2010年9月压力管道审核-应力分析
压力管道应力分析

压力管道应力分析压力管道是工业生产和生活中常见的工程结构,广泛用于输送水、油、气等介质。
管道内部由于介质压力的作用而产生应力,这些应力的分析对于管道的设计和使用安全至关重要。
本文将从压力管道的应力计算方法、应力分布特点以及应力分析的影响因素等方面进行探讨。
压力管道的应力计算方法主要有两种,即薄壁理论和薄壁理论的改进方法。
薄壁理论是指在管道内径与壁厚比较大的情况下,将管道近似看作薄壁圆筒,应力集中在内径和外径处,通过简化计算得出管道内壁和外壁的应力分布。
该方法适用于绝大部分工程中的压力管道计算。
薄壁理论的改进方法包括厚壁筒薄壁环假设、都笑横断面假设等,通过考虑管道截面的几何形状以及内外径比等因素,提高了应力计算的准确性。
压力管道的应力分布特点主要有三个方面,即轴向应力、周向应力和切向应力。
轴向应力指的是管道轴线方向上的应力,主要由管道内压力和温度差引起。
周向应力指的是管道截面圆周方向上的应力,主要由内压力引起。
切向应力指的是管道截面切线方向上的应力,主要由内压力和薄壁理论简化计算引起。
在传统理论中,管道的轴向应力和周向应力一般为正值,而切向应力为零。
压力管道的应力分析受到多个因素的影响。
首先是管道的材料特性,包括材料的弹性模量、屈服强度、塑性延伸率等。
管道的材料特性直接决定了管道的耐压能力和变形能力。
其次是管道的几何形状,包括内径、外径、壁厚等。
几何形状的不同会导致管道内外径比和界面摩擦等因素的改变,进而影响应力分布。
再次是管道的工作条件,包括温度、压力等。
不同工作条件下管道内部介质的物理性质会发生变化,进而影响管道的应力分布。
最后是管道的固定和支撑方式。
固定和支撑方式的不同会引起管道的应力集中,影响管道的安全性。
为了保证压力管道的正常运行和安全性,需要进行应力分析以及补强设计。
应力分析主要通过有限元分析和解析方法进行。
有限元分析是一种常用的计算机辅助工程分析方法,通过将管道模型离散化为有限个单元,计算每个单元的应力和变形,进而得到整个管道应力分布的方法。
压力管道的弯管与直管连接结构应力分析

压力管道的弯管与直管连接结构应力分析压力管道是一种用于输送流体(包括气体和液体)的管道,通常用于工业生产和民用设施。
在实际应用中,压力管道的结构连接是非常重要的,尤其是在弯管与直管连接的结构中,其应力分析更是必不可少的工作。
本文将从理论和实际工程角度出发,对压力管道的弯管与直管连接结构进行应力分析,以期为相关领域的工程师和研究人员提供参考。
压力管道的弯管与直管连接通常有两种形式,一种是焊接连接,另一种是螺纹连接。
焊接连接是将弯管和直管的端部通过焊接工艺连接在一起,形成一个整体结构;螺纹连接则是通过螺纹将弯管和直管的端部螺纹连接在一起,需要使用密封垫片进行密封。
在实际应用中,焊接连接通常用于对密封性要求较高的场合,例如输送腐蚀性介质的管道系统;而螺纹连接则通常用于对拆卸和维护要求较高的场合,例如化工和石油行业的管道系统。
无论是焊接连接还是螺纹连接,都需要进行应力分析,以确保管道系统的安全性和稳定性。
二、弯管与直管连接结构的应力分析原理1、焊接连接的应力分析原理焊接连接是将弯管和直管的端部通过焊接工艺连接在一起,形成一个整体结构。
在应力分析中,需要考虑以下几个方面的因素:(1)接头的受力情况:焊接接头是整个管道系统中的薄弱环节,其受力情况对整个管道系统的安全性起着至关重要的作用。
在应力分析中需要对焊接接头的受力情况进行详细分析,包括受拉力、受压力和受剪力等情况。
(2)材料的选择:在焊接连接中,材料的选择对整个管道系统的稳定性和安全性具有直接影响。
在应力分析中需要考虑焊接材料的强度、韧性和耐腐蚀性等因素。
(3)焊接工艺的选择:焊接工艺对焊接接头的质量和稳定性具有重要影响。
