无线麦克风发射端原理图
无线话筒电路

带稳压电路的调频无线话筒电路给大家介绍一种结构简单、发射距离可达200米以上的无线话筒,一般的初学者都能制作成功。
一、电路原理(见下图)该电路由三部分组成:1.音频放大部分;2.高频振荡部分;3.稳压部分。
信号由话筒MIC注入三极管VT1的基极,经VT1放大后的音频信号经C2耦合至高频振荡电路VT2基极,然后经天线发射出去。
此电路的工作频率在85~104MHz之间。
二、元器件的选用MIC选用高灵敏度的驻极体话筒,VT1为9013H,β≥125。
VT2为2N3866;β≥90,L1、L2用∮0.71mm漆包线在普通圆珠笔芯上分别密绕4匝和10匝,C4、C5、C6采用瓷片电容,误差±5%。
三端稳压器用LM7806电源,用9V电池,电路板可自制。
三、装配与调试电路装配较简单,只要元件无损坏,一装即可成功。
电路焊好后,再把天线焊上去,天线用0.5米的收音机天线,调试时把话筒放在音源处,然后人离开话筒5~6米远,打开FM收音机,调节选台旋钮,如果收到的是混浊不清的谐波,可用起子调节振荡线圈L1的间距,L1间距大时频率升高,反之则降低,这时收到的就不是带有谐波的声音了。
若想增大发射功率,可改变发射天线的长度,或将VT2发射管换成34D50三极管,R4电阻换成4.7kΩ,此时发射距离可再增加约100米。
对于一个业余的无线电爱好者来说,得到一个好的调频发射电路,如同拾到珍宝,但是在书中的电路因为其中有许多实际原因,不能得到充足的发射功率,现在我来介绍一个功率满意的电路。
我们先来看电路图:电路十分简单,不需调试,只要确保元件接对,没有虚焊,短路就可以正常工作了。
其功率约为60mw,所以比较大吃,一般建议用充电电池,不但其可以提供大流,而且经济,比较理想的选择。
但我并不主张用变压器供电,因为其需要很高的滤波电路。
自制简易无线调频话筒的电路图做为一个无线电爱好者,可能都经历过做无线话筒的经历,说实话做成功时那个兴奋啊,我记得,当时我用9018高频三极管做了个发射距离不到50m,可我抱它整整睡了一个晚上啊,第二天又了一个,配合两台收音机,做对讲机用啊。
几款无线话筒电路电路图及原理

几款无线话筒电路来源:滕州科苑电子作者:未知字号:[大中小]编者按:本文较详尽地介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。
主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、监听、数据传输及校园调频广播等。
单声道调频发射电路图1是较为经典的1.5km单管调频发射机电路。
电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。
工作电流为60--80mA。
但以上三极管难以购到,且价格较高,假货较多。
笔者选用其他三极管实验,相对易购的三极管C2053和C1970是相当不错的,实际视距通信距离大于1.5km。
笔者也曾将D40管换成普通三极管8050,工作电流有60--80mA,但发射距离达不到1.5km,若改换成9018等,工作电流更小,发射距离也更短,电路中除了发射三极管以外;线圈L1和电容C3的参数选择较重要,若选择不当会不起振或工作频率超出88--108MHz范围。
其中L1,L2可用0.31mm的漆包线在3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5-20pF的瓷介或涤纶可调电容。
实际制作时,电容C5可省略,L2上也可换成10-100mH的普通电感线圈。
若发射距离只要几十米,那么可将电池电压选择为1.5-3V,并将D40管换成廉价的9018等,耗电会更少,也可参考《电子报》2000年第8期第五版(简易远距离无线调频传声器)一文后稍作改动。
图1介绍的单管发射机具有电路简单,输出功率大,制作容易的特点,但是不便接高频电缆将射频信号送至室外的发射天线,一般是将0.7--0.9m的拉杆天线直接连在C5上作发射的,由于多普勒效应,人在天线附近移动时,频漂现象很严重,使本来收音正常的接收机声音失真或无声。
若将本发射机作无线话筒使用,手捏天线时,频漂有多严重就可想而知了。
图2为2km调频发射机电路。
简易无线卡拉OK演唱话筒电路图

