分子筛简介

合集下载

分子筛简介

分子筛简介
1、基本结构单元
硅氧四面体 SiO4 和铝氧四面体 AlO4 以 Si 或 Al 原子为中心的正四面体
O2-
Si4+ 或 Al3+
2、环结构
硅 铝 氧四面体通过氧桥连接成环
每个顶点代表一个硅原子或者铝原子 每条边代表一个氧桥
由4个四面体形成四元环,5个四面体形成五元环,依此类推还有六元环、八元环、十元环、十二元环和十八元环等 注意:多元环上的原子可能不在同一平面上,有扭曲和褶皱, 因此同种氧环的孔口的大小是有一定变化的
4、化学组成
由于 Al3+ 三价、AlO4 四面体有过剩负电荷,金属阳离子 Na+ 、K+、Ca2+、Sr2+、Ba2+ 的存在使其保持电中性
1 2 5
低硅 中硅 高硅分子筛
二、分子筛的结构构型
基本结构单元是硅氧四面体 SiO4 和铝氧四面体 AlO4 硅 铝 氧四面体通过氧桥连接成环 环通过氧桥连接成三维空间的多面体 笼 笼通过氧桥连接成分子筛
四面体


分子筛
硅 铝 氧三维骨架结构具有大量的孔隙 晶穴、晶孔、孔道 ,可以容纳金属阳离子和水分子 —— 阳离子交换与脱水
4、分子筛结构
不同结构的笼通过氧桥连接成各种结构的分子筛
A型分子筛
骨架: 笼的6个四元环通过氧桥相互连接 连接处形成 笼 主晶穴 孔穴 : 8个 笼和8个 笼围成一个 笼 最大窗孔:八元环,孔径 0.41 nm 孔道: 笼之间通过八元环沿三个晶轴方向互相贯通,形成三维孔道
不同吸附剂对水的吸附等压线
择形 选择 吸附 根据分子大小和形状的选择吸附 根据分子极性和不饱和度的选择吸附
不同气体在4A上的吸附等温线

分子筛基础知识

分子筛基础知识
火焰光度法(氧化钾、氧化钙亦可)
HY
吸附性能测定
1. 吸附量的测定 2. 孔径(分布)的测定 3. 比表面、孔容的测定 4. 吸附等温线,穿透曲线
HY
吸附量的测定
1)静态吸附法 A.真空重量法 B.真空容量法→静态体积法 C.折射法
2)动态吸附法 A.常压流动吸附法
3)反推法
HY
分子筛的吸附曲线
D
α笼
八元环
HY
金属阳离子
由于铝氧四面体带一单位负电荷,需要阳 离子来平衡整个晶体结构 它们在分子筛骨架结构中的位置,对分子 筛的性质影响巨大
金属阳离子对分子筛的改性
Na+
A型分子筛: 3A、4A、5A
HY
Ca2+
1)Ca交换Na,Ca优先占据六元环,Na优先从八元环位置被 交换,当有4个Na被交换时,必有一个八元环位置会空出, 当70%以上Na被交换时,即α笼中有8个Na被交换时,占据 八元环位置的Na就被全部交换,八元环就全部空出。主晶 孔的孔径就放大到5Å。
HY
分子筛的由来
一般我们所说的分子筛,都是指人工合成 的沸石,也就是沸石分子筛。
分子筛利用其自身均一的,和分子直径大 小相当的微孔孔径,来“筛分”不同尺寸 的分子。因此,被形象的称为分子筛。
HY
分子筛的形态
HY
分子筛的数据
10g 分子筛的表面积就超过一个足球场

HY
分子筛数据
HY
分子筛简介
50.0
100.0
150.0
200.0
250.0
300.0
350.0
Time (min)
结束语
谢谢大家聆听!!!
44
结构组成 物化特征 分析测定