在应力分析中需要考虑焊接工艺的选择对焊接接头的影响,包括焊接温度、焊接速度和焊接气氛等因素。
三、弯管与直管连接结构的应力分析方法1、有限元分析法有限元分析法是一种广泛应用于工程结构分析领域的数值分析方法,可以较为准确地获取结构的应力分布和受力情况。
关于压力管道的应力分析

关于压力管道的应力分析关于压力管道的应力分析【摘要】压力管道的应力问题在管道检验过程中都会涉及到的,由于压力管道应力的分析和计算过程都要求相对高的技术,这对于检验技术人员来说是很难完成的。
因此,本文着重对压力管道应力分析的内容、应力特征、应力分类以及校核准则进行了论述,以便于为分析人员提供了有效的理论依据。
【关键词】压力管道应力分析一次应力二次应力压力管道的应力影响着压力管道在安装后的安全使用,所以进行应力分析是很有必要的,压力管道应力分析的内容相对较多,主要体现在以下几个方面。
2 压力管道应力分析的特征压力管道在应力分析过程中还不够严谨,其中还存在着一些缺陷,其主要原因是因为压力管道应力由历史根源所造成的校核准则存在不足,但压力管道应力分析有着自身的特点,主要体现在以下几个方面:(1)在压力管道的应力分析之中,没有考虑管道的薄膜应力和局部弯曲应力,从而导致一次应力中没有对一次总体薄膜应力、一次局部薄膜应力和一次弯曲应力进行细分;在一次应力校核准则中往往忽视了对一次弯曲应力和一次局部薄膜应力进行校核,而只对一次总体薄膜应力进行了校核。
(2)计算一次应力主要是为了避免管道在安装的时候承受不住压力而塌下来。
计算二次应力是为了防止管道在发生热变形之后是否会出现问题,通过二次应力计算管道是否发生偏移、移位,并防止并排管道所产生的相互影响。
(3)二次应力校核具有着自身的操作方式,最主要是针对其结构的安定性,只需满足结构安定性条件,就可以避免压力管道产生低周疲劳。
(4)一次应力校核主要是校核压力管道的纵向应力,其最主要的特点是不遵循剪应力理论,二次应力校核虽然遵循的是最大剪应力,但其计算应力过程中不会计算管道轴向立,只考虑管道弯矩和扭矩的作用。
3 压力管道的应力分类及校核准则压力管道与压力容器有所不同,对于不同的管道根据管道自身的特点都有着不同的校核准则,由于压力管道的应力分析主要侧重于对管系整体的分析,而压力容器的应力分析主要是对局部进行详细的分析,两者在应力分类的方法和校核准则上都存在着较大的差异。
压力管道的弯管与直管连接结构应力分析

压力管道的弯管与直管连接结构应力分析压力管道通常需要在其线路中使用曲线管来满足管线的转弯需求。
这些曲线管与直管连接起来通常需要一些特殊的结构,以确保管道在工作中能够维持其正常运行。
这篇文章将会对压力管道的弯管与直管连接结构进行应力分析,探讨其应力特点和设计原则。
首先,弯管与直管连接处的应力特点需要根据管道工作环境的不同而定。
例如,在高压和高温的环境中,管道的应力水平可能会比其他工作环境更高。
但一般来说,弯管与直管连接处的应力主要来自以下几个方面:1. 管体弯曲引起的应变应力弯管的曲率半径与管径之比决定了管体在弯曲过程中所需的应变。
应变过大会导致管体产生应变能。
当弯管与直管连接时,由于曲率半径和管径的不同,管体在连接处即产生了应变,进而形成了应力。
这种应力会在管道工作后不断累计,直至形成管体的韧性断裂。
2. 管道内部介质的压力应力弯管与直管连接处由于管径不同,液体在弯管和直管连接处的流速会变化。
这种流速的变化会导致液体在连接处产生压力应力,进而形成一种压力差,即产生流动阻力。
当管道内介质的压力水平越高时,这种应力越显著。
3. 管道的自重应力管道的自重通常也会对其弯管与直管连接处产生应力。
由于曲率半径和管径的不同,连接处的管体在弯曲或水平的工作状态下会受到重力的作用,因此产生自重应力。
