高二数学几何概型2

合集下载

高二数学第二册知识点归纳

高二数学第二册知识点归纳

高二数学第二册知识点归纳高二数学第二册主要包含了一些高中数学的进阶知识点,这些知识点是建立在高一数学基础之上的,对于学生的数学能力提升起着至关重要的作用。

本文将对该册的知识点进行归纳总结,帮助同学们更好地掌握和理解这些知识。

1. 函数与导数函数与导数是高中数学中的重点和难点,而在高二数学第二册中,对函数和导数的学习进一步深入。

主要的知识点有:- 函数的性质和一些常用函数的图像特点- 导数的定义和导数法则- 函数的增减性与极值问题,包括极值判定和求极值的方法- 函数的单调性与曲线的凹凸性,包括判定和求解- 复合函数的导数计算- 高阶导数和导数的应用,如泰勒公式等2. 数列与数列极限数列与数列极限是高中数学的基础知识,高二数学第二册进一步拓展了数列的相关概念和应用。

主要的知识点有:- 数列的概念和性质,包括等差数列和等比数列等- 数列极限的定义和性质,如夹逼定理等- 递推数列和递推数列极限的计算和应用- 函数极限与数列极限的关系- 无穷数列的极限计算和性质3. 三角函数与其应用三角函数是高等数学中重要的工具,也是高中数学的重点内容之一。

一些新的概念和应用在高二数学第二册中进行了深入学习。

主要的知识点有:- 基本概念和关系,如正弦函数、余弦函数和正切函数等- 三角函数的性质和图像- 三角函数的诱导公式、化简公式和和差公式- 各种特殊角的计算和性质- 三角方程的求解和应用,包括三角函数方程和三角方程组4. 概率与统计概率与统计是高中数学的拓展内容,相比于前几个知识点,它们更侧重于一种运算和分析思维。

主要的知识点有:- 随机事件的概念和性质,包括基本事件、对立事件和复合事件等- 概率的计算与性质,包括古典概型和几何概型等- 条件概率与乘法定理- 随机变量的概念和性质,包括离散随机变量和连续随机变量等- 统计数据的收集、整理和分析方法,包括频数分布表和统计图表等- 正态分布的概念和性质,以及正态分布的应用以上是高二数学第二册的主要知识点归纳,通过对这些知识的学习和理解,同学们将能够建立更牢固的数学基础,为高中数学的学习打下坚实的基础。

高中数学必修三教案-几何概型

高中数学必修三教案-几何概型
二.研探新知
探究(一):几何概型的概念
提出问题
(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?
(2)试验1.取一根长度为3 m的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m的概率有多大?
试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑
色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?
(4)什么是几何概型?它有什么特点?
(5)如何计算几何概型的概率?有什么样的公式?
(6)古典概型和几何概型有什么区别和联系?
活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.
讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P(正,正)=P(正,反)=P(反,正)=P(反,反)=1/4.两次出现相同面的概率为 .
考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的 ,
于是事件A发生的概率P(A)= .
第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为 ×π×1222cm2的大圆内,而当中靶点落在面积为 ×π×12.22cm2的黄心内时,事件B发生,于是事件B发生的概率P(B)= =0.01.
分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.
解:记“钻到油层面”为事件A,则P(A)=0.004.

江苏高级中学高二年级上学期数学教材目录

江苏高级中学高二年级上学期数学教材目录

江苏高级中学高二年级上学期数学教材目录第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数概念与基本初等函数Ⅰ2.1函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2指数函数分数指数幂指数函数2.3对数函数对数对数函数2.4幂函数2.5函数与方程二次函数与一元二次方程用二分法求方程的近似解2.6函数模型及其应用数学2第3章立体几何初步3.1空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3空间直角坐标系空间直角坐标系空间两点间的距离第5章算法初步5.1算法的意义5.2流程图5.3基本算法语句5.4算法案例第6章统计6.1抽样方法6.2总体分布的估计6.3总体特征数的估计6.4线性回归方程第7章概率7.1随机事件及其概率7.2古典概型7.3几何概型7.4互斥事件及其发生的概率数学4第8章三角函数8.1任意角、弧度8.2任意角的三角函数8.3三角函数的图象和性质第9章平面向量9.1向量的概念及表示9.2向量的线性运算9.3向量的坐标表示9.4向量的数量积9.5向量的应用第10章三角恒等变换10.1两角和与差的三角函数10.2二倍角的三角函数10.3几个三角恒等式高二数学上数学5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式文科数学选修系列11-1(上)第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用1-2(下)第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图理科数学选修系列22-1(上)第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程第3章空间向量与立体几何2-2(上)第1章导数及其应用第2章推理与证明第3章数系的扩充与复数的引入2-3(下)第1章计数原理第2章概率第3章统计案例。