分子筛简介

分子筛简介

补充:
1、中空玻璃专用分子筛 2、XH系列制冷剂专用分子筛 3、13XAPG分子筛
分子筛生产方法
水热合成法: 用于制取纯度较 高的产品,以及合成自然界中 不存在的分子筛。将含硅化合 物(水 玻璃、硅溶胶等)、 含铝化合物(水合氧化铝、铝 盐等)、碱(氢氧化钠、氢氧 化钾等)和水按适当比例混合, 在热压釜中加热一定时间,即 析出分子筛晶体。
3A分子筛
3A分子筛的应用:
1、各种液体(如乙醇)的干燥 。 2、空气的干燥。 3、制冷剂的干燥 。 4、天然气、甲烷气的干燥。 5、不饱和烃和裂解气、乙烯、乙 炔、丙烯、丁二烯的干燥 。
4A分子筛简介:
• 化学式: Na2O·Al2O3·2SiO2·9/2H2O • 硅铝比:SiO2/ Al2O3≈2 • 有效孔径:约4A

富氧分子筛应用:
• 除具有一般5A分子筛的特性外, 主要用于变压吸附制氧。
活性氧化铝球
活性氧化铝球简介:
又名活性矾土,在催化剂 中使用氧化铝的通常专称为活 性氧化铝,它是一种多孔性、 高分散度的固体材料,有很大 的表面积,其微孔表面具备催 化作用所要求的特性,如吸附 性能、表面活性、优良的热稳 定性等,
5A脱蜡分子筛
5A脱蜡分子筛:
5A脱蜡分子筛用途:广泛 用于石油化工、化工等脱蜡装 置中。脱蜡后的油品质量具有 低冰点的航空煤油的优良性能, 分离出的石蜡可作为合成洗涤 剂的化工原料。
Cu-13X分子筛
Cu-13X分子筛应用:
用于脱除航空煤油中极微 量的有机硫(硫醇)
富氧分子筛简介:
• 化学式: 4/5CaO·1/5Na2O·Al2O3·2 SiO2 • 硅铝比:SiO2/Al2O3≈2 • 有效孔径:约5A

分子筛制氧机原理简介

分子筛制氧机原理简介

1、分子筛简介分子筛是一种具有立方晶格的硅铝酸盐化合物。

分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。

由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用。

分子筛结构图2、制氧分子筛5A小型制氧分子筛是一种特制的5A分子筛,是专为医疗保健制氧机而生产的,该分子筛具有制氧纯度高、速度快、使用寿命长的特点,是5A分子筛在医疗保健行业的一个重要应用。

化学式:4/5CaO·1/5Na2O·Al2O3·2 SiO2硅铝比:SiO2/Al2O3≈2有效孔径:约5A应用:除具有一般5A分子筛的特性外,主要用于变压吸附制氧。

3、小型分子筛制氧机的发展历程1962年美国联合碳化物公司(UCC)发现了分子筛对气体的选择性特性,并在实验设备上实现了对少数不同气体的分离;随即研制成功了世界上第一台制氢工业装置;随着分子筛材料与工艺的不断提升,70年代中期美国和德国首先将PSA技术应用于空气分离并在化工领域得到应用,到80年代中期化学工业的发展为分子筛的性能提高起到了关键作用,这使设备小型化成为可能,1985年美国的Praxair公司研制的第一台小型制氧机的问世标志着PSA技术小型化的开始,90年代初产品意义上的医用小型制氧机开始出现,美国材料实验学会(ASTM)于1993年颁布了医用小型制氧机标准规范(F1464-1993),国际标准组织于1996年发布了医用小型制氧机的安全性标准(ISO8359:1996)。

目前我国只有国家药品管理局颁布的《YY/T0298—1998医用分子筛制氧设备通用技术规范》,还没有相应的与国际接轨的医用小型制氧机行业或产品标准。

美国《F1464—1993》标准及国际标准《ISO8359:1996》两个标准的一个共同特点是对制氧机做了以下几点强制性规范,而我国《YY/T0298—1998》则没有强制性要求:A.产品必须设计有不可更改的累计计时功能。