根据上述应力特点,设计出一种合理和可靠的弯管与直管连接结构需要遵循以下几个原则:1. 应根据弯管的弯曲半径和直管的管径来选择适当的连接件。
连接件的设计应该满足弯管和直管的直径差异,以确保连接处的应变和应力得以分散。
合适的连接件可以确保管体的韧性,并应对连结处所产生的应力和应变有所缓解。
适当的连接件还可以改善管体的流动特性,并降低压力差。
2. 连接件的安装位置及其环境应符合相关的标准和要求。
连接件应安装到充分的标准上,选取合适的材料和工艺。
同时,安装环境也应满足相关的要求,如适当的温度和湿度。
任何其他环境条件的不合规都会导致连接件安装不稳定。
压力管道应力分析的内容及特点

压力管道应力分析的内容及特点关键词:压力管道;应力分析;内容特点引言:如今工业中对于压力管道的需求量在不断增加,并且如今大量的工业运输以及承载都需要用到工业管道来作为支撑。
这类管道的应用同样能够为整体工业作业提供重要的保障和保护,同时还能够提升整体工程的有效性和安全性。
但是压力管道想要良好进行工作就必须对其进行外界温度、压力以及湿度等一系列因素的考验,只有通过这些考验以及能够承受住足够压力的管道才能够投入到实际使用中。
一、管道应力分析(一)一次应力在管道应力进行分析的过程中,一次应力通常指的是一些外界因素所带来的负荷以及负载,其中包括了管道所承受的重力、内压以及风载等一系列因素产生的剪应力以及正应力。
这两种应力通常会因为其自身的特点以及特性导致了容易与外加负载形成平衡关系,但是达成了平衡关系之后外加应力并不会取消或者停止,反而还会继续增加,若是外加应力逐渐增加并且达到了一个很大的值之后就会超过材料自身所拥有的屈服极限,管道就容易受到影响从而造成了破坏,管道总体也就随之出现了破坏。
相关工作人员应当能够对一次应力进行良好的控制,在进行管道设计时就应当提前给应力留出足够的预留空间,通过这样的方式来帮助整体管道不会出现过度塑性而造成的破坏或者失效。
同时,一次应力的校核也应当结合具体的弹性分析以及极限分析等一系列要求进行处理,通过处理之后才能够准确地对一次应力进行计算,从而将其进行控制。
如图1所示。
图1一次应力受力变形曲线(二)二次应力二次应力相比较于一次应力来说会更加直接,这类应力通常都是来自于对应的热胀冷缩或者其他位移受到约束而造成的剪应力和正应力,其自身具备一个无法和外力之间构成平衡关系的特点,因此其自身也就具备了非常明显的自限性特征[1]。
基本来说材料自身会因为材料以及质量从而具备对应的屈服值,若是二次应力导致了管道的荷载超过了这种屈服极限值之后就容易对管道局部造成变形一类的影响。
这时候相关人员应当对应力重新进行分布和规划,让材料应变能够达到自均衡的要求。
压力管道的应力分析

共七十四页
共七十四页
共七十四页
σⅡ≤σα=f(1.25([σ]L+0.25[σ]h) • 上式即为管道中二次应力(yìnglì)强度条件判定
共七十四页
压力管道 的柔性分析 (guǎndào)
• 管道柔性是反映管道变形难易程度的一个 物理概念,表示管道通过自身变形来吸收 因热胀冷缩及其他位移变形的能力。
1、应力集中:当管道几何形状发生(fāshēng)突变 时,在外力的作业下管道中的局部应力急 剧增大的现象
2、应力集中系数:以同一弯矩值作用在管件 和直管后所产生的最大应力值之比;
补强圈与支管、主管相焊 ② 整体补强━━增加(zēngjiā)主管厚度,或以全熔
透焊缝将厚壁支管或整体补强锻件与主管 相焊
共七十四页
• 采用补强圈补强时应遵守下列规定: ⑴ 采用的钢材标准抗拉强度бb≤540 MPa ⑵ 主管管壁(ɡuǎn bì)的名义厚度小于38 毫米 ⑶ 补强圈的厚度不应大于主管厚度的1.5倍 ⑷ 补强圈一般应与主管材料一致,如补强材
共七十四页
• 除了上述介绍的载荷之外,管道中还常常存 在焊接残余应力、加工残余应力、铸造残余 应力、装配残余应力等
