高三物理练习 8.2 力的合成和分解
高中物理--《力的合成和分解》典型例题(含答案)

高中物理--《力的合成和分解》典型例题(含答案)1.如图所示,质量为m的木块质量为M的三角形斜劈B上,现用大小均为F、方向相反的水平力分别推A和B。
A沿三角斜劈匀速上滑,B保持静止,则()A. 地面对B的支持力大小一定等于(M+m)gB. B与地面之间一定存在摩擦力C. B对A的支持力一定小于mgD. A与B之间一定存在摩擦力【答案解析】AA、将A、B看成整体,竖直方向上受力平衡,则可知地面对B的支持力的大小一定等于,故A正确;B、将A、B看成整体,由于平衡合力为零,故B与地面之间无摩擦力,故B错误;C、对A分析作出对应的受力分析图如图所示;根据平衡条件可知,支持力等于重力和推力在垂直斜面上的分力,由于不明确F的大小,故无法确定支持力与重力的关系,故C错误;D、由图可知,若重力和推力在沿斜面方向上的分力相同,则物体A可以不受B的摩擦力,故D错误。
点睛:先对A、B整体受力分析,根据平衡条件得到地面对整体的支持力和摩擦力;再对物体A受力分析,根据平衡条件求解B对A的支持力和摩擦力。
2.(多选题)位于坐标原点O的质点在F1、F2和F3三力的作用下保持静止,已知其中F1的大小恒定不变,方向沿y轴负方向的;F2的方向与x轴正方向的夹角为θ(θ<45°),但大小未知,如图所示,则下列关于力F3的判断正确的是()A.F3的最小值为F1cosθB.F3的大小可能为F1sinθC.力F3可能在第三象限D.F3与F2的合力大小与F2的大小有关【答案解析】AC【考点】合力的大小与分力间夹角的关系.【分析】三力平衡时,三个力中任意两个力的合力与第三个力等值、反向、共线;题中第三个力F3与已知的两个力的合力平衡.【解答】解:A、三力平衡时,三个力中任意两个力的合力与第三个力等值、反向、共线;通过作图可以知道,当F1、F2的合力F与F2垂直时合力F最小,等于F1cosθ,即力F3的最小值为F1cosθ.故A正确;B、θ<45°,故sinθ<cosθ,由前面分析知F3的最小值为F1cosθ,则不可能等于F1sinθ,故B错误;C、通过作图可知,当F1、F2的合力F可以在F1与F2之间的任意方向,而三力平衡时,三个力中任意两个力的合力与第三个力等值、反向、共线,故力F3只能在F1与F2之间的某个方向的反方向上,可能在第三象限,故C正确;D、根据平衡条件:F3与F2的合力大小一定与F1等值反向,则与F2大小无关,故D错误;故选:AC.3.杂技表演的安全网如图甲所示,网绳的结构为正方形格子,O、a、b、c、d等为网绳的结点,安全网水平张紧后,质量为m的运动员从高处落下,恰好落在O点上.该处下凹至最低点时,网绳dOe、bOg均为120°张角,如图乙所示,此时O点受到向下的冲击力大小为2F,则这时O点周围每根网绳承受的张力大小为()A.F B. C.2F+mg D.【答案解析】A【考点】共点力平衡的条件及其应用;力的合成;力的合成与分解的运用.【分析】将运动员对O点的冲力进行分解:分解成四个沿网绳的分力,根据几何关系求解O点周围每根网绳承受的张力大小.【解答】解:将运动员对O点的冲力分解成四个沿网绳的分力,根据对称性,作出图示平面内力的分解图,根据几何关系得,O点周围每根网绳承受的张力大小F′=F.故A正确.故选A4.如图,一小车上有一个固定的水平横杆,左边有一轻杆与竖直方向成θ角与横杆固定,下端连接一质量为m的小球P.横杆右边用一根细线吊一相同的小球Q.当小车沿水平面做加速运动时,细线保持与竖直方向的夹角为α.已知θ<α,不计空气阻力,重力加速度为g,则下列说法正确的是()A.小车一定向右做匀加速运动B.轻杆对小球P的弹力沿轻杆方向C.小球P受到的合力不一定沿水平方向D.小球Q受到的合力大小为mgtanα【答案解析】D【考点】牛顿第二定律;力的合成与分解的运用.【分析】先对细线吊的小球分析进行受力,根据牛顿第二定律求出加速度.再对轻杆固定的小球应用牛顿第二定律研究,得出轻杆对球的作用力方向.【解答】解:A、对细线吊的小球研究,根据牛顿第二定律,得mgtanα=ma,得到a=gtanα,故加速度向右,小车向右加速,或向左减速,故A错误;B、由牛顿第二定律,得:mgtanβ=ma′,因为a=a′,得到β=α>θ,则轻杆对小球的弹力方向与细线平行,故B错误;C、小球P和Q的加速度相同,水平向右,则两球的合力均水平向右,大小F合=ma=mgtanα,故C错误,D正确.故选:D.5.关于合力和分力,下列说法不正确的是()A.1N和2N的两个共点力的合力可能等于2NB.两个共点力的合力一定大于任一个分力C.两个共点力的合力可能大于任一个分力,也可能小于任何一个分力D.合力与分力是等效替代关系,因此受力分析时不能重复分析【答案解析】B【考点】力的合成.【分析】解答此题时,要从合力与分力的关系:等效替代,进行分析.根据平行四边形定则分析合力与分力的大小关系:如果二力在同一条直线上,同方向二力的合力等于二力之和;同一直线反方向二力的合力等于二力之差.如果二力不在同一条直线上,合力大小介于二力之和与二力之差之间.【解答】解:A、1N和2N的两个共点力的最大合力为3N,最小合力为1N,故A正确;BC、力的合成遵守平行四边形定则,两个力的合力可以比分力大,也可以比分力小,也可以等于分力,故B不正确,C正确;D、合力是分力等效替代的结果,因此受力分析时不能重复分析,故D正确;本题选择不正确的,故选:B.6.