氦气纯化分子筛

氦气纯化分子筛

氦气纯化分子筛1. 简介氦气是一种无色、无味、无毒的气体,具有低沸点、低密度、高热传导性等特点,在科学研究和工业生产中有广泛应用。

然而,氦气通常包含杂质,如水分、氧气、氮气等,这些杂质会影响氦气的纯度和使用效果。

因此,为了满足特定应用领域的需求,需要对氦气进行纯化处理。

氦气纯化分子筛是一种常用的气体分离和纯化技术。

分子筛是一种多孔材料,具有特定的孔径和分子吸附能力,可以选择性地吸附特定的气体分子。

通过选择合适的分子筛材料和操作条件,可以有效地去除氦气中的杂质,提高氦气的纯度。

2. 氦气纯化分子筛的工作原理氦气纯化分子筛的工作原理基于分子筛的吸附特性和分子尺寸的差异。

分子筛是一种多孔材料,其孔径大小可以通过调整分子筛的结构和成分来控制。

氦气中的杂质分子尺寸较大,而氦气分子尺寸较小,因此可以利用分子筛的孔径选择性地吸附杂质分子,而不吸附氦气分子。

氦气纯化分子筛通常由两种类型的分子筛组成:吸附剂和干燥剂。

吸附剂主要用于去除氦气中的氧气和氮气等杂质,而干燥剂则用于去除氦气中的水分。

吸附剂通常选择具有较强吸附能力和较大孔径的分子筛材料,如5A和13X型分子筛,而干燥剂通常选择具有较强吸湿能力的分子筛材料,如3A和4A型分子筛。

在氦气纯化过程中,氦气首先通过吸附剂层,吸附剂层中的分子筛选择性地吸附氧气和氮气等杂质分子。

然后,氦气进入干燥剂层,干燥剂层中的分子筛吸附氦气中的水分。

最后,经过分子筛层的处理,氦气中的杂质被有效去除,得到纯净的氦气。

3. 氦气纯化分子筛的应用领域氦气纯化分子筛在多个领域有广泛应用,以下列举其中一些重要的应用领域:3.1 科学研究在科学研究中,纯净的氦气对于实验的准确性和可重复性至关重要。

氦气纯化分子筛可以去除氦气中的杂质,提高氦气的纯度,从而确保实验结果的可靠性。

在物理学、化学学、生物学等领域的实验中,氦气纯化分子筛被广泛应用。

3.2 电子工业在电子工业中,氦气通常用作冷却介质和保护气体。

分子筛简介

分子筛简介

制冷剂分子筛
制冷剂干燥剂的选择要求 ⑴制冷剂除了吸附水之外,不吸附任何其它物质。
⑵制冷剂与吸附剂之间不起任何化学反应,并不影 响制冷剂的化学稳定性。 ⑶要求露点控制较低。
⑷要求磨耗特别低。
制作流程
A型分子筛的制备流程示意图
谢 谢!
分子筛起源
后来,在沉积岩中又发现有大量的天然沸石存在,由于这些 沸石矿床多是处于地表附近,所以又推断它们可以在不太高的温 度和压力下生成。特别是在研究三叠纪地层中沸石的成岩作用时, 发现沸石在生成时呈现有某种程度的化学平衡状态,因此可以把 它们看作是一种矿物的相,叫做沸石相。这种沸石相是一种介稳 态。沸石相的平衡过程非常近似于低温水热合成过程。因此,人 们就进行了大胆的试探,采用低温水热合成技术进行沸石的合成 研究,不久就合成出首批低硅沸石。低温水热合成技术的应用, 为大规模的工业生产提供了有利的条件,到1954年末,A型分子 筛和X型分子筛开始工业性生产。这些合成沸石在气体的吸附分 离与净化,石油炼制与石油化工中众多的催化过程以及在离子交 换等领域得到广泛的应用。
分子筛吸附性能特点
较高的比表面和吸附容量
根据分子大小和形状的选择性吸附 根据分子极性、不饱和度和极化率的选择吸附 分子筛的高效吸附特性 离子交换性
催化特性
较高的比表面和吸附容量
分子筛晶体的大量孔穴和孔道,使其具有很大的比 表面积,因此色散力强。结构比较空旷的沸石与活性炭 的比表面积(800~1050m2/g)相近,结构空旷度较低的沸 石也与微孔硅胶 (500 ~600m2/g)相近,都明显高于活性 氧化铝的比表面积 (200 ~ 400m2/g)。又因为晶体内部各 种构造形式的笼内充填着阳离子,并且硅(铝)氧四面体骨 架也有负电荷,在这些离子周围形成强大的电场,从而 还有强大的静电引力。晶体内外表面过剩自由能所决定 的色散力和这种静电引力的存在,使得沸石有优良的吸 附性能。