• 重力载荷和支架反力等合起来常称之为持续 外载荷。
• 风载荷、地震载荷、瞬变流冲击载荷等属于 (shǔyú)临时载荷。
• 两相流脉动载荷、压力脉动载荷、机械振动 等属于动载荷。
共七十四页
• 内压力
共七十四页
GB50316对允许跨距的规定:
压力管道应力分析
压力管道应力分析引言压力管道作为输送流体的重要管线,承受的压力和温度都是极高的。
这样就会导致管道中的应力和变形问题,从而产生一定的安全隐患。
因此,对于压力管道的应力分析就显得尤为重要。
压力管道的应力压力管道在运行过程中,会受到各种力的作用,如内压、重力、支架反力、温度等,这些力作用在管道上,就会造成管道内部的应力,如轴向应力、周向应力、径向应力等。
•轴向应力轴向应力是指管道轴向方向的应力,通常是指由流体作用产生的内压力和拉力两部分的影响。
在管道内部,如果内压力太大,轴向应力就会增大,会导致管道的卡铁暴力现象。
•周向应力周向应力是指管道周向方向的应力,主要受到流体和温度两个因素的影响。
当管道内部温度升高,周向应力也会随之升高,如果超过极限值,就可能导致管道的破裂。
•径向应力径向应力是指与管道中心轴线垂直方向的应力,通常是由于弯曲、扭转等变形所引起的。
如果弯曲半径过小或者存在缺陷,就会导致径向应力过大,从而容易引起管道的破裂。
压力管道应力分析压力管道应力分析是针对管道内各种应力进行综合分析的过程。
在分析的过程中,通常需要采用有限元分析等方法,通过建立合适的数学模型和计算,得出管道内部的应力情况和强度,并评估管道是否存在危险的可能性。
在进行应力分析时,一般需要考虑以下几个方面。
1. 材料力学性能材料力学性能直接影响管道的使用寿命和安全性。
因此,对于材料的强度、韧性、塑性等性能参数,都需要进行准确的测定和分析。
常见的材料包括石墨、钢铁、铝合金等。
2. 工况分析针对不同的工况,管道所受的力也会不同。
因此,在进行应力分析之前,需要准确确定工况参数,如内压、外界温度等,以便进行有针对性的分析。
3. 有限元分析有限元分析是应用计算机模拟技术,将管道模型分割成有限个小模型,通过对小模型的计算和组合,分析管道内部的应力和强度分布。
这种方法可以更直观地了解管道内部应力的变化情况,有效评估管道的安全性和强度。
压力管道应力分析是管道设计和使用过程中必不可少的环节。
压力管道定期检验规则——长输(油气)管道
系统(GIS)、管道完整性管理信息系统(PIMS)。
—3—
TSG D7003—2010
特种设备安全技术规范
第三章 全面检验与合于使用评价
第一节 全面检验
第十三条 全面检验前,检验机构应当对提交和收集的以下资料进行审查、分析: (一)设计图纸、文件与有关强度计算书; (二)管道元件产品质量证明资料;
—1—
TSG D7003—2010
特种设备安全技术规范
(四)承受交变载荷,可能导致疲劳失效的;
(五)防腐(保温)层损坏严重或者无有效阴极保护的;
压力管道审核管道应力分析和柔性设计
B、动力分析包含的内容 a)管道固有频率分析 — 防止共振。 b)管道强迫振动响应分析 — 控制管道振动及应力。 c)往复式压缩机(泵)气(液)柱频率分析 — 防止气柱 共振。 d)往复式压缩机(泵)压力脉动分析 — 控制压力脉动 值(δ值)。
压力管道审核管道应力分析和柔性设 计
C、动力分析要点
计
三、工程设计阶段管道应力分析专业的任务
1、初步设计、基础设计阶段 ⑴ 编制工程设计规定(应力分析、管架设计) (四级签 署); (2) 参加设备布置工作;
(3) 对主要管线的走向进行应力分析和评定。
压力管道审核管道应力分析和柔性设 计
2、详细设计阶段
⑴ 修订(升版)工程设计规定(应力分析、管架设计)
压力管道审核管道应力分析和柔性设 计