质量为m、长为L的直导体棒放置于四分之一光滑圆弧轨道上,整个装置处于竖直向上磁感应强度为B的匀强磁场中,直导体棒中通有恒定电流,平衡时导体棒与圆弧圆心的连线与竖直方向成60°角,其截面图如图所示.则关于导体棒中的电流方向、大小分析正确的是()A.向外, B.向外, C.向里, D.向里,【答案解析】D【考点】共点力平衡的条件及其应用;力的合成与分解的运用;洛仑兹力.【分析】由导体棒所受重力和弹力方向以及左手定则,可知导体棒电流向里,对其受力分析,正交分解可得电流大小.【解答】解:对导体棒受力分析如图;BIL=mgtan60°,解得,由左手定则知电流方向向里,故选:D7.(多选题)均匀长棒一端搁在地面上,另一端用细线系在天花板上,如图所示受力分析示意图中,正确的是()A. B. C. D.【答案解析】ACD【考点】力的合成与分解的运用.【分析】均匀长木棒处于静止状态,抓住合力为零确定受力图的正误.【解答】解:A、因为重力mg和地面支持力FN的方向都在竖直方向上,若拉力F在竖直方向上,则地面对木棒就没有摩擦力作用(木棒对地面无相对运动趋势),故A正确;B、若拉力F的方向与竖直方向有夹角,则必然在水平方向上有分力,使得木棒相对地面有运动趋势,则木棒将受到地面的静摩擦力Ff,且方向与F的水平分力方向相反,才能使木棒在水平方向上所受合力为零,故B错误,C、D正确.故选ACD.8.(多选题)如图所示,倾角θ=30°的斜面上有一重为G的物体,在与斜面底边平行的水平推力作用下沿斜面上的虚线匀速运动,若图中φ=45°,则()A.物体所受摩擦力方向平行于斜面沿虚线向上B.物体与斜面间的动摩擦因数μ=C.物体所受摩擦力方向与水平推力垂直且平行斜面向上D.物体与斜面间的动摩擦因数μ=【答案解析】AD【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】本题具有一定的空间思维逻辑,画出受力分析图,然后进行受力分析,最后简化到斜面平面内的受力分析.【解答】解:A、C、对物块进行受力分析,如图所示:物块在重力G、斜面的支持力N、推力F、沿虚线方向上的摩擦力f共同作用下沿斜面上的虚线匀速运动,因为G,N,F三力的合力方向向下,故摩擦力f方向沿斜面虚线向上,所以物块向下运动,故A正确,C错误;B、D、现将重力分解为沿斜面向下且垂直于底边(也垂直于推力F)的下滑力G1、垂直与斜面的力G2,如图所示:其中G2恰好把N平衡掉了,这样可视为物体在推力F、下滑力G1、摩擦力f三个力作用下沿斜面上的虚线匀速运动,根据三力平衡特点,F与G1的合力必沿斜面向下,同时摩擦力f 只能沿斜面向上,故选项A 对BC错;根据几何关系,F与G1的合力:F合==G1,即f=G1,故物体与斜面间的动摩擦因数μ===,故B错误,D正确.故选:AD9.如图所示,斜面的倾角为30°,物块A、B通过轻绳连接在弹簧测力计的两端,A、B重力分别为10N、6N,整个装置处于静止状态,不计一切摩擦,则弹簧测力计的读数为()A.5N B.6N C.10N D.11N【答案解析】A【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】分析A的受力,求出A对弹簧的拉力,该拉力即为弹簧受到的拉力大小,也就是弹簧秤的示数.【解答】解:分析A的受力,弹簧对A的拉力等于A的重力沿斜面向下的分力,故F=Gsin30°=5N,故弹簧测力计的读数为5N.故A正确,BCD错误.故选:A.10.(多选题)如图所示,表面光滑的半圆柱体固定在水平面上,小物块在拉力F的作用下从B点沿圆弧缓慢上滑至A点,此过程中F始终沿圆弧的切线方向,则()A.小物块受到的支持力逐渐变大B.小物块受到的支持力先变小后变大C.拉力F逐渐变小D.拉力F先变大后变小【答案解析】AC【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】对滑块受力分析,受重力、支持力和拉力,根据共点力平衡条件列式求解出拉力和支持力的数值,在进行分析讨论.【解答】解:解:对滑块受力分析,受重力、支持力和拉力,如图,根据共点力平衡条件,有:N=mgsinθF=mgcosθ其中θ为支持力N与水平方向的夹角;当物体向上移动时,θ变大,故N变大,F变小.故A、C正确,B、D错误.故选AC.。
高中物理《力的合成和分解》练习题

高中物理《力的合成和分解》练习题1.力的合成【例1】物体受到互相垂直的两个力F 1、F 2的作用,若两力大小分别为53N 、5 N ,求这两个力的合力.2222215)35(+=+=F F F N=10 N 合力的方向与F 1的夹角θ为:3335512===F F tg θ θ=30° 【例2】如图甲所示,物体受到大小相等的两个拉力的作用,每个拉力均为200 N ,两力之间的夹角为60°,求这两个拉力的合力.320030cos 21== F F N=346 N合力与F 1、F 2的夹角均为30°.2.力的分解力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边/两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。
【例3】将放在斜面上质量为m 的物体的重力mg 分解为下滑力F 1和对斜面的压力F 2,这种说法正确吗?解析:从力的性质上看,F 2是属于重力的分力,而物体对斜面的压力属于弹力,所以这种说法不正确。
