高一数学三角函数练习

合集下载

高一必修一数学三角函数中含参取值范围专项练习(含解析)

高一必修一数学三角函数中含参取值范围专项练习(含解析)

高一必修一数学三角函数中含参取值范围专项练习(含解析)一、填空题1. 若0 ≤ x ≤ 2π,求满足 sin(2x) = sin(x) 的 x 的取值范围。

解析:由于 sin(2x) = sin(x),可以得到以下等式。

sin(2x) = sin(x)2sin(x)cos(x) = sin(x)sin(x)(2cos(x) - 1) = 0因此,满足 sin(2x) = sin(x) 的 x 的取值范围为:x = 0, π, 2π。

2. 若 -π ≤ x ≤ 3π,求满足 sin(3x) = cos(2x) 的 x 的取值范围。

解析:由于 sin(3x) = cos(2x),可以得到以下等式。

sin(3x) = cos(2x)sin(3x) = cos(π/2 - 2x)因此,满足 sin(3x) = cos(2x) 的 x 的取值范围为:x = -3π/2, -π/2, π/2。

二、选择题1. 若0 ≤ x ≤ 2π,下列等式中含参的取值范围正确的是:A. sin(x) = 0,x = 0, π, 2πB. cos(2x) = 1,x = 0, π, 2πC. tan(x) = 1,x = π/4,5π/4D. sin(x)cos(x) = 0,x = 0, π/2, π解析:只有选项 C 正确,因为 tan(x) = 1 的解为x = π/4,5π/4。

2. 若 -π/2 ≤ x ≤ π/2,下列等式中含参的取值范围正确的是:A. sin(2x) = 1,x = π/4,5π/4B. cos(x) = 0,x = π/2, 3π/2C. tan(x) = 0,x = 0D. cos(2x) = 1,x = π/4,5π/4解析:只有选项 B 正确,因为 cos(x) = 0 的解为x = π/2, 3π/2。

三、解答题1. 若0 ≤ x ≤ π/2,求满足 tan(2x) = 1 的 x 的取值范围。

高一数学三角函数试题答案及解析

高一数学三角函数试题答案及解析

高一数学三角函数试题答案及解析1.已知角为第二象限角,则点位于哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为角为第二象限角,所以,,即点位于第四象限,故选D.2.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A. B. C. D. A=B=C【答案】B【解析】锐角必小于 ,故选B.3.已知角的终边过点,且,则的值为A.B.C.D.【答案】C【解析】因为,所以角的终边在第二,三象限,,从而,即,解得,故选C。

4.若,,则角的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】本题考查三角函数的性质。

由知角可能在第一、四象限;由知角可能在第三、四象限;综上得角的终边在箱四象限故正确答案为5.已知函数相邻两对称轴间的距离为,若将的图像先向左平移个单位,再向下平移1个单位,所得的函数为奇函数.(1)求的解析式,并求的对称中心;(2)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.【答案】(1),对称中心为:,(2)或.【解析】(1)相邻两对称轴间的距离为半周期,由,可得,按三角函数的平移变换,得表达式,函数为奇函数,得值,且过点得值,求出表达式后由性质可得对称中心;(2)由得的范围,将利用换元法换元,将问题转化为一个一元二次方程根的分布问题,利用判别式得不等式解得取值范围.试题解析:(1)由条件得:,即,则,又为奇函数,令,,,,由,得对称中心为:(2),又有(1)知:,则,的函数值从0递增到1,又从1递减回0.令则由原命题得:在上仅有一个实根.令,则需或,解得:或.【考点】1. 性质;2.一元二次方程;3.换元法.6.设函数的最小正周期为,且,则()A.在单调递减B.在单调递减C.在单调递增D.在单调递增【答案】A【解析】由得,,又,则,即.当时,,递减,故选A.【考点】函数的解析式,函数的奇偶性,单调性.7.若,且,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】C【解析】根据且,可得角为第三象限角,故选择C.【考点】三角函数定义.8.已知函数 .(1)求函数的单调递减区间;(2)求函数在区间上的最大值及最小值.【答案】(Ⅰ),;(Ⅱ)取得最大值,取得最小值.【解析】(Ⅰ)先根据两角和余弦公式、二倍角公式、配角公式将函数化为基本三角函数:,再根据正弦函数性质求单调区间:由解得,最后写出区间形式(Ⅱ)先根据自变量范围确定基本三角函数定义区间:,再根据正弦函数在此区间图像确定最值:当时,取得最小值;当时,取得最大值1.试题解析:(Ⅰ). ……………………………………3分由,,得,.即的单调递减区间为,.……………………6分(Ⅱ)由得,………………………………8分所以. …………………………………………10分所以当时,取得最小值;当时,取得最大值1. ………………………………13分【考点】三角函数性质【思路点睛】应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”。