10、ASME/ANSI B31.3 Process Piping 11、ASME/ANSI B31.4 Liquid Transmission and
Distribution piping systems 12、ASME/ANSI B31.8 Gas Transmission and Distribution piping systems 13、API610 -- 离心泵 14、NEMA SM23 -- 透平 15、API617 -- 离心式压缩机 16、API618 -- 往复式压缩机 17、API661 -- 空冷器 18、ANSI/B31.1、APIRP520 -- 安全阀、爆破膜 压力管道审核管道应力分析和柔性设
(6)限位架 2 限制性管架
(7)轴向限位架
用于限制任一方向线位移的场合; 用于限制管道轴向线位移的场合;
(8)导向架 3 减振支架 (9)减振器
用于允许有管道轴向位移,但不允 许有横向位移的场合
压力管道强度及应力分析.ppt
S1d
S1Z
dw Dw
焊制三通的长度一般为3.5倍管
子外径;高度取1.7倍外径
压力管道的强度计算
❖ 异径管壁厚计算
按锥壳大端的应力分析进行计算 式:
S1t
2 cos
PDn
t •
0.006P
半锥角不得大于30°,且半锥角 和P/([σ]tφ)的关系,不得超过 下表所列的数值,中间值可内插
求取
❖ 应力分类 由于载荷性质不同,产生的应力性质也不 同,它们对管道的破坏贡献不同。应该对 其分类,对于不同应力给予不同的限制条 件,以充分发挥材料的性能,又保证安全 生产
压力管道的载荷和应力分类
❖ 应力分类
▪ 一次应力(P) 一次应力是由于外载荷作用而在管道内部产生 的正应力或剪应力,它满足与外力平衡的条件。 它的特征是非自限性的,始终随外载荷的增加 而增加,最终达到破坏。由于载荷性质不同, 在管道内产生的应力分布也不同,一次应力又 分为:
❖ 热应力概念
▪ 对于平面管系ACB,
b
B端位移为:
Δa
Δb
C
u a2 b2
B Δu
a
T a2 b2
u
Tu
A
与直接从A到B有一根 管子的伸长量相同
压力管道的热应力分析
❖ 管道热应力计算
b
▪ 如果存在温度变化,不仅 Δa 在管内引起热应力,而且
C
在支吊架处引起支座反力 a
的变化,为了保证管道和
修正的方法计算,即
S1w
S11
Dw 4R
S1w
PDw
2 t •
1 P
Dw 4R
压力管道的强度计算
❖ 弯管壁厚计算
由于弯曲使横截面变得不圆,内外侧面壁厚变化,对应 力分布产生影响,为了使上面壁厚计算式的计算值能保 证管道安全,下式定义的最大外径与最小外径的差值Tu, 必须限制在规定范围内
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
限制性管架
(6)限位架
(7)轴向限位架 (8)导向架
用于限制任一方向线位移的场合;
用于限制管道轴向线位移的场合; 用于允许有管道轴向位移,但不允 许有横向位移的场合 用于限制或缓和管道振动
3
减振支架 (9)减振器
2、管道跨距及导向间距
1)管道跨距 — 强度及刚度两项控制
强度控制 — 略
刚度控制 — 装置内δ≤13mm,装置外25 mm
3、各文件应包含的内容: ⑴ 工程规定内容 A、适用范围; B、概述; C、设计中采用的标准规范; D、计算程序(软件); E、设计温度、压力、安装温度(环境温度); F、设计荷载 — 风压值; — 地震烈度; — 雪荷载; — 土壤的力学性质; G、临界管线表的确定准则(哪些管线该做哪类的应力分 析); H、计算及安全性评定准则; I、应力分析工作流程。 J、其它
(L U )2
(4)应力分析
静力分析(含疲劳分析、风载荷及地 震载荷分析)
动力分析
A、静力分析包含的内容
a) 一次应力计算及评定 — 防止管道塑性变形破坏.