简易无线卡拉OK演唱话筒电路图话筒是卡拉OK不可缺少的,如果将有线话筒改为无线话筒,演唱时更加潇洒自如,本文介绍的话筒不管是用手拿着,还是放下,它都不会发生频偏现象,而且造价低廉,简单易制。
工作原理:本话筒的工作原理与常见的无线话筒电路基本相同,但连线及音质效果大有改进。
电路见附图,V1与L1、C2、C3等构成FM高频振荡电路,调整L1、C2值可改变工作频率。
C3是维持振荡的反馈电容。
话筒信号不像以往那样从三极管基极输入,而是将话筒接在发射极上,当话筒自感电流随声音大小变化时,V1的工作电流也会随之变化,V1节电容Cbe同时变值, Cbe与C1串联后再与LC回路并联,因此,实现了调频。
MIC的这种接法完全避免了音频信号经过耦合电容的失真,因此,本话筒的频响范围宽,音质纯正,工作稳定,即使手触天线也不会影响LC振荡频率。
元件选择制作:振荡管V1选择fT>1000MHz、Icm≥100Ma、β值较大的高频管,如C3355、C3358、BFR96等。
9018的Icm只有50mA,但是可根据实际选用;MIC选用600Ω的动圈式话筒,目前中高档有线话筒多为此类;L1内径为5mm,用Φ0.5mm漆包线空芯绕5T而成;发射天线可直接使用成品天线,也可自制:线圈部分内径为1cm,空芯绕15T并拉长至3cm,直伸部分为7cm,用热缩胶套装上加热而成,也可用一根约10cm的软导线代替。
安装与调试:元件安装完毕,检查无误后,接通电源,用一台袖珍调频收音机作接收机。
值得注意的是带射频输出的VCD严重干扰接收效果,因此,必须给射频调制器加装电源开关,使用AV端子播放节目。
调节FM接收机及L1匝距,使收发频率相应,必要时将C2换值。
收音机输出的音频信号由大插头输送到VCD或扩音机进行功率放大。
发射距离与收音机的灵敏度有很大关系,但一般都≥10米。
如图所示简易无线卡拉OK演唱话筒电路图.用驻极体话筒制作有线麦克风许多废旧电器上都有驻极体话筒,如录音机、电话机等。
简易无线话筒电路图(七款无线话筒电路图)

简易无线话筒电路图(七款无线话筒电路图)简易无线话筒电路图(一)无线话筒线圈L1匝间距离变近和换容量大一点的电容关联会使发射频率变低;要使发射频率变高,就需要采取相反的措施。
和L1并联的电容变化范围不可以太大和太小,否则发射频率会偏到离谱,甚至不会产生高频发射信号(电路不会起振)。
如果你想要更远的传输距商,请给收音机和无线话筒增加更好的天线,并适当升高无线话筒的电源电压。
简易型无线话筒中的L2用铁线短路;调节增强型无线话筒中的L2、L3可以使距离会达到最远。
选用灵敏度更高、选择性更强的高档收音机可以进行更远距离的接收。
频率:88MHz到108MHz距离范围:20到50米(1V---15V)供电增强型的原理图:频率:88MHz到108MHz距离范围:100到300米(1V---15V)供电简易无线话筒电路图(二)频率:88MHz到108MHz距离范围:20到30米3V供电。
该电路(见图)采用电容反馈振荡器,其频率稳定、可调。
它的反馈信号是以电容分压的形式,将振荡管的输出信号反馈到输入端。
其中Re为直流负反馈电阻,C3为隔直耦合电容,Ce为发射极旁路电容。
L、C1、C2、C组成谐振回路。
由于C2相当于接在晶体管BG的基极与发射极之间,又构成了由C1、C2分压的反馈式电路,反馈信号取自C2上的电压。
该电路的振荡频率为f=1/2π,其中C=C1C2/C1+C2。
制作点评该调频话筒简单易作,比较适合初学者仿制。
在空旷地区,本电路发射距离为20~30米。
长时间工作频率有较大的偏移。
信号的谐波含量多,对邻频会产生干扰。
在具体制作时,MIC最好不要用软导线引出,而要将其焊牢在电路板上。
电感L可在Φ0.3mm圆棒上绕5-7匝脱胎而成,在调好匝距后,用高频蜡固定。
在判断电路是否起振时,可用以下简法。
用普通指针万用表AC2V挡,任一表笔悬空,另一表笔接触天线,若发现指针有摆动,说明电路已起振,即可做拉距调试。
简易无线话筒电路图(三)频率:70MHz到120MHz 距离范围:20到30米 9V供电简易无线话筒电路图(四)频率:88MHz到108MHz 距离范围:100到200米 3V供电简易无线话筒电路图(五)图中BG1及外围元件组成电容三点式振荡器,由MIC产生的音频电压使BG1的结电容发变化,在高频情况下,即使很小的电容变化也会引起很大的频偏。
无线话筒的工作原理

无线话筒的工作原理