高一数学三角函数试题

高一数学三角函数试题

高一数学三角函数试题1.不等式sin()>0成立的x的取值范围为( )A.B.C.D.【答案】D【解析】,即,可得,故选D.【考点】解三角不等式2.已知函数(Ⅰ)若求函数的值;(Ⅱ)求函数的值域。

【答案】(1)(2)[ 1 , 2 ]【解析】解:(Ⅰ) 2分6分(Ⅱ) 8分函数的值域为[ 1 , 2 ] 12分【考点】三角函数的性质点评:主要是考查了三角函数的化简和性质的运用,属于基础题。

3.若cosθ>0且tanθ<0,则θ所在的象限为 .【答案】四【解析】若cosθ>0,则为第一或四象限角;若tanθ<0,则θ为第二或四象限角,所以θ所在的象限为四。

【考点】象限角点评:当θ为第一、二象限角时,,当θ为第三、四象限角时,;当θ为第一、四象限角时,,当θ为第二、三象限角时,;当θ为第一、三象限角时,,当θ为第二、四象限角时,。

4.如果角θ的终边经过点那么tanθ的值是()A.B.C.D.【答案】D【解析】直接根据三角函数的定义,求出tanθ的值.根据角的终边经过点,那么可知=,选D.【考点】正切函数的定义点评:本题是基础题,考查正切函数的定义,是送分题5.设函数图像的一条对称轴是直线.(1)求;(2)画出函数在区间上的图像(在答题纸上完成列表并作图).【答案】(1)(2)如图。

【解析】解:(1)的图像的对称轴,(2) 由故函数【考点】正弦函数的图像和性质点评:画三角函数的图像时,常用到五点法。

6.已知tanα=2,则3sin2α+5sinαcosα-2cos2α=.【答案】4【解析】∵tanα=2,∴3sin2α+5sinαcosα-2cos2α=【考点】本题考查了三角公式的化简点评:此类问题应首先将所给式子变形,即将其转化成所求函数式能使用的条件,或者将所求函数式经过变形后再用条件7.(本小题满分12分)已知函数(1)写出函数的最小正周期和对称轴;(2)设,的最小值是,最大值是,求实数的值.【答案】(1)最小正周期,对称轴,;(2)。

高中数学三角函数练习题及答案

高中数学三角函数练习题及答案

高中数学三角函数练习题及答案高中数学三角函数练习题及答案从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等,接下来就由店铺带来高中数学三角函数练习题及答案,希望对你有所帮助!一、选择题1、探索如图所呈现的规律,判断2 013至2 014箭头的方向是()图1-2-3【解析】观察题图可知0到3为一个周期,则从2 013到2 014对应着1到2到3.【答案】 B2、-330是()A、第一象限角B、第二象限角C、第三象限角D、第四象限角【解析】-330=30+(-1)360,则-330是第一象限角、【答案】 A3、把-1 485转化为+k360,kZ)的形式是()A、45-4360B、-45-4360C、-45-5360D、315-5360【解析】-1 485=-5360+315,故选D.【答案】 D4、(2013济南高一检测)若是第四象限的角,则180-是()A、第一象限的角B、第二象限的角C、第三象限的角D、第四象限的角【解析】∵是第四象限的角,k360-90k360,kZ,-k360+180180--k360+270,kZ,180-是第三象限的角、【答案】 C5、在直角坐标系中,若与的终边互相垂直,则与的关系为()A、=+90B、=90C、=+90-k360D、=90+k360【解析】∵与的终边互相垂直,故-=90+k360,kZ,=90+k360,kZ.【答案】 D二、填空题6、,两角的终边互为反向延长线,且=-120,则=________.【解析】依题意知,的终边与60角终边相同,=k360+60,kZ.【答案】 k360+60,kZ7、是第三象限角,则2是第________象限角、【解析】∵k360+180k360+270,kZk180+90k180+135,kZ当k=2n(nZ)时,n360+90n360+135,kZ,2是第二象限角,当k=2n+1(nZ)时,n360+270n360+315,nZ2是第四象限角、【答案】二或四8、与610角终边相同的角表示为________、【解析】与610角终边相同的角为n360+610=n360+360+250=(n+1)360+250=k360+250(kZ,nZ)、【答案】 k360+250(kZ)三、解答题9、若一弹簧振子相对平衡位置的位移x(cm)与时间t(s)的函数关系如图所示,图1-2-4(1)求该函数的周期;(2)求t=10.5 s时该弹簧振子相对平衡位置的位移、【解】 (1)由题图可知,该函数的周期为4 s.(2)设本题中位移与时间的函数关系为x=f(t),由函数的周期为4 s,可知f(10.5)=f(2.5+24)=f(2.5)=-8(cm),故t=10.5 s时弹簧振子相对平衡位置的位移为-8 cm.图1-2-510、如图所示,试表示终边落在阴影区域的角、【解】在0~360范围中,终边落在指定区域的角是0或315360,转化为-360~360范围内,终边落在指定区域的角是-4545,故满足条件的`角的集合为{|-45+k36045+k360,kZ}、11、在与530终边相同的角中,求满足下列条件的角、(1)最大的负角;(2)最小的正角;(3)-720到-360的角、【解】与530终边相同的角为k360+530,kZ.(1)由-360<k360+530<0,且kZ可得k=-2,故所求的最大负角为-190.(2)由0<k360+530<360且kZ可得k=-1,故所求的最小正角为170(3)由-720k360+530-360且kZ得k=-3,故所求的角为-550.。