分子筛生产工艺技术及应用简介

分子筛生产工艺技术及应用简介1、分子筛简介分子筛是一种具有立方晶格的硅铝酸盐化合物,其品种达到数十种。

分子筛有很大的比表面积,达300~1000m2/g,内晶表面高度极化,为一类高效吸附剂,也是一类固体酸,表面有很高的酸浓度与酸强度,能引起正碳离子型的催化反应。

当组成中的金属离子与溶液中其他离子进行交换时,可调整孔径,改变其吸附性质与催化性质,从而制得不同性能的分子筛催化剂。

分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和不饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。

由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用。

分子筛按照其用途主要分为两个大的领域:一个是作为吸附材料(吸附剂),应用领域包括石油炼制、石油化工、煤化工、化肥、冶金、电子等行业,用做气体的分离、干燥、净化,主要品种有3A、4A、5A、13X分子筛;另一个是作为固体酸催化剂用于石油炼制和石油化工,主要品种有HZSM-5、USY等。

2、分子筛生产分子筛的生产过程分为两个阶段:一个是分子筛原粉的合成;另一个就是分子筛的成型。

2.1分子筛的合成分子筛是用硅的化合物(例如硅溶胶、硅酸钠等)、铝的化合物(例如活性氧化铝、铝盐等)、碱(例如氢氧化钠等)以及模板剂在水热条件下合成的,由此制备的产品称为分子筛原粉,是一种极其细小的硅铝酸盐晶体材料,晶体直径在100纳米左右,不能直接用于工业生产过程,必须加工成一定形状和大小的颗粒才具有实用价值。

分子筛的合成过程需要消耗大量的基础化学品和净化水,并产生大量的废液和污水,需要配备有原水净化和污水处理装置。

2.2 分子筛成型分子筛按照其用途不同需要加工成不同的形状。

目前,工业上常用的分子筛有三种形状:条状、球状和微球状。

ZSM-5分子筛及其催化芳构化应用简介

1.分子筛1.1分子筛的概念狭义上讲,分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键相连而形成其晶体结构中具有规整而均匀的孔道和空腔体系,孔径大小为分子数量级(通常为0.3~2.0 nm),从而能把形状直径大小不同的分子,极性程度不同的分子,沸点不同的分子,饱和程度不同的分子分离开来,即具有“筛分“分子的特性,故称为分子筛。

随着分子筛合成与应用研究的深入,研究者发现了磷铝酸盐类分子筛,并且分子筛的骨架元素(硅或铝或磷)也可以由B、Ga、Fe、Cr、Ge、Ti、V、Mn、Co、Zn、Be和Cu等取代,其孔道和空腔的大小也可达到2 nm以上,因此分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛;按孔道大小划分,孔道尺寸小于2 nm、2~50 nm 和大于50 nm的分子筛分别称为微孔、介孔和大孔分子筛。

由于具有较大的孔径,成为较大尺寸分子反应的良好载体,但介孔材料的孔壁为非晶态,致使其水热稳定性和热稳定性尚不能满足石油化工应用所需的苛刻条件。

目前分子筛在冶金,化工,电子,石油化工,天然气等工业中广泛使用。

分子筛有天然和人工合成两种。

天然沸石大部分由火山凝灰岩和凝灰质沉积岩在海相或湖相环境中发生反应而形成。

目前已发现有1000多种沸石矿,较为重要的有35种,常见的有斜发沸石、丝光沸石、毛沸石和菱沸石等。

主要分布于美、日、法等国,中国也发现有大量丝光沸石和斜发沸石矿床,日本是天然沸石开采量最分子筛大的国家。

因天然沸石受资源限制,从20世纪50年代开始,大量采用合成沸石。

1.2分子筛的性能分子筛为粉末状晶体,有金属光泽,硬度为3~5,相对密度为2~2.8,天然沸石有颜色,合成沸石为白色,不溶于水,热稳定性和耐酸性随着SiO2/Al2O3组成比的增加而提高。

