高二数学几何概型2
高二数学第二册知识点归纳

高二数学第二册知识点归纳高二数学第二册主要包含了一些高中数学的进阶知识点,这些知识点是建立在高一数学基础之上的,对于学生的数学能力提升起着至关重要的作用。
本文将对该册的知识点进行归纳总结,帮助同学们更好地掌握和理解这些知识。
1. 函数与导数函数与导数是高中数学中的重点和难点,而在高二数学第二册中,对函数和导数的学习进一步深入。
主要的知识点有:- 函数的性质和一些常用函数的图像特点- 导数的定义和导数法则- 函数的增减性与极值问题,包括极值判定和求极值的方法- 函数的单调性与曲线的凹凸性,包括判定和求解- 复合函数的导数计算- 高阶导数和导数的应用,如泰勒公式等2. 数列与数列极限数列与数列极限是高中数学的基础知识,高二数学第二册进一步拓展了数列的相关概念和应用。
主要的知识点有:- 数列的概念和性质,包括等差数列和等比数列等- 数列极限的定义和性质,如夹逼定理等- 递推数列和递推数列极限的计算和应用- 函数极限与数列极限的关系- 无穷数列的极限计算和性质3. 三角函数与其应用三角函数是高等数学中重要的工具,也是高中数学的重点内容之一。
一些新的概念和应用在高二数学第二册中进行了深入学习。
主要的知识点有:- 基本概念和关系,如正弦函数、余弦函数和正切函数等- 三角函数的性质和图像- 三角函数的诱导公式、化简公式和和差公式- 各种特殊角的计算和性质- 三角方程的求解和应用,包括三角函数方程和三角方程组4. 概率与统计概率与统计是高中数学的拓展内容,相比于前几个知识点,它们更侧重于一种运算和分析思维。
主要的知识点有:- 随机事件的概念和性质,包括基本事件、对立事件和复合事件等- 概率的计算与性质,包括古典概型和几何概型等- 条件概率与乘法定理- 随机变量的概念和性质,包括离散随机变量和连续随机变量等- 统计数据的收集、整理和分析方法,包括频数分布表和统计图表等- 正态分布的概念和性质,以及正态分布的应用以上是高二数学第二册的主要知识点归纳,通过对这些知识的学习和理解,同学们将能够建立更牢固的数学基础,为高中数学的学习打下坚实的基础。
高二年级数学必修3第三章知识点:古典概型与几何概型

高二年级数学必修3第三章知识点:古典概型与几何概型
高二年级数学必修3第三章知识点:古典概型与
几何概型
数学在科学发展和现代生活生产中的应用非常广泛,以下是查字典数学网为大家整理的高二年级数学必修3第三章知识点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。
★ 知识梳理★
1. 基本事件:一次试验连同其中可能出现的每一个结果(事件 )称为一个基本事件
特别提醒:基本事件有如下两个特点:
○1任何两个基本事件都是互斥的;
○2任何事件都可以表示成基本事件的和。
2.所有基本事件的全体,叫做样本空间,用表示,例如抛一枚硬币为一次实验,则={正面,反面}。
3.等可能性事件(古典概型):如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件
特别提醒:古典概型的两个共同特点:
○1有限性,即试中有可能出现的基本事件只有有限个,即样本空间中的元素个数是有限的;
○2等可能性,即每个基本事件出现的可能性相等。
4.古典概型的概率公式:如果一次试验中可能出现的结果有。
江苏高级中学高二年级上学期数学教材目录

江苏高级中学高二年级上学期数学教材目录第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数概念与基本初等函数Ⅰ2.1函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2指数函数分数指数幂指数函数2.3对数函数对数对数函数2.4幂函数2.5函数与方程二次函数与一元二次方程用二分法求方程的近似解2.6函数模型及其应用数学2第3章立体几何初步3.1空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3空间直角坐标系空间直角坐标系空间两点间的距离第5章算法初步5.1算法的意义5.2流程图5.3基本算法语句5.4算法案例第6章统计6.1抽样方法6.2总体分布的估计6.3总体特征数的估计6.4线性回归方程第7章概率7.1随机事件及其概率7.2古典概型7.3几何概型7.4互斥事件及其发生的概率数学4第8章三角函数8.1任意角、弧度8.2任意角的三角函数8.3三角函数的图象和性质第9章平面向量9.1向量的概念及表示9.2向量的线性运算9.3向量的坐标表示9.4向量的数量积9.5向量的应用第10章三角恒等变换10.1两角和与差的三角函数10.2二倍角的三角函数10.3几个三角恒等式高二数学上数学5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式文科数学选修系列11-1(上)第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用1-2(下)第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图理科数学选修系列22-1(上)第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程第3章空间向量与立体几何2-2(上)第1章导数及其应用第2章推理与证明第3章数系的扩充与复数的引入2-3(下)第1章计数原理第2章概率第3章统计案例。
几何概型

G
E G
EG
E
A
H
B
A
H
B
A
H
B
3.某人午休醒来 发觉表停了, 某人午休醒来, 例3.某人午休醒来,发觉表停了,他打开收音机想听电 台整点报时,求他等待的时间不多于于10分钟的概率. 10分钟的概率 台整点报时,求他等待的时间不多于于10分钟的概率.