高一数学 三角函数的图像和性质练习题

高一数学 三角函数的图像和性质练习题

高一数学三角函数的图像和性质练习题高一数学三角函数的图像和性质练题1.若cosx=0,则角x等于( )。

A。

kπ(k∈Z)B。

π/2+kπ(k∈Z)C。

π+kπ(k∈Z)D。

-π/2+kπ(k∈Z)2.使cosx=(1+m)/(1-m)有意义的m的值为( )。

A。

m≥0B。

m≤0C。

-1<m<1D。

m<-1或m>13.函数y=3cos(2πx-)的最小正周期是( )。

A。

5πB。

2π/5C。

2πD。

5π/24.函数y=2sinx+2cosx-3的最大值是( )。

A。

-1B。

1/2C。

-1/2D。

-55.下列函数中,同时满足①在(-π/2,π/2)上是增函数,②为奇函数,③以π为最小正周期的函数是( )。

A。

y=XXXB。

y=cosxXXXD。

y=|sinx|6.函数y=sin(2x+π/6)的图象可看成是把函数y=sin2x的图象向左平移得到( )。

A。

向右平移π/6B。

向左平移π/6C。

向右平移5π/6D。

向左平移5π/67.函数y=sin(-2x)的单调增区间是( )。

A。

[kπ-。

kπ+]。

(k∈Z)B。

[kπ+。

kπ+]。

(k∈Z)C。

[kπ-。

kπ+]。

(k∈Z)D。

[kπ+。

kπ+]。

(k∈Z)8.函数y=sin2x图象的一条对称轴是( )。

A。

x=-π/2B。

x=-π/4C。

x=π/4D。

x=π/29.函数y=sin(3x-π/5)的定义域是(-∞,+∞),值域是[-1,1],最小正周期是10π/3,振幅是1,频率是3,初相是π/5.10.函数y=sin(2x-π/6)的图象向左平移,所得的曲线对应的函数解析式是y=sin(2x+π/6)。

11.关于函数f(x)=4sin(2x+π/3),(x∈R),有下列命题:1)y=f(x)的表达式可改写为y=4cos(2x-π/6);2)y=f(x)是以π为最小正周期的周期函数;3)y=f(x)的图象关于点(-π/3,0)对称。

1)y=f(x)的表达式可改写为y=4cos(2x-π/6);2)y=f(x)是以2π/3为最小正周期的周期函数;3)y=f(x)的图象关于点(π/3,0)对称。