无线话筒是一种无需通过有线连接传输音频信号的设备,其工作原理如下:
1. 无线传输:无线话筒通过内置的无线电发射器将音频信号转换成无线信号,然后将该信号以电磁波的形式传输出去。
2. 麦克风:无线话筒内置了一个麦克风,用于将声音转换成电信号。
麦克风通常由一个声音传感器(通常是一个振动膜)和一个负责转换声音信号的电路组成。
3. 提取和处理:麦克风采集到的声音信号通过内部的电路进行放大和处理,以确保信号的质量和清晰度。
这些电路可根据不同的需求进行调整和优化,例如增强低音或高音等。
4. 数字化:经过处理、放大后的音频信号被转换成数字信号,便于无线传输。
这一过程通常通过模数转换器(ADC)实现,将连续的模拟信号转换成数字形式。
5. 数字信号传输:数字信号通过无线电发射器转换成高频的电磁波,然后通过天线发射出去。
这些高频电磁波在空气中传播,类似于无线电广播。
6. 接收和解调:接收器中的天线接收到从无线话筒发射出的信号后,通过解调器将其转换为数字信号。
7. 数字信号处理:接收器内部的电路对接收到的信号进行处理
和解码,还原出原始的音频信号。
8. 转换成模拟信号:经过数字信号处理后,音频信号再次被转换成模拟形式,以使其能够被音响设备等设备接收和播放。
9. 输出音频:最后,输出接口将音频信号传送到外部音响设备,使用户能够听到话筒的声音。
这可以通过有线连接或者无线连接(例如蓝牙)实现。
通过这种工作原理,无线话筒可以实现远距离传输音频信号的功能,为用户带来便利和灵活性。
无线话筒电路图大全

无线话筒电路图大全发布: | 作者: | 来源: luzhongguo | 查看:3175次 | 用户关注:无线话筒电路图大全:介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。
主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、**、数据传输及校园调频广播等。
单声道调频发射电路图1是较为经典的1.5km单管调频发射机电路。
电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。
工作电流为60--80mA。
但以上三极管难无线话筒电路图大全:介绍了颇有代表性的几款业余情况下容易制作成功的88~108MHz调频广播范围内的小功率发射电路,其中有简易的单管发射电路,也有采用集成电路的立体声发射电路。
主要用于调频无线耳机、电话无线录音转发、遥控、无线报警、**、数据传输及校园调频广播等。
单声道调频发射电路图1是较为经典的1.5km单管调频发射机电路。
电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。
工作电流为60--80mA。
但以上三极管难以购到,且价格较高,假货较多。
笔者选用其他三极管实验,相对易购的三极管C2053和C1970是相当不错的,实际视距通信距离大于1.5km。
笔者也曾将D40管换成普通三极管8050,工作电流有60--80mA,但发射距离达不到1.5km,若改换成9018等,工作电流更小,发射距离也更短,电路中除了发射三极管以外;线圈L1和电容C3的参数选择较重要,若选择不当会不起振或工作频率超出88--108MHz范围。
其中L1,L2可用0.31mm的漆包线在3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5-20pF的瓷介或涤纶可调电容。
实际制作时,电容C5可省略,L2上也可换成10-100mH的普通电感线圈。
若发射距离只要几十米,那么可将电池电压选择为1.5-3V,并将D40管换成廉价的9018等,耗电会更少,也可参考《电子报》2000年第8期第五版(简易远距离无线调频传声器)一文后稍作改动。
无线话筒工作原理

无线话筒工作原理无线话筒是一种使用无线传输信号的话筒设备,工作原理主要可以分为发射和接收两个部分。
发射部分:无线话筒的发射部分由话筒电路和无线发射电路两部分组成。
首先,话筒电路将声音信号转换为电信号。
当人们说话时,声音会通过话筒的麦克风转化成电信号。
这个电信号包含了声音的波形和频率信息。
然后,无线发射电路将这个电信号进一步处理并通过无线电波将信号发送出去。
无线发射电路主要由以下几个部分组成:调制器、功放和天线。