【例4】将一个力分解为两个互相垂直的力,有几种分法?解析:有无数种分法,只要在表示这个力的有向线段的一段任意画一条直线,在有向线段的另一端向这条直线做垂线,就是一种方法。
如图所示。
(3)几种有条件的力的分解①已知两个分力的方向,求两个分力的大小时,有唯一解。
②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。
③已知两个分力的大小,求两个分力的方向时,其分解不惟一。
④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。
(4)用力的矢量三角形定则分析力最小值的规律:①当已知合力F 的大小、方向及一个分力F 1的方向时,另一个分力F 2取最小值的条件是两分力垂直。
如图所示,F 2的最小值为:F 2min =F sin α②当已知合力F 的方向及一个分力F 1的大小、方向时,另一个分力F 2取最小值的条件是:所求分力F 2与合力F 垂直,如图所示,F 2的最小值为:F 2min =F 1sin α③当已知合力F 的大小及一个分力F 1的大小时,另一个分力F 2取最小值的条件是:已知大小的分力F 1与合力F 同方向,F 2的最小值为|F -F 1|(5)正交分解法:把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。
力的合成与分解习题及答案

力的合成与分解习题及答案力的合成与分解习题及答案力是物体之间相互作用的结果,它可以改变物体的状态或形状。
在物理学中,力的合成与分解是一个重要的概念。
通过合成与分解力的练习,我们可以更好地理解力的性质和作用。
下面将介绍一些常见的力的合成与分解习题及答案。
习题一:有两个力F1和F2,它们的大小分别为10N和15N,方向分别为东和北。
求合力的大小和方向。
解答:首先,我们可以将F1和F2的大小和方向用向量表示,F1的向量表示为10N东,F2的向量表示为15N北。
接下来,我们可以将这两个向量相加,得到合力的向量。
根据向量相加的规则,我们可以将F1向东的分量与F2向北的分量相加,得到合力向东北方向的分量。
然后,我们可以使用勾股定理求得合力的大小,即√(F1^2 + F2^2) = √(10^2 + 15^2) ≈ 18.03N。
最后,我们可以使用反正切函数求得合力的方向,即θ = arctan(F2/F1) = arctan(15/10) ≈ 56.31°。
因此,合力的大小约为18.03N,方向为东北方向。
习题二:有一个力F,大小为20N,方向为东北。
将力F分解为两个力F1和F2,使得F1与F2的方向分别为东和北。
解答:首先,我们可以将F的大小和方向用向量表示,F的向量表示为20N东北。
接下来,我们需要将F分解为两个力F1和F2,使得它们的方向分别为东和北。
根据三角函数的性质,我们可以得到F1的大小为F*cosθ,F2的大小为F*sinθ。
其中,θ为F向量与东方向的夹角。
根据题目中给出的方向,我们可以计算出θ = arctan(F2/F1) = arctan(1/1) = 45°。
因此,F1的大小为20N*cos45° ≈14.14N,F2的大小为20N*sin45° ≈ 14.14N。
最后,我们得到了两个力F1和F2的大小和方向,F1的大小约为14.14N,方向为东,F2的大小约为14.14N,方向为北。
高三物理力的合成与分解试题答案及解析

高三物理力的合成与分解试题答案及解析1.如图,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态。
现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。
与稳定在竖直时位置相比,小球的高度A.一定升高B.一定降低C.保持不变D.升高或降低由橡皮筋的劲度系数决定【答案】A【解析】设为橡皮筋的原长,k为橡皮筋的劲度系数,小车静止时,对小球受力分析得:,弹簧的伸长,即小球与悬挂点的距离为,当小车的加速度稳定在一定值时,对小球进行受力分析如图,得:,,所以:,弹簧的伸长:,则小球与悬挂点的竖直方向的距离为:,所以,即小球在竖直方向上到悬挂点的距离减小,所以小球一定升高,故A正确。
【考点】牛顿第二定律;胡克定律.2.如图,用两根等长轻绳将木板悬挂在竖直木桩上等高的两点,制成一简易秋千。
某次维修时将两轻绳剪去一小段,但仍保持等长且悬挂点不变。
木板静止时,F1表示木板所受合力的大小,F2表示单根轻绳对木反拉力的大小,则维修后A.F1不变,F2变大B.F1不变,F2变小C.F1变大,F2变大D.F1变小,F2变小【答案】A【解析】前后两次木板始终处于静止状态,因此前后两次木板所受合力F1都等于零,保持不变,C、D错误;绳子剪去一段后长度变短,悬挂木板时绳子与竖直方向夹角变大,将力沿水平方向和竖直方向正交分解,在竖直方向上,,而物体的重力不变,因此单根绳的拉力变大,A正确,B错误。
