,以判定原方程总体上的线性关系是否显著成立。
三、变量的显著性检验(t检验)对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中。
原假设与备择假设:H0:βi=0 (i=1,2…k);H1:βi≠0给定显著性水平α,可得到临界值tα/2(n-k-1),由样本求出统计量t的数值,通过|t|> tα/2(n-k-1) 或|t|≤tα/2(n-k-1)来拒绝或接受原假设H0,从而判定对应的解释变量是否应包括在模型中。
四、参数的置信区间参数的置信区间用来考察:在一次抽样中所估计的参数值离参数的真实值有多“近”。
统计量)1(~1ˆˆˆ----'--=k n t k n c S t iiii iiie e βββββ在(1-α)的置信水平下βi 的置信区间是( , ) ββααββi i t s t s ii-⨯+⨯22,其中,t α/2为显著性水平为α、自由度为n-k-1的临界值。
计量模型检验方法(谢第斌)

y x x x
t
1 1t
2 2t
3 3t
t
检验线性约束条件
2
3
是否成立,则约束模型表示为
y x (x x
)
t
1 1t
2 2t
3t
t
如果约束条件成立则无约束估计量
(
)
应该近似为零,定义W统计量
2
3
为: 通常
W ( ) Var( ) ~ N (0,1)
2
3
2
3
Var(
参数,求出残差项,以残差项作为随机项的估计值,再描绘残
差项的散点图并以此判断残差的相关性。
检验步骤——将残差对时间作图
ut
ut
O
t
ut-1
(a)
如a图所示,扰动项的估计值呈循环型,并不频繁地改变符号(一 个正接一个负),而是相继若干个正的以后跟着几个负的,表 明存在正自相关。
二、回归检验法
检验思想 以 e~t 为被解释变量,以各种可能的相关量,诸如以e~t1 、 e~t2 、 e~t2 等为解释变量,建立各种方程:
三格兰杰因果检验三格兰杰因果检验44格兰杰因果检验的讨论格兰杰因果检验的讨论格兰杰因果关系检验的结论只是一种预测是统计意义上格兰杰因果关系检验的结论只是一种预测是统计意义上的的格兰杰格兰杰因果性而不是真正意义上的因果关系不能作因果性而不是真正意义上的因果关系不能作为肯定或否定因果关系的根据
计量模型中的检验方法
变量,做对其他解释变量的回归,称为辅助回归。以 X j 为被解释变量做对
其他解释变量辅助回归的可决系数,用
R2 j
表示,则解释变量
X j 参数估计
计量经济学的三种检验

38
从模型中删除不重要的解释变量
• 对待严重的多重共线性问题,最简单的 解决方法就是删除一个或多个共线性变 量。
– 导致“模型设定误差”,参数估计量可能是 有偏的。 – 建议不要仅仅因为共线性很严重就从一个经 济上可行的模型中删除变量。所选模型是否 符合经济理论是一个重要的问题。
39
获取额外的数据或者新的样本
42
消费支出对于收入和财富的回归方程
• • • •
40个观察值: Y=2.0907+0.7299 X1 +0.0605 X2 t= (0.8713) (6.0014) (2.0641) R2 =0.9672
43
重新考虑模型
• 模型的不恰当设定可能是回归模型存在共 线性的原因。
– 省略一些重要的变量 – 没有正确选择模型的函数形式
计量经济学检验
一、多重共线性 二、异方差 三、自相关
1
一:多重共线性
• • • • •
多重共线性的性质 多重共线性的原因 多重共线性的后果 多重共线性的诊断 多重共线性的补救措施
2
回顾多元线性回归模型的若干假定
• • • • •
零均值假定 同方差假定 无自相关假定 随机项与自变量不相关 非多重共线性
24
例:消费函数
• Y 只对收入回归:
– Y = 24.45 + 0.51X1 (3.81) (14.24) R2= 0.96
– 收入变量是高度显著的,但是在前一个模型中 是不显著的
25
例:消费函数
• Y 只对财富回归:
– Y = 24.41 + 0.05X2 – t (3.55) (13.29) R2 = 0.96
• 假设在过去估计过的对《wideget》需求函 数中,收入系数为0.9,并且是统计显著的。 如果收入系数的过去值没有多少改变的话, 我们可以重新估计方程 • 需求量=b0+b1*价格+b2*收入+u = b0+b1*价格+0.9*收入+u • 需求量- 0.9*收入= b0+b1*价格+u
u检验

u检验、t检验、F检验、X2检验常用显著性检验1.t检验适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。
包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。
2.t'检验应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。
3.U检验应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。
4.方差分析用于正态分布、方差齐性的多组间计量比较。
常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。
5.X2检验是计数资料主要的显著性检验方法。
用于两个或多个百分比(率)的比较。
常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。
6.零反应检验用于计数资料。
是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。
属于直接概率计算法。
7.符号检验、秩和检验和Ridit检验三者均属非参数统计方法,共同特点是简便、快捷、实用。
可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。