分子筛有很大的比表面积,达300~1000m2/g,内晶表面高度极化,为一类高效吸附剂,也是一类固体酸,表面有很高的酸浓度与酸强度,能引起正碳离子型的催化反应。

分子筛简介


改性与修饰的应用前景
环境保护
能源化工
改性与修饰后的分子筛可用于空气净化、 水处理、废气废液处理等领域,有效去除 环境中的有害物质。
在石油化工、天然气化工、煤化工等领域 ,改性与修饰后的分子筛可提高产品的分 离效率和产率,降低能耗和成本。
医药领域
其他领域
在药物合成、分离纯化、药物载体等方面 ,改性与修饰后的分子筛可提高药物的纯 度和疗效,降低副作用。
除了上述应用领域,改性与修饰后的分子 筛还可应用于电化学、传感器、催化剂等 领域,具有广泛的应用前景。
06
分子筛的发展趋势与展望
技术创新与突破方向
1 2
开发新型分子筛材料
研究新的合成方法,开发具有优异性能的新型分 子筛材料,以满足不断变化的市场需求。
分子筛的改性研究
通过改性技术,提高分子筛的稳定性和活性,优 化其结构和性能,以拓展其应用领域。
药物合成
分子筛可用于药物合成,如一些药物 的有效成分可以通过分子筛进行分离 和纯化。
05
分子筛的改性与修饰
改性方法
物理法
通过改变分子筛的物理性质,如粒径、比表面积 等,以改善其吸附和分离性能。
化学法
通过化学反应改变分子筛的表面性质,引入新的 功能基团,提高分子筛的选择性和吸附容量。
复合法
结合物理法和化学法,同时改变分子筛的物理和 化学性质,以获得更好的改性效果。
纯水的制备等。
催化剂载体应用
石油化工
分子筛作为催化剂载体,可用于 石油裂解、重油轻质化等反应中 ,提高催化剂的活性和稳定性。
环保领域
分子筛作为催化剂载体,可用于 废气处理、污水处理等领域,如 用于去除硫化氢、氨气等有害气 体。
其他应用领域及实例

色谱柱固定相分子筛

色谱柱固定相分子筛
色谱柱固定相分子筛是一种在色谱过程中固定在某种载体上的物质,用于提供分离色谱柱表面的化学特性。

固定相的选择对色谱分离效率和选择性有着决定性的影响。

分子筛作为色谱固定相的一种类型,其特点是在柱内添加一定口径的颗粒物作为分离材料。

这些颗粒物具有很高的比表面积和孔隙体积,因此能够提供大量的位置以供样品分子吸附。

在色谱分离过程中,样品中的不同组分会因为与固定相分子筛的相互作用力不同,从而在色谱柱中呈现出不同的保留时间,达到分离的目的。

分子筛的孔径大小和分布、颗粒形状和大小等因素都会影响其分离性能。

总的来说,色谱柱固定相分子筛在色谱分析中发挥着重要作用,对于复杂样品的分离和分析具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子筛
一、概念
分子筛是一种具有立方晶格的硅铝酸盐化合物,主要由硅铝通过氧桥连接组成空旷的骨架结构,在结构中有很多孔径均匀的孔道和排列整齐、内表面积很大的空穴。

此外还含有电价较低而离子半径较大的金属离子和化合态的水。

由于水分子在加热后连续地失去,但晶体骨架结构不变,形成了许多大小相同的空腔,空腔又有许多直径相同的微孔相连,这些微小的孔穴直径大小均匀,能把比孔道直径小的分子吸附到孔穴的内部中来,而把比孔道大的分子排斥在外,因而能把形状直径大小不同的分子,极性程度不同的分子,沸点不同的分子,饱和程度不同的分子分离开来,即具有“筛分”分子的作用,故称为分子筛。

目前分子筛在化工,电子,石油化工,天然气等工业中广泛使用。

二、常见型号
方钠型,如A型:钾A(3A),钠A(4A),钙A(5A);
八面型,如X型:钙X(10X),钠X(13X)和Y型:钠Y,钙Y;
丝光型,(-M型):高硅型沸石,如ZSM-5等。