分析: 分析:在哪个时间段打开收音机的概率只与该时间段的长度 有关,而与该时间段的位置无关,这符合几何概型的条件, 有关,而与该时间段的位置无关,这符合几何概型的条件, 由于收音机每一小时报一次, 由于收音机每一小时报一次,可以认为此人打 开收音机的时间正处于两次报时之间, 开收音机的时间正处于两次报时之间,即处于 [0,60]的任意一点 的任意一点, [0,60]的任意一点,于是概率等于等待时间 段的长度与两个整点之间长度的比. 段的长度与两个整点之间长度的比.
等待的时间小于10分钟”为事件A 10分钟 解:记“等待的时间小于10分钟”为事件A, 打开收音机的时刻位于[50 60]时间段内 [50, 打开收音机的时刻位于[50,60]时间段内 则事件A发生. 则事件A发生. 由几何概型的求概率公式得 10 1 P( A) = = 60 6 1 等待报时的时间不多于10分钟” 10分钟 答:等待报时的时间不多于10分钟”的概率为 .
6
变式训练2 某路公共汽车5 变式训练2:某路公共汽车5分钟一班准时到 达某车站,求某一人在该车站等车时间少于3 达某车站,求某一人在该车站等车时间少于3 分钟的概率(假定车到来后每人都能上) 分钟的概率(假定车到来后每人都能上).
a a+2 a+5
设上一班车离站时刻为a, 解:设上一班车离站时刻为a, 则某人到站的一切可能时刻为Ω=(a,a+5), 则某人到站的一切可能时刻为Ω=(a,a+5), 等车时间少于3分钟”为事件A 记“等车时间少于3分钟”为事件A, 则他到站的时刻只能为µ=(a+2,a+5)中的任一时刻 中的任一时刻, 则他到站的时刻只能为µ=(a+2,a+5)中的任一时刻,
高二数学概率知识点总结

高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。
2. 必然事件:在一定条件下必然发生的事件。
3. 不可能事件:在一定条件下不可能发生的事件。
4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。
如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。
二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。
-每个基本事件出现的可能性相等。
2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。
三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。
-每个基本事件出现的可能性相等。
2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。
四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。
-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。
2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。
-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。
高二数学几何概型试题

高二数学几何概型试题1.如图,EFGH是以O为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形HOE(阴影部分)内”,则P (B|A)=()A. B. C. D.【答案】A【解析】由条件概率及几何概率可知:P(B|A),故选A.【考点】条件概率及几何概率.2.从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为________.【答案】【解析】阴影部分面积为,∴所求概率为.【考点】定积分计算曲边图形的面积,几何概型.3.如图所示的“赵爽弦图”中,四个相同的直角三角形与中间的小正方形拼成的一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是______________.【答案】【解析】观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为,面积为,故飞镖落在阴影区域的概率.【考点】几何概率.4.已知,直线和曲线有两个不同的交点,他们围成的平面区域为,向区域上随机投以点,点落在内的概率为,若,则实数的取值范围是:【答案】【解析】将直线变形为,可知此直线过定点,为直线的斜率.曲线表示圆心在原点半径为2的上半个圆。