几何概型

几何概型
D F C D F C D F C
G
E G
EG
E
A
H
B
A
H
B
A
H
B
3.某人午休醒来 发觉表停了, 某人午休醒来, 例3.某人午休醒来,发觉表停了,他打开收音机想听电 台整点报时,求他等待的时间不多于于10分钟的概率. 10分钟的概率 台整点报时,求他等待的时间不多于于10分钟的概率.
分析: 分析:在哪个时间段打开收音机的概率只与该时间段的长度 有关,而与该时间段的位置无关,这符合几何概型的条件, 有关,而与该时间段的位置无关,这符合几何概型的条件, 由于收音机每一小时报一次, 由于收音机每一小时报一次,可以认为此人打 开收音机的时间正处于两次报时之间, 开收音机的时间正处于两次报时之间,即处于 [0,60]的任意一点 的任意一点, [0,60]的任意一点,于是概率等于等待时间 段的长度与两个整点之间长度的比. 段的长度与两个整点之间长度的比.
等待的时间小于10分钟”为事件A 10分钟 解:记“等待的时间小于10分钟”为事件A, 打开收音机的时刻位于[50 60]时间段内 [50, 打开收音机的时刻位于[50,60]时间段内 则事件A发生. 则事件A发生. 由几何概型的求概率公式得 10 1 P( A) = = 60 6 1 等待报时的时间不多于10分钟” 10分钟 答:等待报时的时间不多于10分钟”的概率为 .
6
变式训练2 某路公共汽车5 变式训练2:某路公共汽车5分钟一班准时到 达某车站,求某一人在该车站等车时间少于3 达某车站,求某一人在该车站等车时间少于3 分钟的概率(假定车到来后每人都能上) 分钟的概率(假定车到来后每人都能上).
a a+2 a+5
设上一班车离站时刻为a, 解:设上一班车离站时刻为a, 则某人到站的一切可能时刻为Ω=(a,a+5), 则某人到站的一切可能时刻为Ω=(a,a+5), 等车时间少于3分钟”为事件A 记“等车时间少于3分钟”为事件A, 则他到站的时刻只能为µ=(a+2,a+5)中的任一时刻 中的任一时刻, 则他到站的时刻只能为µ=(a+2,a+5)中的任一时刻,

高二年级数学必修3第三章知识点:古典概型与几何概型知识点总结

高二年级数学必修3第三章知识点:古典概型与几何概型知识点总结

高二年级数学必修3第三章知识点:古典概型与几何概型知
识点总结
数学在科学发展和现代生活生产中的应用非常广泛,以下是为大家整理的高二年级数学必修3第三章知识点,希望可以解决您所遇到的相关问题,加油,一直陪伴您。

知识梳理
1. 基本事件:一次试验连同其中可能出现的每一个结果(事件 )称为一个基本事件
特别提醒:基本事件有如下两个特点:
○1任何两个基本事件都是互斥的;
○2任何事件都可以表示成基本事件的和。

2.所有基本事件的全体,叫做样本空间,用表示,例如抛一枚硬币为一次实验,则={正面,反面}。

3.等可能性事件(古典概型):如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件
特别提醒:古典概型的两个共同特点:
○1有限性,即试中有可能出现的基本事件只有有限个,即样本空间中的元素个数是有限的;
○2等可能性,即每个基本事件出现的可能性相等。

4.古典概型的概率公式:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率
5.几何概型:如果第个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

特别提醒:几何概型的特点:
○1试验的结果是无限不可数的;
○2每个结果出现的可能性相等。

6.几何概型的概率公式: P(A)=
最后,希望小编整理的高二年级数学必修3第三章知识点对您有所帮助,祝同学们学习进步。

高二数学概率知识点总结

高二数学概率知识点总结

高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。

2. 必然事件:在一定条件下必然发生的事件。

3. 不可能事件:在一定条件下不可能发生的事件。

4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。

如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。

二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。

-每个基本事件出现的可能性相等。

2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。

三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。

-每个基本事件出现的可能性相等。

2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。

四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。

-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。

2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。

-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。

高二数学几何概型试题

高二数学几何概型试题

高二数学几何概型试题1.如图,EFGH是以O为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形HOE(阴影部分)内”,则P (B|A)=()A. B. C. D.【答案】A【解析】由条件概率及几何概率可知:P(B|A),故选A.【考点】条件概率及几何概率.2.从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为________.【答案】【解析】阴影部分面积为,∴所求概率为.【考点】定积分计算曲边图形的面积,几何概型.3.如图所示的“赵爽弦图”中,四个相同的直角三角形与中间的小正方形拼成的一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是______________.【答案】【解析】观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为,面积为,故飞镖落在阴影区域的概率.【考点】几何概率.4.已知,直线和曲线有两个不同的交点,他们围成的平面区域为,向区域上随机投以点,点落在内的概率为,若,则实数的取值范围是:【答案】【解析】将直线变形为,可知此直线过定点,为直线的斜率.曲线表示圆心在原点半径为2的上半个圆。

当直线与轴重合时平面区域和区域重合,此时;当直线位置时,区域的面积为,区域面积为,此时。

所以。

【考点】1不等式表示平面区域;2直线过定点问题及直线的斜率;3几何概型概率。

5.如图,在棱长为2的正方体内(含正方体表面)任取一点,则的概率 .【答案】【解析】以为原点为轴建立空间直角坐标系,则,设,则,则,从而.【考点】1.空间向量的数量积;2.几何概型.6.四边形ABCD为长方形,AB=2,BC=1,O为AB的中点。