【考点】共点力的平衡,力的分解3.某压榨机的结构如图所示,其中B为固定铰链,C为质量可忽略不计的滑块,通过滑轮可沿光滑壁移动,D为被压榨的物体.当在铰链A处作用一大小为F且垂直于壁的压力时,物体D所受的压力为()A.B.C.D.【答案】B,根据力的分解、物体的平衡可得:,由图知壁对物体D 【解析】设壁上的力为FT的压力,根据几何关系:,联立解得:,所以B正确;A、C、D错误【考点】本题考查里的合成与分解、物体的平衡4.如图,将两个质量均为m的小球a、b用细线相连悬挂于O点,用力F拉小球a,使整个装置处于平衡状态,且悬线与竖直方向的夹角为,则F的最小值A.B.C.mg D.【答案】C【解析】把两个小球看做一个整体,则整体受重力2mg,绳子的拉力T和拉力F,根据三角形法则,当力F与绳子垂直时,此时力F最小,最小值为mg,可见力F的数值不能低于mg,C正确。
(物理)力的相互作用-力的合成与分解

相互作⽤(⼆)⼒的合成与分解考点回顾⼀、⼒的合成1.合⼒与分⼒(1)定义:如果⼀个⼒的作⽤效果跟⼏个⼒共同作⽤的效果相同,这⼀个⼒就叫那⼏个⼒的合⼒,那⼏个⼒就叫这个⼒的分⼒。
(2)逻辑关系:合⼒和分⼒是⼀种等效替代关系。
2.共点⼒:作⽤在物体上的⼒的作⽤线或作⽤线的反向延⻓线交于⼀点的⼒。
3.⼒的合成的运算法则(1)平⾏四边形定则:求两个互成⻆度的共点⼒1F 、2F 的合⼒,可以⽤表示1F 、2F 的有向线段为邻边作平⾏四边形,平⾏四边形的对⻆线(在两个有向线段1F 、2F 之间)就表示合⼒的⼤⼩和⽅向,如图甲所示。
(2)三⻆形定则:求两个互成⻆度的共点⼒1F 、2F 的合⼒,可以把表示1F 、2F 的线段⾸尾顺次相接地画出,把1F 、2F 的另外两端连接起来,则此连线就表示合⼒的⼤⼩和⽅向,如图⼄所示。
4.⼒的合成⽅法及合⼒范围的确定 (1)共点⼒合成的⽅法 ①作图法②计算法:根据平⾏四边形定则作出示意图,然后利⽤解三⻆形的⽅法求出合⼒。
(2)合⼒范围的确定2①两个共点⼒的合⼒范围:1212–F F F F F +≤≤,即两个⼒的⼤⼩不变时,其合⼒随夹⻆的增⼤⽽减⼩。
当两个⼒反向时,合⼒最⼩,为12–F F ;当两个⼒同向时,合⼒最⼤,为12F F +。
②三个共点⼒的合成范围A.最⼤值:三个⼒同向时,其合⼒最⼤,为max 123F F F F =++。
B.最⼩值:以这三个⼒的⼤⼩为边,如果能组成封闭的三⻆形,则其合⼒的最⼩值为零,即min 0F =;如果不能,则合⼒的最⼩值的⼤⼩等于最⼤的⼀个⼒减去另外两个⼒和的绝对值,即min 123–F F F F =+(1F 为三个⼒中最⼤的⼒)。
(3)解答共点⼒的合成问题时的两点注意①合成⼒时,要正确理解合⼒与分⼒的⼤⼩关系。
合⼒与分⼒的⼤⼩关系要视情况⽽定,不能形成合⼒总⼤于分⼒的思维定势。
②三个共点⼒合成时,其合⼒的最⼩值不⼀定等于两个较⼩⼒的和与第三个较⼤的⼒之差。
2023届高考物理一轮复习知识点精讲与2022高考题模考题训练专题08 力的分解与合成(解析版)

2023高考一轮知识点精讲和最新高考题模拟题同步训练第二章相互作用专题08 力的分解与合成第一部分知识点精讲一、力的合成与分解1.合力与分力(1)定义:如果一个力产生的效果跟几个共点力共同作用产生的效果相同,这一个力就叫作那几个力的合力,原来那几个力叫作分力。
(2)关系:合力和分力是等效替代的关系。
合力与分力的关系(1)两个分力一定时,夹角θ越大,合力越小。
(2)合力一定,两等大分力的夹角越大,两分力越大。
(3)合力可以大于分力,等于分力,也可以小于分力。
2.共点力作用在物体的同一点,或作用线的延长线交于一点的力。
如下图所示均是共点力。
3.力的合成(1)定义:求几个力的合力的过程。
(2)运算法则。
①平行四边形定则:求两个互成角度的共点力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向,如图甲所示。
②三角形定则:把两个矢量首尾相连,从而求出合矢量的方法,如图乙所示。
特别提醒:首尾相连的三个力构成封闭三角形,则合力为零。
几种特殊情况的共点力的合成4.力的分解(1)定义:求一个已知力的分力的过程。
(2)运算法则:平行四边形定则或三角形定则。
(3)分解力的两种方法:效果分解法(i)根据力的实际作用效果确定两个实际分力的方向。
(ii)再根据两个分力方向画出平行四边形。
(iii)最后由三角形知识求出两个分力的大小和方向。
正交分解法:求几个力的合力时,可以先将各力进行正交分解,求出互相垂直方向的合力后合成,分解的目的是为了将矢量运算转化为代数运算,便于求合力。
(i)选取坐标轴及正方向:正交的两个方向可以任意选取,选取的一般原则是:①使尽量多的力落在坐标轴上;②平行和垂直于接触面;③平行和垂直于运动方向。
(ii)分别将各力沿正交的两个方向(x轴和y轴)分解,如图所示。
(iii)求各力在x 轴和y 轴上的分力的合力F x 和F y ,则有F x =F 1x+F 2x +F 3x +…,F y =F 1y +F 2y +F 3y +…。
力的合成力的分解练习题
力的合成与分解练习一、选择题1、如图所示,水平横梁的一端A插在墙壁内,另一端装有一小滑轮B.一轻绳的一端C固定于墙壁上,另一端跨过滑轮后悬挂一质量m=10 kg的重物,∠CBA=30°,则滑轮受到绳子的作用力为(g取10 N/kg)( ) A.50N ? ?????? ? B.50?N C.100 ? ?? ?? D.100?N2、作用于O点的五个恒力的矢量图的末端跟O点恰好构成一个正六边形,如图所示。