高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.点P 从(2,0)出发,逆时针方向旋转43π到达Q 点,则Q 点的坐标为( )A .1,2⎛- ⎝⎭B .(1)-C .(1,-D .21⎛⎫ ⎪ ⎪⎝⎭2.角α的终边过点()3,4P -,则sin 22πα⎛⎫+= ⎪⎝⎭( )A .2425- B .725- C .725D .24253.已知函数1log a y x =和()22y k x =-的图象如图所示,则不等式120y y ≥的解集是( )A .(]1,2B .[)1,2C .()1,2D .[]1,24.已知(0,2)απ∈,sin 0α<和cos 0α>,则角α的取值范围是( ) A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭5.已知α是第二象限角,则( ) A .2α是第一象限角 B .sin02α>C .sin 20α<D .2α是第三或第四象限角6.已知直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2,则19log x =( ) A .3B .12C .2D .12-7.已知()1cos 3αβ-=,3cos 4β=与0,2παβ⎛⎫-∈ ⎪⎝⎭和0,2πβ⎛⎫∈ ⎪⎝⎭,则( ).A .0,2πα⎛⎫∈ ⎪⎝⎭B .,2παπ⎛⎫∈ ⎪⎝⎭C .()0,απ∈D .0,2πα⎡⎫∈⎪⎢⎣⎭8.已知点()tan ,sin P αα在第四象限,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角二、解答题9.设α是第一象限角,作α的正弦线、余弦线和正切线,由图证明下列各等式. (1)22sin cos 1αα+=; (2)sin tan cos ααα=. 如果α是第二、三、四象限角,以上等式仍然成立吗? 10.已知()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭.(1)化简()f α;(2)若α是第三象限角,且()1sin 5απ-=,求()f α的值.11.已知|cosθ|=-cosθ,且tanθ<0,试判断()()sin cos θcos sin θ的符号.12.不通过求值,比较下列各组数的大小: (1)37sin 6π⎛⎫- ⎪⎝⎭与49sin 3π⎛⎫ ⎪⎝⎭;(2)sin194︒与()cos 160︒.13.(1)已知角α的终边经过点43,55P ⎛⎫- ⎪⎝⎭,求()()()πsin tan π2sin πcos 3παααα⎛⎫-⋅- ⎪⎝⎭+⋅-的值; (2)已知0πx <<,1sin cos 5x x +=求tan x 的值. 14.已知角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭. (1)求tan θ的值;(2)求()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++的值.15.在平面直角坐标系xOy 中角θ的始边为x 轴的正半轴,终边在第二象限与单位圆交于点P ,点P 的横坐标为35. (1)求cos 3sin 3sin cos θθθθ+-的值;(2)若将射线OP 绕点O 逆时针旋转2π,得到角α,求22sin sin cos cos αααα--的值.三、多选题16.给出下列各三角函数值:①()sin 100-;②()cos 220-;③tan 2;④cos1.其中符号为负的是( ) A .①B .②C .③D .④四、双空题17.已知55sin ,cos 66P ππ⎛⎫⎪⎝⎭是角α的终边上一点,则cos α=______,角α的最小正值是______. 参考答案与解析1.C【分析】结合已知点坐标,根据终边旋转的角度和方向,求Q 点坐标即可.【详解】由题意知,442cos ,2sin 33Q ππ⎛⎫ ⎪⎝⎭,即(1,Q -. 故选:C. 2.B【分析】化简得2sin 22cos 12παα⎛⎫+=- ⎪⎝⎭,再利用三角函数的坐标定义求出cos α即得解.【详解】解:2sin 2cos 22cos 12πααα⎛⎫+==- ⎪⎝⎭由题得3cos 5α==-,所以237sin 22()12525πα⎛⎫+=⨯--=- ⎪⎝⎭. 故选:B 3.B【分析】可将12,y y 图象合并至一个图,由12,y y 同号或10y =结合图象可直接求解.【详解】将12,y y 图象合并至一个图,如图:若满足120y y ≥,则等价于120y y ⋅>或10y =,当()1,2x ∈时,则120y y ⋅>,当1x =时,则10y =,故120y y ≥的解集是[)1,2故选:B 4.D【分析】根据三角函数值的符号确定角的终边的位置,从而可得α的取值范围.【详解】因为sin 0α<,cos 0α>故α为第四象限角,故3,22παπ⎛⎫∈⎪⎝⎭故选:D. 5.C∴2α是第三象限,第四象限角或终边在y 轴非正半轴,sin20α<,故C 正确,D 错误. 故选:C . 6.D【分析】由已知结合直线平行的斜率关系可求出x ,然后结合对数的运算性质可求.【详解】解:因为直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2 所以6221x +=+,解得3x =所以2113991log log 3log 32x -===-故选:D . 7.B【分析】由已知得()0,απ∈,再利用同角之间的关系及两角差的余弦公式计算cos 0α<,即可得解.()0,απ∴∈又cos cos()cos()cos sin()sin ααββαββαββ=-+=---13034=⨯=< ,2παπ⎛⎫∴∈ ⎪⎝⎭故选:B 8.C【分析】由点的位置可确定tan ,sin αα的符号,根据符号可确定角α终边的位置.【详解】()tan ,sin P αα在第四象限tan 0sin 0αα>⎧∴⎨<⎩,α位于第三象限.故选:C. 9.见解析【解析】作出α的正弦线、余弦线和正切线 (1)由勾股定理证明;(2)由三角形相似PMO TAO ∆∆∽证明.若α是第二、三、四象限角,以上等式仍成立.【点睛】本题考查三角函数线的应用,考查用几何方法证明同角间的三角函数关系.掌握三角函数线定义是解题基础.10.(1)()cos f αα=-.【分析】(1)根据诱导公式直接化简即可;(2)由()1sin 5απ-=,可以利用诱导公式计算出sin α,再根据角所在象限确定cos α,进而得出结论.