其主要缺点是容易丢失数据中包含的信息。
所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。
8.Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。
计量经济学检验方法讨论计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比较常见的方法。
在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。
检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。
那么如果两个东西之间没有什么因果联系,那么我们寻找的原因就不对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学所有检验方法一、拟合优度检验可决系数TSS RSS TSS ESS R -==12 TSS 为总离差平方和,ESS 为回归平方和,RSS 为残差平方和 该统计量用来测量样本回归线对样本观测值的拟合优度。
该统计量越接近于1,模型的拟合优度越高。
调整的可决系数)1/()1/(12----=n TSS k n RSS R 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。
将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响。
二、方程的显著性检验(F 检验) 方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。
原假设与备择假设:H 0:β1=β2=β3=…βk =0 H 1: βj 不全为0统计量)1/(/--=k n RSS kESS F 服从自由度为(k , n-k-1)的F 分布,给定显著性水平α,可得到临界值F α(k,n-k-1),由样本求出统计量F 的数值,通过F>F α(k,n-k-1)或F ≤F α(k,n-k-1)来拒绝或接受原假设H 0,以判定原方程总体上的线性关系是否显著成立。
三、变量的显著性检验(t 检验)对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中。
原假设与备择假设:H0:βi =0 (i=1,2…k );H1:βi ≠0给定显著性水平α,可得到临界值t α/2(n-k-1),由样本求出统计量t 的数值,通过 |t|> t α/2(n-k-1) 或 |t|≤t α/2(n-k-1)来拒绝或接受原假设H0,从而判定对应的解释变量是否应包括在模型中。
四、参数的置信区间参数的置信区间用来考察:在一次抽样中所估计的参数值离参数的真实值有多“近”。
统计量)1(~1ˆˆˆ----'--=k n t k n c S t iiii ii ie e βββββ在(1-α)的置信水平下βi 的置信区间是( , ) ββααββi i t s t s ii-⨯+⨯22,其中,t α/2为显著性水平为α、自由度为n-k-1的临界值。
五、异方差检验1. 帕克(Park)检验与戈里瑟(Gleiser)检验试建立方程:iji i X f e ε+=)(~2 或 iji i X f e ε+=)(|~|选择关于变量X 的不同的函数形式,对方程进行估计并进行显著性检验,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在异方差性。
如:帕克检验常用的函数形式:ieXXfjijiεασ2)(=或ijiiXeεασ++=lnln)~ln(22若α在统计上是显著的,表明存在异方差性。
Glejser检验类似于帕克检验。
Glejser建议:在从OLS回归取得误差项后,使用e i的绝对值与被认为密切相关的解释变量再做LS估计,并使用如右的多种函数形式。
若解释变量的系数显著,就认为存在异方差。
如下函数形式:2. 戈德菲尔德-匡特(Goldfeld-Quandt)检验G-Q检验以F检验为基础,适用于样本容量较大、异方差递增或递减的情况。
G-Q检验的步骤:①将n对样本观察值(Xi,Yi)按观察值Xi的大小排队②将序列中间的c=n/4个观察值除去,并将剩下的观察值划分为较小与较大的相同的两个子样本,每个子样样本容量均为(n-c)/2③对每个子样分别进行OLS回归,并计算各自的残差平方和④在同方差性假定下,构造如下满足F分布的统计量)12,12(~)12(~)12(~2122------------=∑∑kcnkcnFkcnekcneFii⑤给定显著性水平α,确定临界值Fα(v1,v2),若F> Fα(v1,v2),则拒绝同方差性假设,表明存在异方差。
3、怀特(White)检验怀特检验不需要排序,且适合任何形式的异方差iiiiXXYμβββ+++=2211做如下辅助回归iiiiiiiiXXXXXXeεαααααα++++++=21522421322112~在同方差假设下R2为辅助方程的可决系数,h为辅助方程解释变量的个数。
六、序列相关检验1. 回归检验法以t e~为被解释变量,以各种可能的相关量,诸如以1~-te、2~-te、2~te等为解释变量,建立各种方程:ttteeερ+=-1~~iiiiiiiiiiiiiiiXbbeXbbeXbbeXbbeXbbeμμμμμ++=++=++=++=++=2111111-----WORD 格式--可编辑--专业资料-----tt t t e e e ερρ++=--2211~~~ …如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。