这五个恒力的合力是最大恒力的??? ?? (??? )A.2倍????????????? B.3倍???????????? C.4倍????????????? D.5倍3、如图所示,轻绳一端系在质量为m的物块A上,另一端系在一个套在粗糙竖直杆MN的圆环上.现用水平力F拉住绳子上一点O,使物块A从图中实线位置缓慢下降到虚线位置,但圆环仍保持在原来位置不动。
在这一过程中,环对杆的摩擦力F1和环对杆的压力F2的变化情况是?????? A.F1保持不变,F2逐渐增大?????? B.F1保持不变,F2逐渐减小?????? C.F1逐渐增大,F2保持不变?????? D.F1逐渐减小,F2保持不变4、有两个共点力F1、F2,其大小均为8N,这两个力的合力的大小不可能的是A? 0???????? B? 8N?????? C? 15N?????? D? 18N5、做引体向上时,两臂与横杠的夹角为多少度时最省力?()A. 0°B. 30°C. 90°D. 180°6、如图所示,木块在推力F作用下向右做匀速直线运动,则下列说法中正确的有()A.物体一定受摩擦力作用B.物体所受摩擦力与推力的合力一定为零C.物体所受摩擦力与推力的合力的方向不一定竖直向下D.物体所受摩擦力与推力的合力的方向一定水平向右7、如图所示,是两个共点力的合力F跟它的两个分力之间的夹角θ的关系图象,则这两个力的大小分别是( )A.1 N和4 N B.2 N和3 N C.1 N和5 N D.2 N和4 N8、(2012全国上海物理卷)已知两个共点力的合力为50N,分力F1的方向与合力F的方向成30°角,分力F2的大小为30N,则(???????? )A.F1的大小是唯一的?????????????B.F2的方向是唯一的C.F2有两个可能的方向??????????D.F2可取任意方向9、如图所示,轻绳AO和BO共同吊起质量为m的重物,AO与BO垂直,BO与竖直方向的夹角为θ,OC连接重物,则( )A.AO所受的拉力大小为mg sinθB.AO所受的拉力大小为C.BO所受的拉力大小为mg cosθD.BO所受的拉力大小为10、如图所示,在水平天花板的A点处固定一根轻杆a,杆与天花板保持垂直.杆的下端有一个轻滑轮O.另一根细线上端固定在该天花板的B点处,细线跨过滑轮O,下端系一个重为G的物体.BO段细线与天花板的夹角为θ=30°.系统保持静止,不计一切摩擦.下列说法正确的是( )A.细线BO对天花板的拉力大小是G/2B.a杆对滑轮的作用力大小是G/2C.a杆和细线对滑轮的合力大小是G D.a杆对滑轮的作用力大小是G11、已知一个力的大小为100 N,它的一个分力F1的大小为60 N,则另一个分力F2的大小( )A.一定是40 N ??????????? B.一定是80 NC.不能大于100 N? ??????????????????????? D.不能小于40 N12、如图为航空员在进行体能训练的示意图,航空员双手握紧转筒上的AB两点在竖起面内顺时针转动。
新高考物理第2讲力的合成和分解作业
第2讲力的合成和分解时间:50分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分。
其中1~8题为单选,9~10题为多选)1. (2020·吉林省吉林市高三二调)如图所示,小球被轻绳系住,静止在光滑斜面上。
若按力的实际作用效果来分解小球受到的重力G,则G的两个分力的方向分别是图中的()A.1和2 B.1和3C.2和3 D.1和4答案 A解析小球的重力产生两个效果,一是使绳子拉伸,二是使斜面受压,故应沿这两个方向分解,即沿1和2所示方向分解,故A正确,B、C、D错误。
2.(2020·河北省高三第二次省际调研)互成角度的两个共点力,其中一个力保持恒定,另一个力从零开始逐渐增大且两力的夹角不变,则其合力() A.若两力的夹角小于90°,则合力一定增大B.若两力的夹角大于90°,则合力一定增大C.若两力的夹角大于90°,则合力一定减小D.无论两力夹角多大,合力一定变大答案 A解析若两力的夹角小于90°,如图1,则合力一定增大,A正确;若两力的夹角大于90°,如图2,则合力可能先减小后增大,B、C、D错误。
3.(2020·安徽省示范高中名校高三上联考)下图两种情况中,球的重力均为G,斜面与水平面的夹角均为θ,挡板对球的压力分别为(图1挡板竖直,图2挡板与斜面垂直)()A.G tanθ;G sinθ B.G sinθ;G tanθC.Gtanθ;G sinθ D.G sinθ;Gtanθ答案 A解析对两球分别进行受力分析,如图所示,根据平衡条件可知,图1中挡板对球的压力为:F1=G tanθ,图2中挡板对球的压力为:F2=G sinθ,故A正确,B、C、D错误。
4. 如图是悬绳对称且长度可调的自制降落伞。
用该伞挂上重为G的物体进行两次落体实验,悬绳的长度l1<l2,匀速下降时每根悬绳的拉力大小分别为F1、F2,则()A.F1<F2 B.F1>F2C.F1=F2<G D.F1=F2>G答案 B解析设悬绳与竖直方向的夹角为α,每根悬绳的拉力大小为F,则有G=nF cosα,得F=Gn cosα,可得当α越小时,cosα越大,F越小。
高中物理--《力的合成和分解》典型例题(含答案)