在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.B.C.D.【答案】C【解析】根据几何概型得,取到的点到O的距离大于2的概率:,选C.【考点】几何概型7.有一个底面半径为1、高为2的圆柱,点为这个圆柱底面圆的圆心,在这个圆柱内随机取一点,则点到点的距离大于1的概率为.【答案】【解析】空间内到点的距离等于1的点,是在以点为球心,1为半径的球面上,那么距离比1大的点在球的外部,因为基本事件总数是无限的,可以考虑几何概型,即圆柱内半球外部的体积与圆柱的体积比【考点】1、几何体的体积;2、几何概型.8.如图所示的矩形内随机撒芝麻,若落入阴影内的芝麻是628粒,则落入矩形内芝麻的粒数约是【答案】800【解析】由已知中矩形的长和宽可知,长是宽的2倍,根据随机模拟实验的概念,我们易得阴影部分的面积与矩形面积的比例约为芝麻落在阴影区域中的频率,由此我们构造关于S的方程,阴影解方程即可求矩形区域的粒数,故答案为800.【考点】几何概型点评:本题考查的知识点是几何概型与随机模拟实验,利用阴影面积与矩形面积的比例约为黄豆的方程,是解答本题的关键.落在阴影区域中的频率,构造关于S阴影9.取一根长度为米的绳子,拉直后在任意位置剪断,则剪得两段的长度都不小于1米,且以剪得的两段绳为两边的矩形的面积都不大于平方米的概率为()A.B.C.D.【答案】C【解析】设剪断后的两段绳长分别为x,y,那么可知的概率即为矩形区域的面积为25,那么满足题意的区域为,那么可知由几何概型概率可知为10:25=2:5,故答案为C.【考点】几何概型点评:主要是考查了几何概型的运用,分析区域长度和面积来求解,属于基础题。