当直线与轴重合时平面区域和区域重合,此时;当直线位置时,区域的面积为,区域面积为,此时。
所以。
【考点】1不等式表示平面区域;2直线过定点问题及直线的斜率;3几何概型概率。
5.如图,在棱长为2的正方体内(含正方体表面)任取一点,则的概率 .【答案】【解析】以为原点为轴建立空间直角坐标系,则,设,则,则,从而.【考点】1.空间向量的数量积;2.几何概型.6.四边形ABCD为长方形,AB=2,BC=1,O为AB的中点。
在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.B.C.D.【答案】C【解析】根据几何概型得,取到的点到O的距离大于2的概率:,选C.【考点】几何概型7.有一个底面半径为1、高为2的圆柱,点为这个圆柱底面圆的圆心,在这个圆柱内随机取一点,则点到点的距离大于1的概率为.【答案】【解析】空间内到点的距离等于1的点,是在以点为球心,1为半径的球面上,那么距离比1大的点在球的外部,因为基本事件总数是无限的,可以考虑几何概型,即圆柱内半球外部的体积与圆柱的体积比【考点】1、几何体的体积;2、几何概型.8.如图所示的矩形内随机撒芝麻,若落入阴影内的芝麻是628粒,则落入矩形内芝麻的粒数约是【答案】800【解析】由已知中矩形的长和宽可知,长是宽的2倍,根据随机模拟实验的概念,我们易得阴影部分的面积与矩形面积的比例约为芝麻落在阴影区域中的频率,由此我们构造关于S的方程,阴影解方程即可求矩形区域的粒数,故答案为800.【考点】几何概型点评:本题考查的知识点是几何概型与随机模拟实验,利用阴影面积与矩形面积的比例约为黄豆的方程,是解答本题的关键.落在阴影区域中的频率,构造关于S阴影9.取一根长度为米的绳子,拉直后在任意位置剪断,则剪得两段的长度都不小于1米,且以剪得的两段绳为两边的矩形的面积都不大于平方米的概率为()A.B.C.D.【答案】C【解析】设剪断后的两段绳长分别为x,y,那么可知的概率即为矩形区域的面积为25,那么满足题意的区域为,那么可知由几何概型概率可知为10:25=2:5,故答案为C.【考点】几何概型点评:主要是考查了几何概型的运用,分析区域长度和面积来求解,属于基础题。
山东省高二数学内容目录

山东省高二数学内容目录高二数学目录主要包括了高二数学必修三以及高二数学选修2-1、选修2-2、选修2-3的课程目录。
涵盖了高二整个数学的课程,供高二的学生参考使用。
必修三目录第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例阅读与思考割圆术小结复习参考题第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型选修2-1目录第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2目录第一章导数及其应用1.1变化率与导数و1.2导数的计算探究与发现牛顿法--用导数方法求方程的近似解1.3导数在研究函数中的应用信息技术应用图形技术与函数性质1.4生活中的优化问题举例1.5定积分的概念信息技术应用曲边梯形的面积1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理阅读与思考平面与空间中的余弦定理。
2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引人3.1数系的扩充和复数的概念3.2复数代数形式的四则运算阅读与思考代数基本定理小结选修2-3目录第一章计数原理1.1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2排列与组合探究与发现组合数的两个性质1.3二项式定理探究与发现“杨辉三角”中的一些秘密小结。