高中物理--《力的合成和分解》典型例题(含答案)1.如图所示,光滑的大圆环固定在竖直平面上,圆心为O点,P为环上最高点,轻弹簧的一端固定在P点,另一端栓连一个套在大环上的小球,小球静止在图示位置平衡,则()A.弹簧可能处于压缩状态B.大圆环对小球的弹力方向可能指向O点C.小球受到弹簧的弹力与重力的合力一定指向O点D.大圆环对小球的弹力大小可能小于球的重力,也可能大于球的重力【答案解析】C【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】对小球受力分析,根据共点力平衡,分析弹簧的弹力方向,作出正确的受力分析图,根据相似三角形分析大圆环对小球的弹力和小球重力的大小关系.【解答】解:A、若弹簧处于压缩状态,弹簧对小球的弹力方向沿弹簧向外,还受到重力和圆环对小球指向圆心的弹力,这三个力不可能平衡,所以弹簧处于伸长状态,受力如图所示,故A错误.B、由A选项分析可知,大圆环对小球的弹力方向背离圆心O,故B错误.C、小球受重力、弹簧的拉力以及大圆环对它的弹力处于平衡,小球受到弹簧的弹力与重力的合力与大圆环对小球弹力大小相等,方向相反,可知指向圆心O,故C正确.D、如图,△G′NB∽△PQO,因为,可知大圆环对小球的弹力等于小球的重力,故D错误.故选:C.2.如图所示,一个半径为R的圆球,其重心不在球心O上,将它置于水平地面上,则平衡时球与地面的接触点为A;若将它置于倾角为30°的粗糙斜面上,则平衡时(静摩擦力足够大)球与斜面的接触点为B.已知AB段弧所对应的圆心角度数为60°,对圆球重心离球心O 的距离以下判断正确的是()A. B. C. D.【答案解析】D【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】将球置于水平地面上,球受重力和支持力,二力平衡,故重力的作用点在OA连线上的某个点;将球置于倾角为30°的粗糙斜面上,以B位置为支点,根据力矩平衡条件.合力的力矩为零,故重力的力矩一定为零,故重心也在过B的竖直线上,一定是该线与OA的交点【解答】解:将球置于水平地面上,球受重力和支持力,二力平衡,故重力的作用点在OA 连线上将球放在斜面上,以B为支点,根据力矩平衡条件,合力矩为零,故重力的力矩一定为零,故重心也在过B的竖直线上,一定是该线与OA的交点,如图所示:故选:D3.有一个直角支架AOB,A0水平放置,表面粗糙,OB竖直放置,表面光滑.A0上套有小环P,OB上套有小环Q,两环质量均为m,两环用一质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图,现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力FN和细绳上的拉力FT的变化情况是()A.FN不变,FT变大 B.FN不变,FT变小C.FN变大,FT变大 D.FN变大,FT变小【答案解析】B【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】分别以两环组成的整体和Q环为研究对象,分析受力情况,根据平衡条件研究AO 杆对P环的支持力N和细绳上的拉力T的变化情况.【解答】解:以两环组成的整体,分析受力情况如图1所示.根据平衡条件得,N=2mg保持不变.再以Q环为研究对象,分析受力情况如图2所示.设细绳与OB杆间夹角为α,由平衡条件得,细绳的拉力T=,P环向左移一小段距离时,α减小,cosα变大,T变小,即FN不变,FT变小.故选:B4.已知两个力的合力大小为18N,则这两个力不可能是()A.10N,20N B.18N,18N C.8N,7N D.20N,28N【答案解析】C【考点】力的合成.【分析】当两力互成角度时,利用平行四边形法则或三角形法则求出合力.本题中两个分力同向时合力最大,反向时合力最小.【解答】解:两个力合力范围F1+F2≥F≥|F1﹣F2|两个力的合力大小为18N,带入数据A、30N≥F≥10N,故A正确.B、36N≥F≥0N,故B正确.C、15N≥F≥1N,故C错误.D、48N≥F≥8N,故D正确.本题选不可能的,故选C.5.如图所示,四个质量、形状相同的斜面体放在粗糙的水平面上,将四个质量相同的物块放在斜面顶端,因物块与斜面的摩擦力不同,四个物块运动情况不同.A物块放上后匀加速下滑,B物块获一初速度后匀速下滑,C物块获一初速度后匀减速下滑,D物块放上后静止在斜面上.若在上述四种情况下斜面体均保持静止且对地面的压力依次为F1、F2、F3、F4,则它们的大小关系是()A.F1=F2=F3=F4 B.F1>F2>F3>F4 C.F1<F2=F4<F3 D.F1=F3<F2<F4【答案解析】C【考点】牛顿第二定律;力的合成与分解的运用.【分析】当物体系统中存在超重现象时,系统所受的支持力大于总重力,相反,存在失重现象时,系统所受的支持力小于总重力.若系统的合力为零时,系统所受的支持力等于总重力,【解答】解:设物体和斜面的总重力为G.第一个物体匀加速下滑,加速度沿斜面向下,具有竖直向下的分加速度,存在失重现象,则F1<G;第二个物体匀速下滑,合力为零,斜面保持静止状态,合力也为零,则系统的合力也为零,故F2=G.第三个物体匀减速下滑,加速度沿斜面向上,具有竖直向上的分加速度,存在超重现象,则F3>G;第四个物体静止在斜面上,合力为零,斜面保持静止状态,合力也为零,则系统的合力也为零,故F4=G.故有F1<F2=F4<F3.故C正确,ABD错误.故选:C6.已知两个共点力的合力为50N,分力F1的方向与合力F的方向成30°角,分力F2的大小为30N.