2022-2023学年四川省成都市高二下学期期中考试数学(理)试题2【含答案】

2022-2023学年四川省成都市高二下学期期中考试数学(理)试题2【含答案】

2022-2023学年四川省成都市高二下学期期中考试数学(理)试题一、单选题1.已知i 为虚数单位,复数1iiz -=,则z =()A .1B .2C .3D .2【答案】B【分析】由复数的四则运算可得1i z =--,再由复数模的计算公式求解即可.【详解】解:因为21i (1i)i(i i )1i i i iz --⋅===--=--⋅,所以22(1)(1)2z =-+-=.故选:B.2.如图茎叶图记录了甲乙两位射箭运动员的5次比赛成绩(单位:环),若两位运动员平均成绩相同,则运动员乙成绩的方差为()A .2B .3C .9D .16【答案】A【分析】根据甲、乙二人的平均成绩相同求出x 的值,再根据方差公式求出乙的方差即可.【详解】因为甲乙二人的平均成绩相同,所以8789909193888990919055x+++++++++=,解得2x =,故乙的平均成绩8889909192905++++=,则乙成绩的方差222222[(8890)(8990)(9090)(9190)(9290)]25s -+-+-+-+-==.故选:A.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线方程为20x y -=,则双曲线C 的离心率为()A .2B .2C .3D .5【答案】D 【分析】先求得ba,进而求得双曲线的离心率.【详解】依题意,双曲线的一条渐近线方程为20,2x y y x -==,所以2222222,15b c c a b b e a a a a a +⎛⎫=====+= ⎪⎝⎭.故选:D4.已知m ,n 表示两条不同的直线,α表示平面.下列说法正确的是()A .若m α ,n α∥,则m n ∥B .若m α⊥,n α⊥,则m n ∥C .若m α⊥,m n ⊥,则n α∥D .若m α ,m n ⊥,则n α⊥【答案】B【分析】根据空间直线与平面间的位置关系判断.【详解】对于A ,若m α ,n α∥,则m 与n 相交、平行或异面,故A 错误;对于B ,若m α⊥,n α⊥,由线面垂直的性质定理得m n ∥,故B 正确;对于C ,若m α⊥,m n ⊥,则n α∥或n ⊂α,故C 错误;对于D ,若m α ,m n ⊥,则n 与α相交、平行或n ⊂α,故D 错误.故选:B .5.“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】由直线()34420m x y -+-=与直线220mx y +-=平行可求得m 的值,集合充分条件、必要条件的定义判断可得出结论.【详解】若直线()34420m x y -+-=与直线220mx y +-=平行,则()()23442342m mm m ⎧-=⎪⎨--≠-⎪⎩,解得4m =.因此,“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的充要条件.故选:C.6.执行该程序框图,若输入的a 、b 分别为35、28,则输出的=a ()A .1B .7C .14D .28【答案】B【分析】根据程序框图列举出循环的每一步,即可得出输出结果.【详解】第一次循环,35a =,28b =,a b ¹成立,a b >成立,则35287a =-=;第二次循环,7a =,28b =,a b ¹成立,a b >不成立,则28721b =-=;第三次循环,7a =,21b =,a b ¹成立,a b >不成立,则21714b =-=;第四次循环,7a =,14b =,a b ¹成立,a b >不成立,则1477b =-=.7a b ==,则a b ¹不成立,跳出循环体,输出a 的值为7.故选:B.7.函数()()22e xf x x x =-的图像大致是()A .B .C .D .【答案】B【分析】由函数()f x 有两个零点排除选项A ,C ;再借助导数探讨函数()f x 的单调性与极值情况即可判断作答.【详解】由()0f x =得,0x =或2x =,选项A ,C 不满足,即可排除A ,C由()()22e x f x x x =-求导得()()22e xx x f '=-,当2x <-或2x >时,()0f x ¢>,当22x -<<时,()0f x '<,于是得()f x 在(),2-∞-和()2,+∞上都单调递增,在()2,2-上单调递减,所以()f x 在2x =-处取极大值,在2x =处取极小值,D 不满足,B 满足.故选:B8.已知曲线1cos :sin x C y θθ=+⎧⎨=⎩(θ为参数).若直线323x y +=与曲线C 相交于不同的两点,A B ,则AB 的值为A .12B .32C .1D .3【答案】C【详解】分析:消参求出曲线C 的普通方程:22(1)1x y -+=,再求出圆心(1,0)到直线的距离d ,则弦长222AB r d =-.详解:根据22cos sin 1θθ+=,求出曲线C 的普通方程为22(1)1x y -+=,圆心(1,0)到直线的距离3233231d -==+,所以弦长222AB r d =-321=14=-,选C.点睛:本题主要考查将参数方程化为普通方程,直线与圆相交时,弦长的计算,属于中档题.9.过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【答案】A【分析】由l 与x 轴交点横坐标可得半焦距c ,设出点A ,B 坐标,利用点差法求出22,a b 的关系即可计算作答.【详解】依题意,焦点(2,0)F ,即椭圆C 的半焦距2c =,设1122(,),(,)A x y B x y ,00(,)P x y ,则有2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩,两式相减得:2212121212()()a ()()0b x x x x y y y y +-++-=,而1201202,2x x x y y y +=+=,且0012y x =-,即有2212122()()0b x x a y y --+-=,又直线l 的斜率12121y y x x -=-,因此有222a b =,而2224a b c -==,解得228,4a b ==,经验证符合题意,所以椭圆C 的方程为22184x y +=.故选:A10.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是A .413B .21313C .926D .31326【答案】A【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在ABD ∆中,3AD =,1BD =,120ADB ∠=︒,由余弦定理,得222cos12013AB AD BD AD BD =+-⋅︒=,所以213DF AB =.所以所求概率为224=1313DEF ABC S S ∆∆⎛⎫= ⎪⎝⎭.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.11.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,2PA AB ==,4=AD ,E 为PC 的中点,则面PCD 与直线BE 所成角的余弦值为()A .35B .23015C .2515D .10515【答案】D【分析】以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法结合同角三角函数的基本关系可求得面PCD 与直线BE 所成角的余弦值.