【详解】(1)根据诱导公式()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin sin sin ααααα⋅⋅-=⋅cos α=-所以()cos f αα=-;(2)由诱导公式可知()sin sin απα-=-,即1sin 5α=-又α是第三象限角 所以cos α==所以()=cos f αα-=【点睛】本题主要考查诱导公式的运用,属于基础题.使用诱导公式时,常利用口诀“奇变偶不变,符号看象限”进行记忆. 11.符号为负.【分析】由|cosθ|=﹣cosθ,且tanθ<0,可得θ在第二象限,即可判断出.【详解】由|cosθ|=-cosθ可得cosθ≤0,所以角θ的终边在第二、三象限或y 轴上或x 轴的负半轴上;又tanθ<0,所以角θ的终边在第二、四象限,从而可知角θ的终边在第二象限.易知-1<cosθ<0,0<sinθ<1,视cosθ、sinθ为弧度数,显然cosθ是第四象限的角,sinθ为第一象限的角,所以cos(sinθ)>0,sin(cosθ)<0,故()()sin cos θcos sin θ<0故答案为符号为负.【点睛】本题考查了三角函数值与所在象限的符号问题,考查了推理能力,属于基础题. 12.(1)3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(2)sin194cos160︒>︒【分析】根据诱导公式及函数的单调性比较大小. (1)由37sin sin 6sin 666ππππ⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭49sin sin 16sin 333ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又函数sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增所以sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭即3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭;(2)由()sin194sin 18014sin14︒=︒+︒=-︒()cos160cos 9070sin70︒=︒+︒=-︒又0147090︒<︒<︒<︒所以sin14sin70︒<︒,即sin14sin70-︒>-︒ 所以sin194cos160︒>︒.13.(1)54;(2)4tan 3x =- .【分析】(1)由三角函数定义易得4cos 5α=,再利用诱导公式和基本关系式化简为()()()πsin tan π12sin πcos 3πcos ααααα⎛⎫- ⎪-⎝⎭⋅=+-求解; (2)将1sin cos 5x x +=两边平方得到242sin cos 025x x =-<,进而求得7sin cos 5x x -=,与1sin cos 5x x +=联立求解.【详解】解:(1)P 点到原点O的距离1r =由三角函数定义有4cos 5x r α== ()()()πsin tan πcos tan 152sin πcos 3πsin cos cos 4ααααααααα⎛⎫- ⎪-⎝⎭⋅=⨯==+---; (2)∵0πx <<,将1sin cos 5x x +=两边平方得112sin cos 25x x +=∴242sin cos 025x x =-<,可得ππ2x << ∴sin 0x > cos 0x < ∴sin cos 0x x ->∵()()22sin cos sin cos 2x x x x -++= ∴7sin cos 5x x -=,联立1sin cos 5x x +=∴4sin 5x = 3cos 5x =-∴4tan 3x =-. 14.(1)(2)2.【分析】(1)根据三角函数的定义tan yxθ=,代值计算即可; (2)利用诱导公式化简原式为齐次式,再结合同角三角函数关系和(1)中所求,代值计算即可. (1)因为角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭故可得tan yxθ==(2)原式=()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++ sin cos sin cos θθθθ+=-tan 1tan 1θθ+=-由(1)可得:tan θ=tan 12tan 1θθ+==-. 15.(1)35(2)1925-【分析】(1)由题意利用任意角的三角函数的定义,求得tan α的值,再利用同角三角函数的基本关系,计算求得所给式子的值.(2)由题意利用诱导公式求得3tan 4α=,再将22sin sin cos cos αααα--化为22tan tan 1tan 1ααα--+,即可求得答案. (1)P 在单位圆上,且点P 在第二象限,P 的横坐标为35,可求得纵坐标为45所以434sin ,cos ,tan 553θθθ==-=-,则cos 3sin 13tan 33sin cos 3tan 15θθθθθθ++==--. (2)由题知2παθ=+,则3sin()cos 5sin 2παθθ=+==-,24cos cos()sin 5παθθ=+=-=-则sin 3tan cos 4ααα== 故22222222sin sin cos cos tan 1sin sin cos cos sin cos tan tan 1ααααααααααααα------==++ 2233()443()1241951--==-+.16.ABC【分析】首先判断角所在象限,然后根据三角函数在各个象限函数值的符号即可求解. 【详解】解:对①:因为100-为第三象限角,所以()sin 1000-<; 对②:因为220-为第二象限角,所以()cos 2200-<; 对③:因为2弧度角为第二象限角,所以tan20<; 对④:因为1弧度角为第一象限角,所以cos10>; 故选:ABC. 17.125π3【解析】根据三角函数的定义,求得cos α的值,进而确定角α的最小正值. 【详解】由于55sin ,cos 66P ππ⎛⎫ ⎪⎝⎭是角α的终边上一点,所以cos α=5πsin 5π1sin62==.由于5π15πsin0,cos 0626=>=<,所以P 在第四象限,也即α是第四象限角,所以π2π3k α=-,当1k =时,则α取得最小正值为5π3.故答案为:(1)12;(2)5π3【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,考查终边相同的角,属于基础题.。