则()A.F1的大小是唯一的 B.F2的方向是唯一的C.F2有两个可能的方向 D.F2可取任意方向【答案解析】C【考点】力的合成.【分析】已知合力的大小为50,一个分力F1的方向已知,与F成30°夹角,另一个分力的最小值为Fsin30°=25N,根据三角形定则可知分解的组数.【解答】解:已知一个分力有确定的方向,与F成30°夹角,知另一个分力的最小值为Fsin30°=25N而另一个分力大小大于25N小于30N,所以分解的组数有两组解.如图.故C正确,ABD错误故选C.7.(多选题)如图,三块质量相同的木块A、B、C叠放在水平桌面上,水平衡力F作用在木块B上,三木块以共同速度v沿水平桌面匀速移动,下列说法正确的是()A.B作用于A的静摩擦力为零 B.B作用于A的静摩擦力为C.B作用于C的静摩擦力为 F D.B作用于C的静摩擦力为F【答案解析】AD【考点】共点力平衡的条件及其应用;静摩擦力和最大静摩擦力;力的合成与分解的运用.【分析】三个木块以相同速度做匀速直线运动,受力都平衡,分别以A和AB整体为研究对象,分析B作用于A的静摩擦力和C作用于B的静摩擦力.【解答】解:A、B以A为研究对象,分析得知A相对于B没有运动趋势,则B作用于A 的静摩擦力为零,否则A所受合力不为零,不可能做匀速直线运动.故A正确,B错误.C、D以AB作为整体为研究对象,根据平衡条件可知,C对B的静摩擦力大小等于F,方向与F相反,则知B作用于C的静摩擦力为F.故C错误,D正确.故选:AD.8.有两个大小恒定的力,作用在一点上,当两力同向时,合力为A,反向时合力为B,当两力相互垂直时,其合力大小为()A. B. C. D.【答案解析】B【考点】力的合成.【分析】设两个力分别为F1和F2,根据已知条件并运用平行四边形定则列式分析即可.【解答】解:两力同向时,有F1+F2=A两力反向时,有F1﹣F2=B解得,;两个力垂直时,有解得F=故选B.9.物体在以下三个共点力作用下,可能做匀速直线运动的是A.1N、6N、8N B.3N、6N、2NC.7N、2N、6N D.5N、9N、15N【答案解析】C【解题思路】试题分析:做匀速直线运动,则物体必须受力平衡,合力为零,三力合成时,如果三力满足任意两力之和大于等于第三个力,任意两力之差小于等于第三个力,则这三个力合力为零,故只有C满足,选项C正确。
高三物理力的合成与分解试题答案及解析
高三物理力的合成与分解试题答案及解析1.图中a、b上是两个位于固定斜面上的正方形物块,它们的质量相等。
F是沿水平方向作用于a上的外力。
已知a、b的接触面,a、b与斜面的接触面都是光滑的。
正确的说法是()A.a、b一定沿斜面向上运动B.a对b的作用力沿水平方向C.a、b对斜面的正压力相等D.a受到的合力沿水平方向的分力等于b受到的合力水平方向的分力【答案】D【解析】AB整体受重力、支持力及水平方向的推力,沿平行斜面和垂直斜面方向建立直角坐标系,将重力及水平推力正交分解,有可能重力下滑分力大于水平推力平行斜面向上的分力,故AB有可能沿斜面向下运动,故A错误;a对b的作用力是弹力,与接触面垂直,故平行斜面向上,故B错误;分别分析A、B的受力情况:物体B受重力、支持力及沿斜面向上的A的推力,故对斜面的压力等于重力的垂直分力;对A分析,A受重力、支持力、水平推力;支持力等于重力垂直于斜面的分力及水平推力沿垂直于斜面的分力的合力,故A、B对斜面的压力大小不相等,故C错误;因AB沿斜面方向上的加速度相等,故AB受到的合力相等,因此它们的合力在水平方向上的分力一定相等,故D正确。
【考点】共点力平衡的条件及其应用;力的合成与分解的运用.2.如图所示,在竖直放置的穹形光滑支架上,一根不可伸长的轻绳通过光滑的轻质滑轮悬挂一重物G.现将轻绳的一端固定于支架上的A点,另一端从B点沿支架缓慢地向C点靠近(C点与A点等高).则绳中拉力大小变化的情况是()A.先变小后变大B.先变小后不变C.先变大后不变D.先变大后变小【答案】C【解析】当轻绳的右端从B点移到直杆最上端时,设两绳的夹角为2θ.以滑轮为研究对象,分析受力情况,作出受力图如图甲所示.根据平衡条件得,得到绳子的拉力,所以在轻绳的右端从B点移到直杆最上端时的过程中,θ增大,减小,则F变大.当轻绳的右端从直杆最上端移到C点时,如图乙,设两绳的夹角为2α.设绳子总长为L,两直杆间的距离为S,由数学知识得到,L、S不变,则α保持不变.再根据平衡条件可知,两绳的拉力F保持不变.所以绳中拉力大小变化的情况是先变大后不变.C正确【考点】共点力平衡的条件及其应用;力的合成与分解的运用.3.如图所示,小方块代表一些相同质量的钩码,图甲中O为轻绳之间连接的结点,图乙中光滑的滑轮跨在轻绳上悬挂钩码,两装置处于静止状态,现将图甲中的B滑轮或图乙中的端点B沿虚线稍稍上移一些,则关于θ角的变化说法正确的是()A.图甲、图乙中的θ角均增大B.图甲、图乙中θ角均不变C.图甲中θ角增大、图乙中θ角不变化D.图甲中θ角不变、图乙中θ角变大【答案】B【解析】在题图甲中由于A和B均为滑轮,则知在移动B滑轮的过程中,绳OA与OB的拉力大小不变,若θ变化时,合力必变化,但此时其合力不变,与O点下方五个钩码的重力大小相等,所以θ角不变;由图可知,当B点稍上移时,θ角仍然不变,所以只有B项正确.4.如图所示,两光滑斜面的倾角分别为30°和45°,质量分别为2m和m的两个滑块用不可伸长的轻绳通过滑轮连接(不计滑轮的质量和摩擦),分别置于两个斜面上并由静止释放;若交换两滑块位置,再由静止释放.