【详解】因为PA ⊥平面ABCD ,四边形ABCD 为矩形,以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z轴建立如下图所示的空间直角坐标系,则()2,0,0B 、()2,4,0C 、()0,4,0D 、()002P ,,、()1,2,1E ,设平面PCD 的法向量为(),,n x y z = ,()2,0,0DC =uuu r,()0,4,2DP =-uuu r ,则20420n DC x n DP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,取1y =,可得()0,1,2n = ,()1,2,1BE =- ,所以,4230cos ,1565BE n BE n BE n⋅===⨯⋅,所以,22230105sin ,1cos ,11515BE n BE n ⎛⎫=-=-= ⎪ ⎪⎝⎭,因此,面PCD 与直线BE 所成角的余弦值为10515.故选:D.12.已知函数()ln 1f x x ax =+-有两个零点1x 、2x ,且12x x <,则下列命题正确的个数是()①01a <<;②122x x a +<;③121x x ⋅>;④2111x x a->-;A .1个B .2个C .3个D .4个【答案】C【分析】由()0f x =可得1ln xa x+=,设()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,利用导数分析函数()g x 的单调性与极值,数形结合可判断①;构造函数()()2h x f x f x a ⎛⎫=-- ⎪⎝⎭,其中10x a <<,分析函数()h x 的单调性,可判断②③;分析出1211e x x <<<、1210x x a<<<,利用不等式的基本性质可判断④.【详解】由()0f x =可得ln 1x a x+=,令()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,()2ln xg x x '=-,由()0g x '>可得01x <<,即函数()g x 的单调递增区间为()0,1,由()0g x '<可得1x >,即函数()g x 的单调递减区间为()1,+∞,且当10e x <<时,()ln 10x g x x+=<,当1e x >时,()ln 10x g x x +=>,如下图所示:由图可知,当01a <<时,直线y a =与函数()g x 的图象有两个交点,①对;对于②,由图可知,1211ex x <<<,因为()11ax f x a x x -'=-=,由()0f x ¢>可得10x a<<,由()0f x '<可得1x a >,所以,函数()f x 的增区间为10,a ⎛⎫⎪⎝⎭,减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则必有1210x x a <<<,所以,110x a <<,则121x a a->,令()()222ln ln h x f x f x x a x x ax a a a ⎛⎫⎛⎫⎛⎫=--=----+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中10x a <<,则()212112022a x a h x a x x x x a a ⎛⎫- ⎪⎝⎭'=-+=<⎛⎫-- ⎪⎝⎭,则函数()h x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,所以,()110h x h a ⎛⎫>= ⎪⎝⎭,即()1120f x f x a ⎛⎫--> ⎪⎝⎭,即()112f x f x a ⎛⎫<- ⎪⎝⎭,又()20f x =,可得()212f x f x a ⎛⎫<- ⎪⎝⎭,因为函数()f x 的单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则212x x a >-,即122x x a +>,②错;对于③,由1122ln 1ln 1ax x ax x =+⎧⎨=+⎩,两式相加整理可得()1212ln 22x x x x a a ++=>,所以,()12ln 0x x >,可得121x x >,③对;对于④,由图可知1211ex x <<<,则11x ->-,又因为21x a >,所以,2111x x a->-,④对.故选;C.【点睛】证明极值点偏移的相关问题,一般有以下几种方法:(1)证明122x x a +<(或122x x a +>):①首先构造函数()()()2g x f x f a x =--,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()()()1112122g x f x f a x f x f a x =--=--与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与12a x -的大小,从而证明相应问题;(2)证明212x x a <(或212x x a >)(1x 、2x 都为正数):①首先构造函数()()2a g x f x f x ⎛⎫=- ⎪⎝⎭,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()2211211a a g x f x f f x f x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与21a x 的大小,从而证明相应问题;(3)应用对数平均不等式12121212ln ln 2x x x xx x x x -+<<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.二、填空题13.已知函数()sin cos f x x x =+,则π4f ⎛⎫'= ⎪⎝⎭______.【答案】0【分析】求出()f x ',代值计算可得出π4f ⎛⎫' ⎪⎝⎭的值.【详解】因为()sin cos f x x x =+,则()cos sin f x x x '=-,故πππcos sin 0444f ⎛⎫'=-= ⎪⎝⎭.故答案为:0.14.天府绿道是成都人民朋友圈的热门打卡地,经统计,天府绿道旅游人数x (单位:万人)与天府绿道周边商家经济收入y (单位:万元)之间具有线性相关关系,且满足回归直线方程为ˆ12.60.6yx =+,对近五个月天府绿道旅游人数和周边商家经济收入统计如下表:x23 3.5 4.57y26384360a则表中a 的值为___________.【答案】88【分析】根据样本平均值满足回归直线方程求解.【详解】样本平均值满足回归直线方程,x 的平均值为23 3.5 4.5745++++=,则y 的平均值2638436012.640.65a++++=⨯+,解得88a =,故答案为:88.15.已知函数f (x )=e x +ax ﹣3(a ∈R ),若对于任意的x 1,x 2∈[1,+∞)且x 1<x 2,都有()()()211212x f x x f x a x x -<-成立,则a 的取值范围是__.【答案】(﹣∞,3]【分析】原不等式等价于()()1212f x a f x a x x ++<,构造()()f x ah x x+=,由函数单调性的定义可知,h (x )在[1,+∞)上单调递增,即有h '(x )≥0在[1,+∞)上恒成立,亦即a ﹣3≤xe x ﹣e x 在[1,+∞)上恒成立,构造g (x )=x e x ﹣e x ,由导数求解函数g (x )的最小值,即可得到a 的取值范围.