b) 二次应力计算及评定 — 防止疲劳破坏。
c) 设备管口受力计算(及评定) — 防止作用力太大, 保证设备正常运行。
d) 支承点受力计算 — 为支吊架设计提供依据。
二、管道应力分析专业常用的标准规范
1、GB50316-2000《工业金属管道设计规范》 2、HG/T20645-1998《化工装置管道机械设计规定》 3、SH/T3041-2002《石油化工企业管道柔性设计规范》
4、GB150《钢制压力容器》
5、JB/T8130.1-1999 《恒力弹簧支吊架》
6、JB/T8130.2-1999 《可变弹簧支吊架》
⑿设备管口荷载及预焊件条件 — 供设备专业校核 局部应力和设计用 设备管口承载能力表
⒀、⒁、⒂、⒅略
插图
⒃编制弹簧架采购MR文件及弹簧架技术数据表 — 选型、荷载、位移
串联 — 按最大荷载选弹簧 位移按最大位移量分配 并联 — 选同型号弹簧、荷载平均分配 荷载变化率 — 国标≤25%(可改变) (17)编制柔性件(膨胀节、软管等)采购MR文件及 柔性件技术数据表
2)导向间距:
a)水平管
b)垂直
垂直管道的最大导向支架间距大致可按不保温管 充水的水平管道支架间距进行圆整。
DN(INCH)
1 11/2 2 3 4 5 6 8 10 12 14 16 18 20 24
H MAX. SPAN(m) WATER WATER+INSUL 4 3 4.5 3.5 5.5 4.5 6.5 5.5 7.5 6.0 8.0 6.5 9.0 7.0 10.0 8.0 11.0 9.0 12.0 10.0 12.5 10.0 13 10.0 13.5 11.0 14.0 12.0 15.0 13.0
d 0.3 ~ 0.5 D 孔板厚度=3~5mm 孔板位置 — 在较大缓冲罐的进出口均可
d)减少激振力——减少弯头、三通、异径管等管件。 改90。为弯头45。弯头。 e)改变(提高)管线的固有频率,使其远离激振力频率。 (1)共振区域 β— 放大因子
W1— 固有频率(角频)
W0 — 激振频率(角频) 通 常 W1 应 避 开 0.8W0 ~1.2W0 的区域,在工程中 最好避开 0.5W0 ~1.5W0的 范围,这样振幅较小。
管道应力分析和柔性设计 专题 主讲: 李中央
中国寰球工程公司 联系电话: 010 – 58676304 E-mail: lizhongyang@ 主办:中国石油和化工勘察设计协会
一、管道应力分析专业的职责
1、应力分析(静力分析、动力分析); 2、对重要管线的壁厚进行计算,包括特殊管件的应力分 析; 3、对动设备(机泵、空冷器、透平等)管口受力进行校 核计算; 4、编制管架标准图和特殊管架设计; 5、审核供货商文件; 6、编制、修改相关规定; 7、编制应力分析及管架设计工程规定; 8、相关人员的专业培训; 9、进度、质量及人工时控制 ; 10、参加现场技术服务;
注:f=n开平方,n=压缩机台数
支耳标高确定
(5)卧式容器固定端及立式设备支耳标高确定 — 提高管 道柔性,减小位移量,防止对设备管口的推力过大。 ⑹支管补强计算 — 降低局部应力 — 等面积补强 — WRC329
⑺ 动设备管口许用荷载校核 — API 610;API 617; NEMA SM 23; API 661。 a)管道计算 (8)夹套管 b)端部强度计算
c )刚性吊架:在支承点的上方以悬吊的方式承受管道 的重力及其他垂直向下的荷载,吊杆处于受拉状态。吊架 d)滚动支架:采用滚筒支承,摩擦力较小。
2)限制性支架:用来阻止、限制或控制管道系统位移的 支架(含可调限位架)。 a)导向架:使管道只能沿轴向移动的支架,并阻止因弯 矩或扭矩引起的旋转。
b)限位架:限位架的作用是限制线位移。在所限制的轴 线上,至少有一个方向被限制。
c)定值限位架:在任何一个轴线上限制管道的位移至所 要求的数值,称为定值限位架。 d)固定架:限制管道的全部位移。
3)减振架:用来控制或减小除重力和热膨胀作用以外的 任何力(如物料冲击、机械振动、风力及地震等外部荷载) 的作用所产生的管道振动的支架。 减振架有弹簧及油压和机械三种类型。
序号 大 分 类
⑵ 壁厚计算 D0 A、当
t 6 t
且
P
t
0.385时
2 t 2YP
D0 或 P
PD 0
B、当
t 6
t 0.385时