则在上述两种情形中正确的有 ().A.质量为2m的滑块受到重力、绳的张力、沿斜面的下滑力和斜面的支持力的作用B.质量为m的滑块均沿斜面向上运动C.绳对质量为m滑块的拉力均大于该滑块对绳的拉力D.系统在运动中机械能均守恒【答案】BD【解析】此题的A选项很容易做出判断,因为物体不会受到沿斜面向下的下滑力的作用.把重力沿斜面向下分解,第一种情况下2m的物体沿斜面向下的分力为mg,m的物体沿斜面向下的分力为mg,所以m物体向上加速运动;两物体对调之后,同理可得m物体向上运动,可选出B;C选项可由牛顿第三定律判断出来;因为斜面光滑,没有摩擦力,系统的机械能一定守恒,D正确.5.“儿童蹦极”中,拴在腰问左右两侧的是弹性橡皮绳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理练习8.2 力的合成和分解 班级 姓名
1.如图所示,一条细绳跨过定滑轮连接物体A 、B ,A 悬挂起来,B 穿在一
根竖直杆上,两物体均保持静止,不计绳与滑轮、B 与竖直杆间的摩擦,已
知绳与竖直杆间的夹角θ,则物体A 、B 的质量之比m A ∶m B 等于
A .cos θ∶1
B .1∶cos θ
C .tan θ∶1
D .1∶sin θ
2.如图所示,倾角为θ的光滑斜面上放置一重力为G 的小球,小球与固定
在天花板上的绳子相连,小球保持静止状态.绳子与竖直方向的夹角也为
θ.若绳子的拉力大小为F T ,斜面对小球的支持力大小为F N ,则
A .F N =F T
B .F N =G 2cos θ
C .F T =Gcos θ
D .F T cos θ=Gsin θ
3.在如图所示装置中,m 1由轻质滑轮悬挂在绳间,两物体质量分别为
m 1、m 2,悬点a 、b 间的距离远大于滑轮的直径,不计一切摩擦,整个装
置处于静止状态,则
A .α一定等于β
B .m 1一定大于m 2
C .m 1可能等于2m 2
D .m 1可能等于m 2
4.在第十一届全运会男子举重56公斤级比赛中,龙清泉以302公斤的总
成绩获得冠军,并以169公斤超该级别挺举世界纪录。
如图所示,设龙清泉所举
杠铃的总重为G ,杠铃平衡时每只手臂与竖直线所成的夹角为30°,则他每只手臂
承受的张力为
A .2G
B .G 33
C .23G
D .G
5.以F 1、F 2表示力F 的两个分力.若F =10 N ,则下列不可能是F 的两个分力的是
A .F 1=10 N F 2=10 N
B .F 1=20 N F 2=20 N
C .F 1=2 N F 2=6 N
D .F 1=20 N F 2=30 N
6.如图所示,F 1、F 2、F 3恰好构成封闭的直角三角形,这三个力的合力最大的是
A B C D
7.如图所示,一物体在粗糙水平地面上受斜向上的恒定拉力F 作用而做匀速直线运动,则下列说法正确的是
A .物体可能只受两个力作用
B .物体可能受三个力作用
C .物体可能不受摩擦力作用
D .物体一定受四个力
8.图是某同学为颈椎病人设计的一个牵引装置的示意图,一根绳绕过两个定滑轮和一个动滑轮后两端各挂着一个相同的重物,与动滑轮相连的帆布带拉着病人的颈椎
(图中是用手指代替颈椎做实验),整个装置在同一竖直平面内.如果要增大
手指所受的拉力,可采取的办法是
A .只增加与重物相连的绳的长度
B .只增加重物的重量
C .只将手指向下移动
D .只将手指向上移动
9.如图所示,用一根长1 m 的轻质细绳将一幅质量为1 kg 的画框对称悬挂在墙
壁上,已知绳能承受的最大张力为10 N ,为使绳不断裂,画框上两个挂钉的间
距最大为(g 取10 m/s 2) A.32 m B.22
m C.12 m D.34
m 10、在探究求合力的方法时,先将橡皮条的一端固定在水平木板上,另一端系上带有绳套的两根细绳.实验时,需要两次拉伸橡皮条,一次是通过两细绳用两个弹簧秤互成角度地拉橡皮条,另一次是用一个弹簧秤通过细绳拉橡皮条.
(1)实验对两次拉伸橡皮条的要求中,下列哪些说法是正确的________(填字母代号).
A .将橡皮条拉伸相同长度即可
B .将橡皮条沿相同方向拉到相同长度
C .将弹簧秤都拉伸到相同刻度
D .将橡皮条和绳的结点拉到相同位置
(2)同学们在操作过程中有如下议论,其中对减小实验误差有益的说法是________(填字母代号).
A .两细绳必须等长
B .弹簧秤、细绳、橡皮条都应与木板平行
C .用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大
D .拉橡皮条的细绳要长些,标记同一细绳方向的两点要远些
11.如图甲所示,由两根短杆组成的一个自锁定起重吊钩,将它放入被吊的空罐内,使其张开一定的夹角压紧在罐壁上,其内部结构如图乙所示,当钢绳向上提起时,两杆对罐壁越压越紧,摩擦力足够大,就能将重物提升起来,罐越重,短杆提
供的压力越大,称为“自锁定吊钩”.若罐的质量为m ,短杆
与竖直方向的夹角θ=60°,求吊起该重物时,短杆对罐壁的
压力.(短杆的质量不计)
12.如图所示,一个质量为m =8 kg 的物体置于倾角为37°的斜面上,在水平力F 作用下保持静止.求下列情况下物体与斜面之间的静摩擦力的大小和方向.(g 取10 m/s 2)
(1)F =50 N ; (2)F =60 N ; (3)F =70 N.。