第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.4正态分布信息技术应用p.e对正态分布的影响第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用。
高中数学 第三章第3节几何概型 理 知识精讲人教新课标A版必修3

高二数学 第三章第3节几何概型 理 知识精讲人教新课标A 版必修3一、学习目标:(1)了解几何概型的概念及基本特点 (2)熟练掌握几何概型中概率的计算公式 (3)会进行简单的几何概率计算(4)能运用模拟的方法估计概率,掌握模拟估计面积的思想二、重点、难点:重点:掌握几何概型中概率的计算公式;并能进行简单的几何概率计算。
难点:将实际问题转化为几何概型,并能正确应用几何概型的概率计算公式解决问题。
三、考点分析:本部分内容是新增的内容,对几何概型的要求仅限于体会几何概型的意义,所以在练习时,侧重于一些简单的试题即可。
(1)区别古典概型与几何概型(2)理解随机模拟求几何概型的概率1、几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的可以几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则可以理解为恰好取到上述区域内的某个指定区域中的点。
这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型。
2、几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等。
3、几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率()d P A D的测度的测度。
说明:(1)D 的测度不为0;(2)其中“测度”的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的“测度”分别是长度,面积和体积。
(3)区域为“开区域”;(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。
4、模拟计算几何概型的步骤: (1)构造图形(作图);(2)模拟投点,计算落在阴影部分的点的频率m n; (3)利用()m d P A n D ≈=的测度的测度算出相应的量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘汞电极使用时应注意电极玻璃管内是否充满氯化钾溶液,管内应无,以防止。 关于二级注册建造师(公路工程)的说法错误的是。A.二级注册建造师担任中小型工程项目负责人B.不同工程类别所要求的注册建造师执业资格不同时,以较高资格执行C.公路工程注册建造师施工管理签章文件由8类文件组成D.公路工程根据项目不同类型以及大小,建造师签章的表格由监理工程师 男,18岁,肩部外伤,疼痛、活动受限,结合图像,最可能的诊断是A.肩关节盂下脱位B.肩关节喙突下脱位C.肩关节锁骨下脱位D.肩锁关节脱位E.肩关节未见脱位 男,22岁,滑冰时摔倒右骨折B.蒙泰贾骨折C.加莱阿齐骨折D.桡骨远端骨折E.反柯莱斯骨折 [问答题,论述题]简要论述《西游记》全书的结构框架。 桥墩施工时,如果设备或者模板数量有限时宜采用()。A.平行施工B.流水施工C.顺序施工D.平行顺序施工 不能用于人工增殖病毒的是A.鸡胚B.传代细胞C.原代细胞D.人体器官E.实验动物 土地登记资料公开查询的手段不包括的方式。A.电子档案B.手工调取纸质档案C.手工和计算机结合调取纸质档案D.利用土地登记资料公开查询信息系统进行数据查询 当前发达国家商业银行建立起的以客户为中心的矩阵型主流组织架构形式,其中的建立以客户需求为基础的业务线包括。A.零售业务B.投行业务C.金融市场业务D.商业银行业务E.财富管理业务 在厂房施工时,基础下出现流沙层,这种情况下的工程变更属于。A.设计变更B.施工条件变更C.进度计划变更D.工程项目变更 解决外部性问题的核心是使行为主体造成的社会成本内部化,可以通过方式来达到目的。A.对产生负的外部性的活动征税B.提供消除负的外部性的激励措施C.可转让产生负的外部性的权力D.规范经济主体的行为E.