t 的确定应根据断裂理论、疲劳、热应力及材
料特性等因素综合考虑确定。 C、外压直管的壁厚,应根据GB150规定的方法确定。 D、其它的管件(如Y型三通、孔板等)依据相应的规范 (GB50316-2000)公式进行计算。
3. 确定管道支架位置的要点 3.1 承重架距离应不大于支架的最大间距。 3.2 尽量利用已有的土建结构的构件支承,及在管廊的 梁柱上支承。 3.3 在垂直管段弯头附近,或在垂直段重心以上做承重 架,垂直段长时,可在下部增设导向架(当载荷大时, 可采用弹簧架分载荷)。 3.4 在集中荷载大的管道组成件附近设承重架。 3.5 尽量使设备接管的受力减小。如支架靠近接管,对 接管不会产生较大的热胀弯矩。 3.6 考虑维修方便,使拆卸管段时最好不需做临时支架。 3.7 支架的位置及类型应尽量减小作用力对被生根部件 的不良影响
C、动力分析要点
a)
机器动平衡差 — 基础设计不当 气流脉动 — 气柱共振
振源
阻力、流速、流向变化 — 异径管、弯头、 阀门、孔板等附近产生激振力 共振 — 激振力频率等于或接近管线固有频 率
b) 机器动平衡差——修改基础设计
c)减少脉动和气柱共振的方法:
1)加大缓冲罐 — 依据API618计算缓冲罐的体积,一 般为气缸容积的10倍以上,使缓冲罐尽量靠近进出 口,但不能放在共振管长位置。 2)两台或三台压缩机的汇集总管截面积至少为进口管 截面积的三倍,且应使柱塞流的冲击力不增加。 3)孔板消振 — 在缓冲罐的出口加一块孔板。 孔径大小: d 4 V气体流速 U, U D V介质内的声速
3.8 管道支吊架应设在弯管和大直径三通式分支管附近
3.9 对于需要作详细应力计算的管道,应根据应力计算 结果设计管架
3.10 在敏感的设备(泵、压缩机)附近,应设置弹簧支架, 以防止设备口承受过大的管道荷载 3.11 往复式压缩机的吸入或排出管道以及其它有强烈振 动的管道,宜单独设置有独立基础的支架,(支架生 根于地面的管墩或管架上),以避免将振动传递到建 筑物上 3.12 除振动管道外,应尽可能利用建筑物、构筑物的 梁柱作为支架的生根点,且应考虑生根点所能承受的 荷载,生根点的构造应能满足生根件的要求 3.13 管道支吊架应设在不妨碍管道与设备的连接和检 修的部位
⑶ 临界管线表
应力分析 管线
计算机计算(BY COMPUTER) (350°C) 简单手算(公式法、图表法) (BY FORMULA) 目测法(BY VISUAL)
非应力分析
公式法:
D0 Y 208.3
C
D(固定)
B D0 — 管外径(mm) Y — 管段总位移(mm) A(固定) Y=(Δ X2+Δ Y2 +Δ Z2)1/2 L — 管段两个固定点的展开长度(m) (AB+BC+CD) U — 管段两个固定点的直线距离(m) (AD间的直线距离) (依据ASME/ANSI B31.1及B31.3) 公式的适用范围
7、GB 50251-2003 8、GB 50253-2003 《输气管道工程设计规范》 《输油管道工程设计规范》
9、ASME/ANSI B31.1 -- Power Piping
10、ASME/ANSI B31.3 11、ASME/ANSI B31.4
Process Piping Liquid Transmission and Distribution piping systems Gas Transmission and Distribution piping systems
(2)通常W1应在W0(压缩机的吸入或吸出频率)的1.2 倍以上,设计时最好控制在1.5倍以上。
振幅
(3)激振力频率 W n 缸数 单( 双 )作用数(1 / 秒 ) 0 60 n = 转/分 — 压缩机转数
(4)控制压力脉动
P ≤76Kg/cm2 76 ~176 Kg/cm2 ﹥176Kg/cm2 压力脉动值δ 4%f 3%f 2%f
小分类 (1)刚性支吊架
用 途 用于无垂直位移的场合;
1
承重管架
(2)可调刚性支吊架 用于无垂直位移,但安装误差要求 严格的场合; (3)可变弹簧支吊架 用于有少量垂直位移的场合; (4)恒力弹簧架 (5)固定架 用于垂直位移较大或要求支吊点的 荷载变化率不能太大的场合; 用于固定点处,不允许有线位移和 角位移的场合;