高一三角函数经典大题

高一三角函数经典大题

高一三角函数经典大题1. 已知一个直角三角形的斜边长为10,其中一边的长度为6,求另一边的长度。

解:由勾股定理可得,两直角边的平方和等于斜边的平方。

设另一边的长度为x,则有:x^2 + 6^2 = 10^2x^2 = 10^2 - 6^2x^2 = 100 - 36x^2 = 64x = √64x = 8所以另一边的长度为8。

2. 在一个等边三角形ABC中,角A的三均分线和角B的角平分线相交于点D,求角ADC的度数。

解:由于三角形ABC是等边三角形,所以各个角的度数都是60度。

由角平分线的性质可知,角ADC的度数是角A的一半,即30度。

所以角ADC的度数是30度。

3. 已知一条船从A地出发,以每小时15公里的速度沿着河流的方向东行,8小时后到达B地,然后折返,以每小时12公里的速度沿着河流的方向西行,又经过10小时回到A地。

求河流的速度和船在静水中的速度。

解:设河流的速度为x公里/小时,船在静水中的速度为v公里/小时。

根据题意可得,船在静水中的速度减去河流的速度等于船在相对于地面的实际速度。

船在相对于地面的实际速度等于船在河流方向上的速度加上地面的速度。

由于船在静水中的速度减去地面的速度等于船在静水中的速度减去河流的速度,所以船在河流方向上的速度等于地面的速度。

根据题意可得以下等式:v - x = 15v + x = 12将上述两个等式相加可得:2v = 27v = 13.5将v代入第一个等式可得:13.5 - x = 15x = 13.5 - 15x = -1.5所以河流的速度为-1.5公里/小时,船在静水中的速度为13.5公里/小时。

人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)

人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)

人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)人教版高一数学必修一第五单元《三角函数》单元练题(含答案)一、单选题1.已知函数$f(x)=\cos 2x+3\sin 2x+1$,则下列判断错误的是()A。

$f(x)$的最小正周期为$\pi$B。

$f(x)$的值域为$[-1,3]$C。

$f(x)$的图象关于直线$x=\dfrac{\pi}{6}$对称D。

$f(x)$的图象关于点$\left(-\dfrac{\pi}{4},0\right)$对称2.已知函数$y=\sin(\omega x+\dfrac{\pi}{2})$在区间$\left[0,\dfrac{\pi}{3}\right]$上单调递增,则$\omega$的取值范围是A。

$\left[0,\dfrac{1}{2}\right]$B。

$\left[\dfrac{1}{2},1\right]$C。

$\left[\dfrac{1}{3},2\right]$D。

$\left[\dfrac{2}{3},3\right]$3.若角$\alpha$的终边过点$P(2,2)$,则$\sin\alpha=$()A。

1B。

-1C。

$\dfrac{1}{\sqrt{10}}$D。

$-\dfrac{1}{\sqrt{10}}$4.若$x$是三角形的最小内角,则函数$y=\sin x+\cos x+\sin x\cos x$的值域是()A。

$[-1,+\infty)$B。

$[1,2]$C。

$[0,2]$D。

$\left[1,\dfrac{2+\sqrt{2}}{2}\right]$5.下列说法正确的个数是()①大于等于,小于等于90的角是锐角;②钝角一定大于第一象限的角;③第二象限的角一定大于第一象限的角;④始边与终边重合的角的度数为$360^\circ$。

A。

1B。

2C。

3D。

46.角$\alpha$的终边经过点$(2,-1)$,则$2\sin\alpha+3\cos\alpha$的值为()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学复习——三角函数班级 姓名【复习要点】1. 了解任意角的概念和弧度制;借助单位圆理解掌握三角函数的定义;理解同角三角函数的基本关系;熟练运用诱导公式。

2. 结合三角函数图象理解三角函数的性质(周期性,单调性,最大和最小值等)。

3. 结合sin()y A x ωϕ=+的图象观察参数的变化对函数图象的影响;能应用三角函数解决一些简单的实际问题。

【例题分析】1.已知2弧度的圆心角所对的弧长为72,则此圆心角所对的扇形面积是____________. 2.方程sin lg x x =的实根个数为 . 3.函数tan()6y x π=-的定义域是 .4.要得到sin(3)y x =-的图象只要把2sin 3)y x x =-的图象 ( ) A. 右移 π4 B. 左移 π4 C. 右移 π12 D. 左移 π125.已知αααααcos 3sin 2cos sin ,2tan +--=则的值是 .6.已知51cos sin ,02=+<<-x x x π.(I )求sin x -cos x 的值;(Ⅱ)求xx x x x x cot tan 2cos 2cos 2sin 22sin 322++-的值.7.化简),,)(23sin(32)2316cos()2316cos()(Z k R x x x k x k x f ∈∈++--+++=πππ并求函数)(x f 的值域和最小正周期.8.函数x x y 24cos sin +=的最小正周期是___________.9.设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x 。