【详解】原不等式等价于()()1212f x a f x a x x ++<,令()()f x ah x x+=,则不等式等价于h (x 1)<h (x 2)对于任意的x 1,x 2∈[1,+∞)且x 1<x 2都成立,故函数h (x )在[1,+∞)上单调递增,又函数f (x )=e x +ax ﹣3,则()e 3x ax a h x x +-+=,所以h '(x )2e e 30x x x ax -+-=≥在[1,+∞)上恒成立,即x e x﹣e x +3﹣a ≥0在[1,+∞)上恒成立,即a ﹣3≤x e x ﹣e x 在[1,+∞)上恒成立,令g (x )=x e x ﹣e x ,因为g '(x )=x e x >0在[1,+∞)上恒成立,所以g (x )在[1,+∞)上单调递增,则g (x )≥g (1)=0,所以a ﹣3≤0,解得a ≤3,所以实数a 的取值范围是(﹣∞,3].故答案为:(﹣∞,3].16.已知点F 为抛物线28y x =的焦点,()2,0M -,点N 为抛物线上一动点,当NFNM最小时,点N 恰好在以M 、F 为焦点的双曲线上,则该双曲线的渐近线的斜率的平方为______.【答案】222+【分析】作出图形,分析可知MN 与抛物线28y x =相切时,NFNM取最小值,设直线MN 的方程为2x my =-,将该直线的方程与抛物线的方程联立,求出m 的值,进而可求出点N 的坐标,利用双曲线的定义求出a 的值,结合c 的值可得出22221b ca a=-,即为所求.【详解】抛物线28y x =的焦点为()2,0F ,其准线为:2l x =-,如下图所示:过点N 作NE l ⊥,垂足为点E ,由抛物线的定义可得NF NE =,易知//EN x 轴,则NMF MNE ∠=∠,所以,cos cos NF NE MNE NMF MNMN==∠=∠,当NFNM取最小值时,NMF ∠取最大值,此时,MN 与抛物线28y x =相切,设直线MN 的方程为2x my =-,联立228x my y x=-⎧⎨=⎩可得28160y my -+=,则264640m ∆=-=,解得1m =±,由对称性,取1m =,代入28160y my -+=可得28160y y -+=,解得4y =,代入直线MN 的方程2x y =-可得2x =,即点()2,4N ,则224NF =+=,()2222442MN =++=,设双曲线的标准方程为()222210,0x y a b a b -=>>,由双曲线的定义可得2424a MN NF =-=-,所以,()221a =-,又因为2c =,则()221221c a ==+-,所以,()222221211222b c a a =-=+-=+.故答案为:222+.三、解答题17.在直角坐标系xOy 中,直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于A ,B 两点,设()2,0M ,求MA MB 的值.【答案】(1)3230x y --=,24y x=(2)323【分析】(1)根据直线参数方程消掉参数t 即可得到直线的普通方程;(2)由直线参数方程中t 的几何意义即可求解.【详解】(1)∵直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),∴消去t 可得直线l 的普通方程为:3230x y --=.∵曲线C 的极坐标方程为2sin 4cos 0ρθθ-=,即22sin 4cos 0ρθ-ρθ=,又∵cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为24y x =.(2)将12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)代入24y x =,得238320t t --=,显然0∆>,即方程有两个不相等的实根,设点A ,B 在直线l 的参数方程中对应的参数分别是1t ,2t ,则1283t t +=,12323t t =-,∴12323MA MB t t ==.18.已知函数()32f x x x ax b =-++,若曲线()y f x =在()()0,0f 处的切线方程为1y x =-+.(1)求a ,b 的值;(2)求函数()y f x =在[]22-,上的最小值.【答案】(1)1a =-;1b =(2)9-【分析】(1)根据函数的切线方程即可求得参数值;(2)判断函数在[]22-,上单调性,进而可得最值.【详解】(1)由已知可得()01f b ==.又()232f x x x a '=-+,所以()01f a '==-.(2)由(1)可知()321f x x x x =--+,()2321f x x x '=--,令()0f x ¢>,解得13x <-或1x >,所以()f x 在12,3⎡⎫--⎪⎢⎣⎭和[]1,2上单调递增,在1,13⎡⎫⎪⎢⎣⎭上单调递减.又()29f -=-,()10f =,所以函数()y f x =在[]22-,上的最小值为9-.19.某校组织全体学生参加“数学以我为傲”知识竞赛,现从中随机抽取了100名学生的成绩组成样本,并将得分分成以下6组:[40,50),[50,60),[60,70),……,[90,100],统计结果如图所示:(1)试估计这100名学生得分的平均数(同一组中的数据用该组区间中点值代表);(2)现在按分层抽样的方法在[80,90)和[90,100]两组中抽取5人,再从这5人中随机抽取2人参加这次竞赛的交流会,求两人都在[90,100]的概率.【答案】(1)70.5(2)110【分析】(1)根据频率分布直方图直接代入平均数的计算公式即可求解;(2)根据分层抽样在[)80,90分组中抽取的人数为15531015⨯=+人,在[]90,100分组中抽取的人数为2人,利用古典概型的概率计算公式即可求解.【详解】(1)由频率分布直方图的数据,可得这100名学生得分的平均数:()450.01550.015650.02750.03850.015950.011070.5x =⨯+⨯+⨯+⨯+⨯+⨯⨯=分.(2)在[)80,90和[]90,100两组中的人数分别为:100×(0.015×10)=15人和100×(0.01×10)=10人,所以在[)80,90分组中抽取的人数为15531015⨯=+人,记为a ,b ,c ,在[]90,100分组中抽取的人数为2人,记为1,2,所以这5人中随机抽取2人的情况有:()()()()()()()()()(){},,,1,2,1,2,1,2,12ab ac bc a a b b c c Ω=,共10种取法,其中两人得分都在[]90,100的情况只有(){}12,共有1种,所以两人得分都在[]90,100的概率为110P =.20.在如图所示的几何体中,四边形ABCD 是边长为2的正方形,四边形ADPQ 是梯形,PD //QA ,PD ⊥平面ABCD ,且22PD QA ==.(1)求证:BC ⊥平面QAB ;(2)求平面PBQ 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)66【分析】(1)由PD ⊥平面ABCD ,PD //QA ,可得QA ⊥平面ABCD ,进而得到QA BC ⊥,结合BC AB ⊥,进而得证;(2)以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点建立空间直角坐标系,找出平面PBQ 与平面PCD 的法向量,根据两面的法向量即可求解.【详解】(1)证明:∵PD ⊥平面ABCD ,PD //QA ,∴QA ⊥平面ABCD .∵BC ⊂平面ABCD ,∴QA BC ⊥.在正方形ABCD 中,BC AB ⊥,又AB QA A ⋂=,AB ,QA ⊂平面QAB ,∴BC ⊥平面QAB .