2. 杜宾-瓦森(Durbin-Watson )检验法杜宾和瓦森针对原假设:H 0: ρ=0,即不存在一阶自回归,构如下造统计量:∑∑==--=nt tnt t tee eW D 12221~)~~(..(1)计算DW 值(2)给定α,由n 和k 的大小查DW 分布表,得临界值dL 和dU (3)比较、判断若 0<D.W.<dL 存在正自相关 dL<D.W.<dU 不能确定 dU <D.W.<4-dU 无自相关 4-dU <D.W.<4- dL 不能确定 4-dL <D.W.<4 存在负自相关 当D.W.值在2左右时,模型不存在一阶自相关。
3. 拉格朗日乘数(Lagrange multiplier )检验拉格朗日乘数检验克服了DW 检验的缺陷,适合于高阶序列相关以及模型中存在滞后被解释变量的情形。
对于模型iki k i i i X X X Y μββββ+++++= 22110如果怀疑随机扰动项存在p 阶序列相关:tp t p t t t εμρμρμρμ+++=--- 2211 GB 检验可用来检验如下受约束回归方程tp t p t kt k t t X X Y εμρμρβββ+++++++=-- 11110约束条件为: H 0: ρ1=ρ2=…=ρp =0约束条件H0为真时,大样本下 其中,n 、R2为如下辅助回归的样本容量和可决系数给定α,查临界值χα2(p),与LM 值比较,做出判断,实际检验中,可从1阶、2阶、…逐次向更高阶检验。
七、多重共线性检验 1.综合统计检验法当模型的拟合优度(R 2)很高,F 值很高,而每个回归参数估计值的方差Var(βj ) 又非常大(即t 值很低)时,说明解释变量间可能存在多重共线性。
2.简单相关系数法求出任意两个解释变量的简单相关系数,若接近于1,则说明两变量存在较强的多重共线性。
3.判定系数检验法)(~22p nR LM χ=tp t p t kt k t t e e X X e ερρβββ+++++++=--~~~11110统计量F j =R j 2/(k-1)/(1-R j 2)/(n-k)服从自由度为(k-1 , n-k)的F 分布,原假设为X j 与其他解释变量间不存在显著的线性关系,给定显著性水平α,通过计算的F 值与相应的临界值的比较来判断。
4.逐步回归法以Y 为被解释变量,逐个引入解释变量,构成回归模型,进行估计。
如果拟合优度变化显著,则说明新引入的变量是一个独立解释变量;如果拟合优度变化很不显著,则说明新引入的变量不是一个独立解释变量,即它与其他变量之间存在共线性的关系。
八、格兰杰因果关系检验对两变量Y 与X ,格兰杰因果关系检验要求估计:ti t mi i m i i t i t Y X Y 111μβα++=-==-∑∑ (1)ti t mi i m i i t i t X Y X 211μδλ++=-==-∑∑ (2)可能存在有四种检验结果:(1)X 对Y 有单向影响,表现为(*)式X 各滞后项前的参数整体不为零,而(**) Y 各滞后项前的参数整体为零;(2)Y 对X 有单向影响,表现为(**)式Y 各滞后项前的参数整体不为零,而(*)X 各滞后项前的参数整体为零;(3)Y 与X 间存在双向影响,表现为Y 与X 各滞后项前的参数整体不为零; (4)Y 与X 间不存在影响,表现为Y 与X 各滞后项前的参数整体为零。
格兰杰检验是通过受约束的F 检验完成的。
如:针对ti t mi i m i i t i t Y X Y 111μβα++=-==-∑∑中X 滞后项前的参数整体为零的假设(X 不是Y 的格兰杰原因) 分别做包含与不包含X 滞后项的回归,记前者与后者的残差平方和分别为RSSU 、RSSR ;再计算F 统计量:)/(/)(k n RSS mRSS RSS F U U R --=k 为无约束回归模型的待估参数的个数如果: F>F α(m,n-k) ,则拒绝原假设,认为X 是Y 的格兰杰原因。
九、时间序列平稳性检验 1.DF 检验随机游走序列 X t =X t-1+μt 是非平稳的,其中μt 是白噪声。
而该序列可看成是随机模型X t =ρX t-1+μt 中参数ρ= 1时的情形。
也就是说,我们对式 X t =ρX t-1+μt (1) 做回归,如果确实发现ρ=1,就说随机变量X t 有一个单位根。
可变形式成差分形式:X t =(ρ-1)X t-1+μ t =δX t-1+ μt (2) 检验(1)式是否存在单位根ρ=1,也可通过(2)式判断是否有 δ=0。
检验一个时间序列Xt 的平稳性,可通过检验带有截距项的一阶自回归模型 X t =α+ ρX t-1 +μt (*)中的参数ρ是否小于1。
或者:检验其等价变形式Xt=α+ δX t-1+μt (**)中的参数δ是否小于0 。
零假设 H 0:δ= 0;备择假设 H 1:δ< 0 可通过OLS 法估计Xt=α+ δX t-1+μt 并计算t 统计量的值,与DF 分布表中给定显著性水平下的临界值比较:如果:t < 临界值,则拒绝零假设H0:δ= 0 ,认为时间序列不存在单位根,是平稳的。
2.ADF 检验在DF 检验中,实际上是假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。
但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,为了保证DF 检验中随机误差项的白噪声特性,Dicky 和Fuller 对DF 检验进行了扩充,形成了ADF (Augment Dickey-Fuller )检验。
ADF 检验是通过下面三个模型完成的:模型1: t mi it i t t XX X εβδ+∆+=∆∑=--11 (*)模型2: t mi it i t t XX X εβδα+∆++=∆∑=--11 (**)模型3: t mi it it t XX t X εβδβα+∆+++=∆∑=--11 (***)模型3 中的t 是时间变量,代表了时间序列随时间变化的某种趋势(如果有的话)。