调制器的作用是将话筒电路中产生的微弱电信号加工处理,使之成为适合无线传输的信号。
调制方式可以选择调频(频率调制)或调幅(幅度调制)。
然后,通过功放,信号的功率被放大到适合传播的水平。
最后,通过天线,这个经过处理的信号被转换为无线电波,并通过发射天线发送到空中。
接收部分:无线话筒的接收部分主要由天线、无线接收电路和话筒扬声器组成。
天线接收无线电波并将其转换为电信号。
然后,通过无线接收电路对接收到的信号进行放大和解调处理,以恢复出原来的声音信号。
无线接收电路主要由解调器和放大器两部分组成。
解调器的作用是将接收到的信号还原为调制前的信号,恢复出原来的声音波形和频率信息。
放大器将恢复出的信号进行进一步放大,以便后续的放音处理。
最后,将放大后的信号输出到话筒扬声器,产生可听到的声音。
总结来说,无线话筒的工作原理是通过话筒电路将声音信号转换为电信号,并经过调制和放大处理后,通过无线电波传输到接收端。
接收端通过天线和无线接收电路将无线电波转换为电信号,并经过解调和放大处理后,恢复出原来的声音信号。
最后,将恢复出的信号输出到话筒扬声器,产生声音。
无线话筒的工作原理是一种无线通信技术的应用,在各种表演、演讲等场合得到广泛使用。
调频无线话筒发射电路分析

调频无线话筒发射电路分析小功率语音调频发射电路广泛应用于无线话筒(无线麦克风)、无线教学扩声器、无绳电话及对讲机等设备。
专业调频无线话筒发射器电路具有一定的代表性,它综合了本模块各单元电路知识,通过学习掌握调频发射基本组成与原理。
无线话筒因摆脱了传输电缆的束服,使用灵活方便而被广泛采用。
其基本组成框图如图2-3-14所示,实物如图2-3-15所示。
图2-3-14 一种调频无线话筒发射电路组成框图图2-3-15 调频无线话筒发射器由于调频占用频带较宽,国内典型的调频无线话筒工作频率常选在甚高频VHF频段的169-260MHz和特高频UHF频段690-960MHz上。
这里介绍的无线话筒工作在甚高频VHF的180-260MHz。
下面结合附录调频无线话筒电原理图分析图2-3-14中各部分的作用:1.音频放大部分话筒音频放大选用MC358集成运放,因领夹话筒线也作发射天线,L1、L2为隔离高频信号的电感,对音频信号感抗较小可视为短路,C1为预加重电容,进行高频提升。
2.压缩电路压缩扩展是一种依靠“掩蔽”效应来提高无线系统信噪比的双重音频处理过程。
它由DBL5020专用信号处理IC电路实现音频信号的压缩,压缩比率为2:1,在接收机中的扩展器以1:2的反比率放大以恢复音频信号的原始动态。
压缩扩展电路用于提高无线话筒系统的信噪比。
3.音码电路在无线话筒发射音频信号的同时,加入一个听不见的32KHz超声波导频信号。
由32kHz晶体Y2和MC358集成运放组成超声波振荡器。
接收机中的静噪电路能识别这个导频信号,接收机只有在检测到这个导频信号时才输出音频,从而有效的防止来自其他发射器的无用信号、噪声以及来自无线话筒电源通断时产生的射频噪声。
业界常称此导频信号为音码。
4.锁相环压控振荡调频电路无线话筒要保证在温度、湿度、供电电压、振动、冲击等各种环境因素变化下稳定工作和获得良好的音质,发射机的载波频率稳定度是最重要的基本条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ALO
U1
100nF
3
ARO
QN8036-NCNB
4
GND3
RFI
5
6
7
8
RFI
330nH
100pF
17
L7
C11
备注:
GND
DGND DGND
备注: RFI为9cm长pcb走线(不能用GND铜箔包裹)。
1、发射机工作在高频段108.5~110.9MHz时C4取12pF左右值。 2、发射机工作在低频段83.6~86MHz时C4取18pF左右值。
100nF
C65
12pF->0R
C32 C29 Q4
MMBTH10 30p-->22p 7p-->NC
L11
பைடு நூலகம்180nH
R27
C68 DGND R46
5.6K->NC
10uH
L6
L5
1K
C40 R30
47R-->0R
+
L12
7p-->NC 100nH->NC
10uH
47pF
DGND
R34
R31
1K-->0R
+
J2 R15
47R-->Bead
100MHz_1K_I=50mA
R33
V8.3
C9
R10
47K->100K