(2)建立空间直角坐标系如图:以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点,则有()2,2,0B ,()002P ,,,()2,0,1Q ,()0,2,1QB =- ,()2,0,1PQ =- ,设平面PBQ 的一个法向量为(),,m x y z = ,则有00m QB m PQ ⎧⋅=⎪⎨⋅=⎪⎩ ,得2020y z x z -=⎧⎨-=⎩,令2z =,则1x =,1y =,()1,1,2m = ,易知平面PCD 的一个法向量为()1,0,0n =r ,设平面PBQ 与平面PCD 所成二面角的平面角为α,则16cos 616m n m n α⋅===⨯⋅ ,即平面PBQ 与平面PCD 所成锐二面角的余弦值66.21.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,左、右焦点分别为1F 、2F ,P 为C 的上顶点,且12PF F △的周长为423+.(1)求椭圆C 的方程;(2)设过定点()0,2M 的直线l 与椭圆C 交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)2214x y +=(2)332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)由椭圆的定义以及离心率可得出a 、c 的值,进而可求得b 的值,由此可得出椭圆C 的方程;(2)分析可知直线l 的斜率存在,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由0∆>结合0OA OB ⋅> 可求得k 的取值范围.【详解】(1)设椭圆C 的半焦距为c .因为12PF F △的周长为121222423PF PF F F a c ++=+=+,①因为椭圆C 的离心率为32,所以32c a =,②由①②解得2a =,3c =.则221b a c =-=,所以椭圆C 的方程为2214x y +=.(2)若直线l x ⊥轴,此时,直线l 为y 轴,则A 、O 、B 三点共线,不合乎题意,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,联立()22221141612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,()()()222Δ164411216430k k k =-+⨯=->,解得234k >,由韦达定理可得1221641k x x k +=-+,1221241x x k =+,则()()()2121212122224y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,A 、O 、B 不共线,则cos 0AOB ∠>,即()()()22221212121221213216412441k k k OA OB x x y y k x x k x x k +-++⋅=+=++++=+ 22164041k k -=>+,解得204k <<,所以,2344k <<,解得322k -<<-或322k <<,所以实数k 的取值范围为332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.22.已知函数()2ln f x x x ax a =-+.(1)若()f x a ≤,求a 的取值范围;(2)若()f x 存在唯一的极小值点0x ,求a 的取值范围,并证明()0210a f x -<<.【答案】(1)1[,)e +∞(2)12a <;证明见解析;【分析】(1)可利用分离参数法,将问题转化为ln x a x ≥恒成立,然后研究ln ()x g x x=的单调性,求出最大值;(2)通过研究()f x '在()0,∞+内的变号零点,单调性情况确定唯一极小值点;若不能直接确定()f x '的零点范围及单调性,可以通过研究()g x '的零点、符号来确定()f x '的单调性,和特殊点(主要是能确定()f x '符号的点)处的函数值符号,从而确定()f x 的极值点的存在性和唯一性.【详解】(1)()f x 的定义域为()0,∞+.由()f x a ≤,得ln x a x ≥在()0,x ∈+∞恒成立,转化为max ln ()x a x ≥令ln ()x g x x =,则21ln ()x g x x -'=,∴ln ()x g x x=在()0,e 单调递增,在(),e +∞单调递减,∴()g x 的最大值为1(e)g e=,∴1a e ≥.∴a 的取值范围是1[,)e+∞.(2)设()()g x f x '=,则()ln 12g x x ax =+-,1()2g x a x'=-,0x >.①当a<0时,()0g x '>恒成立,()g x 在()0,∞+单调递增,又()1120g a =->,212121()21122(1)0a a a g e a ae a e ---=-+-=-<所以()g x 存在唯一零点()10,1x ∈.当()10,x x ∈时,()()0f x g x '=<,当()1,1x x ∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x x =.②当0a =时,()ln 1g x x =+,()g x 在()0,∞+单调递增,1()0g e =,所以()g x 在()0,∞+有唯一零点1e.当1(0,)∈x e时,()()0f x g x '=<,当1(,1)x e∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x e =.③当0a >时,令()0g x '>,得1(0,)2x a ∈;令()0g x '<,得1(,)2x a ∈+∞,∴()g x 在1(0,)2a 单调递增,在1(,)2a+∞单调递减,所以()g x 的最大值为1()ln(2)2g a a =-④当102a <<时,1()0g e<,()1120g a =->,1()02g a >,21212()212(1)10l 1n g a a aa a =-+-<--+-=-<(或用11111()20a a g eae a --=-<)由函数零点存在定理知:()g x 在区间()0,1,()1,+∞分别有一个零点2x ,3x 当()20,x x ∈时,()()0f x g x '=<;当()23,x x x ∈时,()()0f x g x '=>;所以()f x 存在唯一的极小值点02x x =,极大值点3x .⑤当12a ≥时,102g a ⎛⎫≤ ⎪⎝⎭,()()0f x g x '=≤所以()f x 在()0,∞+单调递减,无极值点.由①②④可知,a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭,当()00,x x ∈时,()0f x '<;所以()f x 在()00,x 单调递减,()0,1x 单调递增.所以()0(1)0f x f <=.由()000ln 120f x x ax '=+-=,得00ln 21x ax =-.所以20000ln ()f x x ax ax =-+2000(21)x ax ax a=--+200ax a x =+-2000()(21)1f x a ax a x --=--+[]00(1)(1)1x a x =-+-,因为0(0,1)x ∈,1,2a ⎛⎫∈-∞ ⎪⎝⎭,所以010x -<,()01112102a x +-<⨯-=所以()0(21)0f x a -->,即()021f x a >-;所以()0210a f x -<<.【点睛】本题通过导数研究函数的零点、极值点的情况,一般是先研究导函数的零点、单调性,从而确定原函数的极值点存在性和个数.同时考查学生运用函数思想、转化思想解决问题的能力和逻辑推理、数学运算等数学素养.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