(Ⅰ)求ϕ; (Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像.10.函数2)62sin(3++-=πx y 的单调递减区间是 .【巩固练习】 一、选择题:1.下列不等式中正确的是 ( )(A )ππ52tan 53tan > (B )tan 4tan3> (C )tan 281tan 665>(D ))512tan()413tan(ππ->-2.若x ∈R ,则函数2()33sin cos f x x x =--的 ( ) (A )最小值为0,无最大值 (B )最小为0,最大值为6 (C )最小值为14-,无最大值 (D )最小值为14-,最大值为63.已知奇函数)(x f 在[-1,0]上为单调递增函数,且α、β为锐角三角形的内角,则( ) (A )(cos )(cos )f αf β> (B ))(sin )(sin βαf f > (C ))(cos )(sin βαf f > (D ))(cos )(sin βαf f < 4.在①sin y x =;②sin y x =;③sin(2)3y x π=+;④1tan()2y x π=-这四个函数中,最小正周期为π的函数序号为( ) (A )①②③ (B )①④(C )②③(D )以上都不对5.给出如下四个函数①)3sin(51)(π-=x x f ②()cos(sin )f x x = ③x x x f 2sin )(= ④xx x f sin 1)sin(tan )(+=其中奇函数的个数是( )(A )1个 (B )2个 (C )3个 (D )4个 6.函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为 ( )(A ))48sin(4π+π-=x y (B ))48sin(4π-π=x y (C ))48sin(4π-π-=x y (D ))48sin(4π+π=x y7.在△ABC 中,sin 2sin 2A B =,则△ABC 的形状为 ( )(A )等腰三角形 (B )直角三角形 (C )等腰直角三角形 (D )等腰三角形或直角三角形 8.设(0,2)θπ∈,若sin 0θ<,且cos20θ<,则θ的取值范围是 ( )(A )),(23ππ (B )),(4745ππ (C ) ),(ππ223 (D ) ),(434ππ 二、填空题:9. α是第二象限角,P (x ,5)为其终边上一点,且2cos 4x α=,则sin α的值为 . 10. 已知tan 3θ=,则sin 2cos2θθ-的值是 .11. 已知7sin αcos α (0απ)13+=<<,则=tan α .12. 设函数()sin 2f x x =,若()f x t +是偶函数,则t 的最小正值是 . 13. 函数y =sin x +a cos x 的一条对称轴的方程是x =4π,则直线ax +y +1=0的倾斜角为 . 三、解答题:14.设θ ∈(0,π),sin θ+cos θ=12. (1)求sin 4θ+cos 4θ的值; (2)求cos2θ的值.15.若()sin,6n f n π=试求: (1)(1)(2)(2006)f f f +++的值(2)(1)(3)(5)(7)(101)f f f f f ⋅⋅⋅⋅⋅的值16.已知函数 f (x ) = sin (2x +6π) + sin (2x -6π)+cos2x +a (a ∈R ) . (1)求函数的最小正周期;(2)求函数的单调递减区间; (3)若x ∈[0,2π]时,f (x )的最小值为-2,求a 的值.17.设关于x 的函数22cos 2cos (21)y x a x a =--+的最小值为()f a . (1)写出()f a 的表达式; (2)试确定能使1()2f a =的a 值,并求出此时函数y 的最大值.18.如图,ABCD 是一块边长为100m 的正方形地皮,其中AST 是一半径为90m 的扇形小山,其余部分都是平地。

一开发商想在平地上建一个矩形停车场,使矩形的一个顶点在弧ST 上,相邻两边CQ 、CR 落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值。

高一数学复习——三角函数班级 姓名【复习要点】4. 了解任意角的概念和弧度制;借助单位圆理解掌握三角函数的定义;理解同角三角函数的基本关系;熟练运用诱导公式。

5. 结合三角函数图象理解三角函数的性质(周期性,单调性,最大和最小值等)6. 结合sin()y A x ωϕ=+的图象观察参数的变化对函数图象的影响;能应用三角函数解决一些简单的实际问题。

【例题分析】1.已知2弧度的圆心角所对的弧长为72,则此圆心角所对的扇形面积是___4916____. 2.方程sin lg x x =的实根个数为 3个 . 3.函数tan()6y x π=-的定义域是2|,3x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭4.要得到sin(3)y x =-的图象只sin 3)y x x =-的图象 ( D ) A. 右移 π4 B. 左移 π4 C. 右移 π12 D. 左移 π125.已知αααααcos 3sin 2cos sin ,2tan +--=则的值是 3 .6.已知51cos sin ,02=+<<-x x x π.(I )求sin x -cos x 的值;(Ⅱ)求xx xx x x cot tan 2cos 2cos 2sin 22sin 322++-的值. 解法一:(Ⅰ)由,251cos cos sin 2sin ,51cos sin 22=++=+x x x x x x 平方得即 .2549cos sin 21)cos (sin .2524cos sin 22=-=--=x x x x x x又,0cos sin ,0cos ,0sin ,02<-><∴<<-x x x x x π 故 .57cos sin -=-x x(Ⅱ)xx x x x x xx x x x x sin cos cos sin 1sin 2sin 2cot tan 2cos 2cos 2sin 2sin 3222++-=++-125108)512()2512()sin cos 2(cos sin -=-⨯-=--=x x x x 解法二:(Ⅰ)联立方程⎪⎩⎪⎨⎧=+=+.1cos sin ,51cos sin 22x x x由①得,cos 51sin x x -=将其代入②,整理得,012cos 5cos 252=--x x⎪⎪⎩⎪⎪⎨⎧=-=∴<<-=-=∴.54cos ,53sin ,02.54cos 53cos x x x x x π 或 故 .57cos sin -=-x x(Ⅱ)x x xx x x cot tan 2cos 2cos 2sin 2sin 322++- xxx x x xsin cos cos sin 1sin 2sin 22++-=125108)53542(54)53()sin cos 2(cos sin -=+-⨯⨯-=--=x x x x7.化简),,)(23sin(32)2316cos()2316cos()(Z k R x x x k x k x f ∈∈++--+++=πππ并求函数)(x f 的值域和最小正周期.解: )23sin(32)232cos()232cos()(x x k x k x f +π+-π-π++π+π=)23sin(32)23cos(2x x +π++π=x 2cos 4=所以函数f (x )的值域为[]4,4-,最小正周期πωπ==2T8.函数x x y 24cos sin +=的最小正周期是2π.9.设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x 。