三、种类
分子筛有天然沸石和合成沸石两种。

①天然沸石大部分由火山凝灰岩和凝灰质沉积岩在海相或湖相环境中发生反应而形成。

目前已发现有1000多种沸石矿,较为重要的有35种,常见的有斜发沸石、丝光沸石、毛沸石和菱沸石等。

主要分布于美、日、法等国,中国也发现有大量丝光沸石和斜发
沸石矿床,日本是天然沸石开采量最大的国家。

②因天然沸石受资源限制,从20世纪50年代开始,大量采用合成沸石。

四、分子筛中的吸附
吸附作用源于吸附质分子与吸附剂表面之间的作用力;根据作用力的不同,吸附可分为物理吸附和化学吸附。

在分子筛作为吸附剂用于分离过程时,主要是物理吸附,用作催化剂时会涉及到化学吸附。

对客体分子在分子筛内的吸附行为,国内外有大量研究者通过理论、实验及分子模拟等方法进行了研究。

其中,对一定温度下,吸附质吸附量随其压强或化学势的变化关系一吸附等温线的研究是非常重要的内容。

此外,相关研究还包括客体分子的吸附热、Henry常数、吸附位、吸附选择性、吸附质与吸附剂之间的相互作用等。

上述性质除受温度、压力和组成等外界因素影响外,主要取决于吸附质和分子筛的本性,即吸附质分子的大小、形状、极性与非极性,以及分子筛的分子筛效应、吸附势强弱、硅铝比、阳离子种类和数量、水合离子及预处理条件等。

五、分子筛中的扩散
扩散是在化学势梯度驱动下体系从非平衡态逐步趋近平衡态的动力学过程,表现为分子的定向迁移运动。

在多孔介质中的分子扩散通常分为三类:(1)分子扩散(主体扩散):主要发生在处于孔径大于I脚的犬孔道中及高压下的体系。

此时,孔径远大于分子的平均自由程,所以,分子间的相互碰撞作用与分予与孔壁间的碰撞相比占主导。

(2)Knudsm扩散:当孔径小于分子的平均自由程时,该种扩散占主导地位,此时分子与孔壁间的碰撞占明显优势。

(3)表面扩散:对于在孔道表面吸附能力极强的分子,或当孔道尺寸达到分子大小时,发生此类扩散。

下图为三种扩散机理。

(a)主体扩散(b)Knudsm扩散(c)表面扩散六、干燥技术
微波干燥技术解决了传统干燥分子筛中干燥速度缓慢,能量损耗大,产品品质差的问题,具体表现在:
1、微波干燥分子筛速度快,一般几分钟就可达到微波干燥目的;
2、微波干燥分子筛均匀,实现深度干燥,产品品质好;
3、静态干燥,不烧带,粉尘少;
4、非接触式干燥,避免了对分子筛的污染;
5、微波干燥分子筛工艺安全、节能、环保使用电能,内外同时干燥,
比电热干燥节能50%以上;
6、缩短生产周期,极大的减少生产流动资金占用;
7、微波干燥设备箱体温度在40℃以下,改善工人工作环境;
8、设备操作简单方便。

七、分子筛法生产无水酒精
分子筛法生产无水乙醇的原理就是利用分子筛的吸附特性除去酒精中的水。

分子筛对高温状态下的气相水分子的吸附能力较强,将浓度95%(体积分数)的酒精蒸气过热至一定温度进入分子筛吸附塔,酒气中的水分子流经分子筛填料层过程中,因分子筛的微孔对水分子有很强的亲和力,就将水分子吸附在微孔内,酒精蒸气中的水绝大部分被吸附除去,实现酒气脱水,从脱水装置排出的酒精气体再进行冷凝、冷却后得到浓度为99.5%~99.9%(v/v)的无水酒精。

其生产生产流程图如下图所示:
工艺特点:
1、常规分子筛脱水方法采用液相浓度95%(体积分数)的酒精进入分子筛床。

根据分子筛对气相水分子的吸附能力较强的特点,本工艺采用气相脱水,酒精蒸气在过热状态进入分子筛床,避免酒精蒸气在分子筛床液化,有利于酒精脱水,提高吸附脱水效率。

2、分子筛脱析再生是吸热过程,采用高温、负压脱析工艺,有利于分子筛中水分子的脱析。

压力下降时,分子筛静吸附容量减少,原来被吸附的水分子会从分子筛中解析出来。

解析时,塔内温度逐渐降低,当温度降低到设定值时,解析停止;通过控制系统切换阀门,进行下一周期的吸附过程。

3、常规分子筛脱吸再生工艺采用热空气作为脱析载体,热风系统需要投入电加热器、罗茨风机、空气缓冲罐等设备,而且生产中消耗大量的电力能源用来加热空气田。

本工艺脱吸过程采用过热无水酒精蒸气作为脱析载体,可以减少原有吸附工艺中的热风系统设备投资,同时生产运行耗电少,但是需要高温、高压蒸汽作为热源,对企业蒸汽锅炉有一定的要求。

相关文档
最新文档