100nH->120nH
DGND
ANT
4.7uF
10K-->8.2K
+
C33
1pF
+ C34 C38
47P 4.7uF 470pF
MIC -
+
56K->150K
R23
C15 C16
10uF
1 2 3 4 5 6 7 8 E.R IE.R IE.G GND VR E.N O.E E.C C46 C.R IC.R IC.G VCC C.N I.C O.C C.C 16 15 14 13 12 11 10 9
C13 R3 10K V3.3 VBAT1
+9V Li-BAT
D1 1N4007-->0R
100MHz & 1Kohm & I=100mA
C70
47uF
XCLK
R9 10K
2
R20
1K
DGND
S1
DGND V3.3 Q6 V3.3
VCC 8050
VCC
V3.3
1
L2
100MHz & 1Kohm & I=100mA
DGND
C18
47R-->2.2K
1uF
设计名称 版本信息 设计者
昆天科专业、卡拉OK用无线麦克风发射端 V2.0 QUINTIC SZ
U2 NC NC V3.3 NC GND FREQ_SEL SCL SDA V3.3 R24
1K
QN2038_TBNB
V3.3 13
1
NC
14
备注 1:
P10脚为输出频段选择脚。 P10为高电平(默认):发射机工作在高频段(108.5MHz~111MHz) P10为低电平:发射机工作在低频段(83.6MHz~86MHz) P7定义成pair(配对)脚,当其为低电平时,系统进入配对状态。 LED2对码指示灯,由P12脚控制。
L10
180nH 4.7R
13
SDA
R37 XCLK CEN
15pF
1 12 11
L3
SCL
R2 100K
VCC C12 C8 Q1
MMBTH10 33p-->NC 8p 100pF [1] RF
XCLK
10R-->0R
C5 RFO GND2 ARIP ALIP AGND DGND
L4
150nH
2 10 9 C66 C67
V8.3 DGND
9V VCC
2
NC
3 11 10 9 8 SDA
NC
NC R6 10K R17
MCU
12 SCL
4
VCC
C20
20pF
5
OSCI
C17
1uF
100nF
C19
R8 NC
6
OSCO
R7
DGND S2 1 2 R1 10K
20pF
C3
0R
7
PAIR
Y1 12MHz
L13
LED2
100pF
U5
24C01
C26 8 7 6 5 DGND
100nF
C27
47uF
C10
47uF
C14
104
C23
47uF
C24
104
R12 R35 DGND R25 R26 100R 100R SCL SDA
1 2 3 4 A0 A1 A3 GND VCC WP SCL SDA
430K
R11
1K
56K-->5.6K
DGND
V8.3
C6
33pF
C2 R4 100R SDA SCL C1 C63
10nF 10nF 10nF 47R
R21
33pF
R5 100R C64
DGND
V3.3
C4 DGND
18p-->12p
DGND
L1
180nH
16
15
14
V3.3 INT GND1 R36 10K
备注:不同的天线类型L10需要微调以保证阻抗匹配.
and LED3 will be off after battery lower <+5V
设计名称 版本信息 设计者
昆天科专业、卡拉OK用无线麦克风发射端 V2.0 QUINTIC SZ
L8
10uH
DGND
3、C66 NC时辐射功率比C66=8pF时大10dB. 4、C67 NC时Q1容易自激振荡。
RF
R22
47R
V8.3
备注:R33值越小,SP31101放大倍数越小.
+
[1]
C21
1uF
1uF
C7 C22
1uF
C30
470pF
C31
L9
10nF
+
+
DGND C28
1uF
U4 SP31101
D2 BZX79C3V9
DGND
DGND
Q5
MMBT3904
91K
R18
LED1 LED3
56k-->2.7K
R38
DGND
DGND
Remark4: after battery lower <+5V LED1 will light up.
Remark3: after Power ON LED3 will light up