设立公共企业 [配伍题,B1型题]“气之本”指的脏是。</br>“生之本”指的脏是。A.肝B.心C.脾D.肺E.肾 定位于19p13.lq21和lq31疾病基因位点的头痛是A.眼肌麻痹型偏头痛B.视网膜动脉偏头痛C.无先兆型D.基底型偏头痛E.家族性偏瘫型偏头痛 下列活动中,不属于项目管理过程组的是。A.项目可行性研究B.项目实施C.项目计划D.项目收尾 关于FIDIC施工合同条件中采用DAB(争端裁决委员会)方式解决争议的说法,正确的是。A.业主应按支付条件支付DAB报酬的70%B.DAB提出的裁决具有终局性C.DAB的成员一般是工程技术和管理方面的专家D.特聘争端裁决委员的任期与合同期限一致 抛光的定义是什么? 老年妇女患阴道炎的原因是A.卵巢功能衰退,雌激素水平降低B.阴道壁萎缩,黏膜变薄C.上皮细胞内糖原含量减少D.阴道内pH值上升,局部抵抗力降低E.以上均是 简述公共关系职业相关的法律知识。 在建设工程项目施工索赔中,可索赔的材料费有。A.非承包商原因导致材料实际用量超过计划用量而增加的费用B.因政策调整导致材料价格上涨的费用C.因质量原因使工程返工所增加的材料费D.因承包商提前采购材料而发生的超期储存费用E.由业主原因造成的材料损耗费 在有几种可能解答的问题情境中.小红倾向于深思熟虑且错误较少,则她的认知方式是()A.场依存型B.发散型C.冲动型D.沉思型 下列危险因素中属于慢性病危险因素的是A.吸烟、喝酒B.脂肪的摄入太多C.体力劳动、运动过少D.工作中接触的毒物太多E.肥胖的增加 焰色反应指的是。A.可燃物质在燃烧时,其火焰所表现出的颜色B.是一种检验各种元素的普遍方法C.把一些金属的盐溶液放在火焰上加热,该金属呈现出的颜色D.一些金属或它们的化合物在无色火焰上灼烧时,火焰呈特征颜色的反应 空气经压缩机压缩后温度较高,应于压缩机的出口侧安装后冷却器降温,采用的后冷却器的形式有A.列管式B.夹套式C.套管式D.散热片式 世界上第一部彩色动画长片是。 免疫系统的三大功能为A.免疫防御、免疫应答、免疫记忆B.免疫应答、免疫记忆、免疫监视C.免疫防御、免疫记忆、免疫监视D.免疫应答、免疫监视、免疫自身稳定E.免疫防御、免疫监视、免疫自身稳定 洁净手术室分为下列哪几种手术间A、特别洁净手术室(Ⅰ类)B、标准洁净手术室(Ⅱ类)C、一般洁净手术室(Ⅲ类)D、准洁净手术室(Ⅳ类)E、以上都不对 肾癌的三大典型症状是A.血尿、肿块和疼痛B.血尿、发热和疼痛C.血尿、肿块和高血压D.肿块、发热和高血压E.肿块、血沉快和高血压 是在一定范围内作为其他标准的基础并普遍适用,具有广泛指导意义的标准。A.产品标准B.方法标准C.基础标准D.服务标准 过渡时期总路线的主体是A.对资本主义工商业的社会主义改造B.对农业的社会主义改造C.对手工业的社会主义改造D.实现国家的社会主义工业化 针对Internet上的安全问题,我们的对策一般为___。A.安装杀毒软件B.安装防火墙C.A、B项都安装D.不上网 生命伦理学的研究围绕着以下方面进行A.生与死的控制问题B.生命的坐与标准问题C.生命质量控制问题DNA重组问题E.以上都是 在选用二极管时,其特性参数中的最大整流电流是指。A.长期运行时,允许通过的最大正向平均电流;B.长期运行时,允许通过的最大电流;C.长期运行时,允许通过的最大电流的有效值;D.长期运行时,允许通过的最大交流电流。 ELISA用于细胞因子测定优缺点有哪些? 年是国家普法宣传教育的第20年,年是“五五”普法的启动之年。 气胸破裂口较小,随肺萎陷而关闭,空气不再继续进入胸膜腔,称为。A.高压性气胸B.自发性气胸C.闭合性气胸D.张力性气胸E.交通性气胸 保管箱业务收费是按照什么标准收取?A、保管箱大小B、保管物品大小C、保管物品价值D、保管物品重量 男,48岁。咳嗽、咯血伴右侧胸疼3周,临床和影像学诊断右下叶中央型肺癌。经检查确诊为小细胞肺癌,首先选择的治疗应是()A.手术B.化学治疗C.放射治疗D.手术+术后化学治疗E.生物学治疗 航空器驾驶员执照被吊销者,自吊销之日起内不得申请任何驾驶员执照或等级。A、12个月B、24个月C、36个月 下列需要在检查前做碘过敏试验的检查是A.膀胱镜检查B.排泄性尿路造影C.尿路平片D.尿三杯试验E.B超检查 碳素结构钢Q235-A-F中的F表示A、屈服强度B、化学成分C、质量等级D、脱氧方法