tt取款快吗
[单选]甲厂自1995年起在其生产的炊具上使用“红灯笼”商标,并于1997年8月向商标局提出该商标的注册申请。乙厂早在1997年6月商标局申请为其炊具产品注册“红灯笼”商标。该“红灯笼”商标专用权就应归属于()。A.甲B.乙C.甲和乙D.甲乙协商确定的一方 [填空题]液态烃气体分馏塔回流泵的放空阀后连接的管网是()。 [单选]船政学堂中的()是负责教授造船工艺的。A、左学堂B、右学堂C、前学堂D、后学堂 [单选]从业人员的工作责任感和集体荣誉感是一种()的力量,是从业人员道德信念的行为体现。A、监督B、无形C、社会D、促进 [单选]下列不属于票据基本特征的是()。A.票据是流通证券B.票据是要式证券C.票据是有因证券D.票据是设权证券 [单选,A2型题,A1/A2型题]下列可使血糖浓度下降的激素是()A.肾上腺激素B.胰升糖素C.生长素D.胰岛素E.甲状腺素 [判断题]进给量太大,工件松动,钻头钝是钻头工作部分折断的原因之一。()A.正确B.错误 [单选]油离心泵关小()会影响泵的汽蚀性能,导致汽蚀发生。A.出口阀;B.入口阀;C.连通阀。 [单选,A2型题,A1/A2型题]CT成像过程中需要测量体素的()A.质量B.密度C.线性衰减系数D.体积E.每千克电子数 [单选]下列有关噪声的叙述中,错误的是()。A.当某噪声级与背景噪声级之差很小时,则感到很嘈杂B.噪声影响居民的主要因素与噪声级、噪声的频谱、时间特性和变化情况有关C.由于各人的身心状态不同,对同一噪声级下的反应有相当大的出入D.保证睡眼不受影响,室内噪声级的理想值为3 [判断题]玻璃、陶瓷、纸、塑料、碳等都是绝缘材料。()A.正确B.错误 [单选,A2型题,A1/A2型题]当中心体温降到多少度时,肌肉由颤抖变为僵直,失去产热的作用,将会发生死亡()。A.30~33℃B.32~34℃C.30℃以下D.28~31℃E.0℃ [多选]基坑施工时的安全技术要求有()。A.基坑坡度或围护结构的确定方法应科学B.尽量减少基坑顶边的堆载C.基坑顶边不得行驶载重车辆D.做好降水措施,确保基坑开挖期间的稳定E.严格按设计要求开挖和支撑 [单选]行政合法性原则和行政合理性原则共同构成()。A.行政诉讼的基本原则B.行政法的基本内容C.行政处罚的原则D.行政法治的原则 [判断题]出口电池产品的制造商在电池产品出口前,应向国家质检总局申请备案。()A.正确B.错误 [判断题]在硅稳压管的简单并联型稳压电路中,稳压管应工作在反向击穿状态,并且应与负载电阻串联。并联A.正确B.错误 [单选]抢救口服有机磷农药中毒患者洗胃时最常用的洗胃液是()A.生理盐水、温开水B.热开水C.2%碳酸氢钠D.1:5000高锰酸钾液E.以上均可 [单选]某男,64岁,近一个月来寒热持续不解,恶寒较甚,发热无汗,身楚倦怠,咳嗽,咯痰无力,舌淡苔白,脉浮无力。治疗方剂宜首选()A.新加香薷饮B.葱白七味饮C.参苏饮D.再造散E.加减葳蕤汤 [判断题]汽车的安全系统可分为主动安全系统和被动安全系统,制动系统属于被动安全系统。()A.正确B.错误 [单选,A2型题,A1/A2型题]关于急性妄想发作,以下错误的是()A.常突然起病,以短暂的妄想为主要症状,妄想形式多样,内容支离破碎B.病前一般无诱因C.可伴有情感和行为方面的障碍D.多发生于中老年人E.病程不超过3个月 [单选,A型题]产气荚膜梭菌区别于其他厌氧菌最有特点的生物学性状是()A.革兰阳性粗大杆菌B.远端芽胞C.厌氧性D.菌落光滑,有溶血E.分解糖大量产气 [单选,A2型题,A1/A2型题]预防佝偻病应特别强调的是()。A.合理喂养B.经常口服鱼肝油C.经常口服钙片D.经常晒太阳E.多吃含维生素D的食物 [单选]三(四)等水准测量时,尺子的两面都要读数,读数次序为后前前后或()。A.前后前后B.前前后后C.后前后前D.后后前前 [问答题,简答题]锅炉内水渣从何处排出? [单选,A1型题]大鼠长期饲喂寒凉药,对自主神经系统功能的影响是()A.心率加快B.尿中17-羟皮质类固醇排出量增多C.尿中儿茶酚胺排出量减少D.血浆中和肾上腺内多巴胺β-羟化酶活性提高E.耗氧量增加 [问答题,简答题]什么年龄范围内的儿童按成人票价的50%购买机票?什么年龄范围的客人可以按成人票价的10%购买机票?乘机时年龄12周岁零一天的小旅客江丽丽可否购买半价票? [单选]作为慢性肾衰竭与急性肾衰竭鉴别依据的是()。A.血BUN/Cr&gt;20B.蛋白尿与低蛋白血症较明显C.严重贫血D.严重低钙血症与高磷血症E.肾脏体积缩小 [填空题]二氧化碳不能扑救()和()等物质火灾。 [单选]当井底流压低于地层饱和压力时,随生产压差的升高,油井产量会()。A、升高B、减低C、无变化D、以上均有可能 [填空题]客运经营者在旅客运输途中擅自变更运输车辆或者将旅客移交他人运输的,由()责令改正,处1000元以上3000元以下的罚款;情节严重的,由原许可机关吊销《道路运输经营许可证》。 [判断题]一般在车辆事故中,导致驾驶人和乘员受伤的主要是一次碰撞。()A.正确B.错误 [单选]决定膀胱癌预后的是()A.肿瘤大小B.肿瘤部位C.肿瘤的单发多发D.治疗方法E.癌细胞分化程度和浸润深度以及机体的免疫能力 [单选]母公司将子公司的控制权移交给它的股东属于()。A.标准式公司分立B.换股式公司分立C.解散式公司分立D.拆股式公司分立 [判断题]铂钴比色法测定水的色度时,色度标准溶液由储备液用蒸馏水或去离子水稀释到一定体积而得。A.正确B.错误 [单选]营业场外或周边发生异常情况,一般不应采取何种措施()。A.向保卫部门或单位领导求助B.向公安报警中心报警C.向联防单位求助D.营业人员主动快速出去处理 [多选,共用题干题]患者女,48岁,因“关节肿痛5个月,累及双手关节和双膝关节”来诊。查体:双膝关节肿胀,压痛(+),左腕关节肿胀,压痛(+),左手第二掌指关节(ⅡMCP)、右手ⅡMCP和近端指间关节(PIP)压痛(+);实验室检查:红细胞沉降率10mm/1h,C-反应蛋白5mg/L(0~8m [单选]预计在一个正常营业周期中变现、出售或者耗用的资产是()。A.流动资产B.固定资产C.递延资产D.无形资产 [单选,A1型题]大隐静脉汇入深静脉前的属支不包括()A.旋髂浅静脉B.腹壁浅静脉C.阴部外浅静脉D.腹壁下静脉E.股内侧浅静脉 [单选]需要直流电压较低、电流较大的设备宜采用()整流电路。A.单相桥式可控B.三相桥式半控C.三相桥式全控D.带平衡电抗器三相双星可控 [单选]某皮质醇增多症病人血浆ACTH明显升高,大剂量地塞米松抑制试验结果提示皮质醇抑制达70%,应考虑为()A.肾上腺皮质瘤B.异位ACTHC.结节性肾上腺增生D.垂体性皮质醇增多症E.肾上腺皮质腺癌
相关文档
最新文档