(Ⅰ)求ϕ; (Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)画出函数)(x f y =在区间],0[π上的图像.解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ①②.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得 .,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)由知)432sin(π-=x yx8π83π 85π 87π πy 22--1 0122- 故函数上图像是在区间],0[)(πx f y =10.函数2)62sin(3++-=πx y 的单调递减区间是 [,],63k k k Z ππππ-++∈.【巩固练习】四、选择题:1.下列不等式中正确的是( BD )(A )ππ52tan 53tan > (B )tan 4tan3> (C )tan 281tan 665>(D ))512tan()413tan(ππ->-2. 若x ∈R ,则函数2()33sin cos f x x x =--的 ( B ) (A )最小值为0,无最大值 (B )最小为0,最大值为6 (C )最小值为14-,无最大值 (D )最小值为14-,最大值为63.已知奇函数)(x f 在[-1,0]上为单调递增函数,且α、β为锐角三角形的内角,则 ( C ) (A )(cos )(cos )f αf β> (B ))(sin )(sin βαf f > (C ))(cos )(sin βαf f > (D ))(cos )(sin βαf f < 4.在①sin y x =;②sin y x =;③sin(2)3y x π=+;④1tan()2y x π=-这四个函数中,最小正周期为π的函数序号为( C ) (A )①②③ (B )①④(C )②③(D )以上都不对5.给出如下四个函数①)3sin(51)(π-=x x f ②()cos(sin )f x x = ③x x x f 2sin )(= ④xx x f sin 1)sin(tan )(+=其中奇函数的个数是( A )(A )1个 (B )2个 (C )3个 (D )4个 6.函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为 ( A )(A ))48sin(4π+π-=x y (B ))48sin(4π-π=x y (C ))48sin(4π-π-=x y (D ))48sin(4π+π=x y7.在△ABC 中,sin 2sin 2A B =,则△ABC 的形状为 ( D ) (A )等腰三角形 (B )直角三角形 (C )等腰直角三角形 (D )等腰三角形或直角三角形 8.设(0,2)θπ∈,若sin 0θ<,且cos20θ<,则θ的取值范围是 ( B ) (A )),(23ππ (B ) ),(4745ππ (C ) ),(ππ223 (D ) ),(434ππ 五、填空题:9. α是第二象限角,P (x ,5)为其终边上一点,且2cos 4x α=,则sin α的值为104. 10. 已知tan 3θ=,则sin 2cos2θθ-的值是75. 11. 已知7sin αcos α (0απ)13+=<<,则=tan α125-. 12. 设函数()sin 2f x x =,若()f x t +是偶函数,则t 的最小正值是 4π. 13. 函数y =sin x +a cos x 的一条对称轴的方程是x =4π,则直线ax +y +1=0的倾斜角为34π.六、解答题:14.设θ ∈(0,π),sin θ+cos θ=12. (1)求sin 4θ+cos 4θ的值; (2)求cos2θ的值.(1)3223(2)-4715. 若()sin ,6n f n π=试求:(1)(1)(2)(2006)f f f +++的值(2)(1)(3)(5)(7)(101)f f f f f ⋅⋅⋅⋅⋅的值3411(1)(2) ()22+16.已知函数 f (x ) = sin (2x +6π) + sin (2x -6π)+cos2x +a (a ∈R ) . (1)求函数的最小正周期; (2)求函数的单调递减区间; (3)若x ∈[0,2π]时,f (x )的最小值为-2,求a 的值.(1)T =π (2)[k π+6π, k π+32π] (k ∈Z ) (3)a =-117.设关于x 的函数22cos 2cos (21)y x a x a =--+的最小值为()f a . (3)写出()f a 的表达式; (4)试确定能使1()2f a =的a 值,并求出此时函数y 的最大值.(1) f (a )=21,2,121,22,214, 2.a a a a a a ≤-⎧⎪⎪----<<⎨⎪-≥⎪⎩(2) a =-1, y max =518.如图,ABCD 是一块边长为100m 的正方形地皮,其中AST 是一半径为90m 的扇形小山,其余部分都是平地。

相关文档
最新文档