氨基酸工艺学

合集下载

氨基酸发酵生产工艺学n2ppt课件

氨基酸发酵生产工艺学n2ppt课件
(2)浓度过大:促进菌体生长,谷氨酸产量低。因为: a.乙醛酸循环活跃,-酮戊二酸生成量减少。 b.转氨酶活力增强,谷氨酸转变成其它氨基酸。
(二)pH的影响及其控制
作用机理:主要影响酶的活性和菌的代谢。 在氮源供应充分和微酸性条件下,谷氨酸发 酵转向谷氨酰胺发酵。 pH控制在中性或微碱性。 方法:流加尿素和氨水。
我国味精技术进展情况
制糖工艺进展:酸法水解→酶酸法水解→双酶法水解。 发酵工艺进展:亚适量生物素水平(产酸4~6g/dl)
→高生物素水平(产酸12~15g/dl)。 提取工艺进展:等电点法(少数锌盐法)→等电离交法
→低温连续等电点法(少数厂家采用)。 精制工艺进展:全粉炭脱色、硫化碱除铁→颗粒炭脱
+ 4
生物 谷氨酸 (限量) 乳酸或琥珀酸(充足) 素
pH (酸性)N-乙酰-谷氨酰胺 谷氨酸(中性或微碱性)
磷酸 (适量)谷氨酸 盐
缬氨酸
➢ 菌种扩大培养
1、斜面培养:主要产生菌是棒状杆菌属、 短杆菌属、小杆菌属、节杆菌属。
我国各工厂目前使用的菌株主要是钝齿 棒杆菌和北京棒杆菌及各种诱变株。
生长特点:适用于糖质原料,需氧, 以生物素为生长因子。
2. 不溶性盐ห้องสมุดไป่ตู้淀法
(1)锌盐法
谷氨酸+锌离子 pH6谷.3 氨酸锌沉淀 pH2.谷4 氨酸结晶
溶加液酸
(2)盐酸盐法: Glu在浓盐酸中生成并析出谷氨酸盐酸盐。
这是用盐酸水解面筋生产谷氨酸的原理。 (3)钙盐法:
高温谷氨酸钙溶解度大,与菌体等不溶性杂质 分开,降温,析出谷氨酸钙沉淀,加NaHCO3 直接得 到味精。
3、菌体生长停滞期:谷氨酸合成。
措施:提供必须的氨及pH维持在7.2-7.4。 大量通气,控制温度34-37 ℃。

氨基酸工艺学章节总结

氨基酸工艺学章节总结

氨基酸工艺学章节总结氨基酸工艺学是研究氨基酸生产工艺和相关技术的学科。

氨基酸是构成蛋白质的基本组成单位,也是人体必需的营养物质之一。

氨基酸工艺学的研究对于提高氨基酸产量、降低生产成本、改善产品质量具有重要意义。

本文将对氨基酸工艺学的相关内容进行总结。

一、氨基酸的生产原料和菌种选择氨基酸的生产原料主要包括糖类、蛋白质和油脂等。

糖类是常用的原料,如葡萄糖、玉米糖浆等;蛋白质是较为复杂的原料,可通过蛋白质水解或氨基酸转化等方法获得;油脂是一些特定氨基酸的原料,如亮氨酸、色氨酸等。

选择合适的原料可以提高氨基酸的产量和质量。

在菌种选择方面,常用的包括大肠杆菌、酵母菌、放线菌等。

不同的菌种有不同的代谢途径和产物分布,因此选择合适的菌种对于氨基酸的生产至关重要。

二、氨基酸的发酵工艺氨基酸的生产一般采用微生物发酵的方法。

发酵工艺的设计和控制对于提高氨基酸产量和质量非常重要。

1. 发酵培养基的选择和优化发酵培养基是发酵过程中提供营养物质和能量的基础,对于菌种的生长和代谢具有重要影响。

优化培养基的成分和浓度,可以提高菌种的生长速度和产酸速率,从而提高氨基酸的产量。

2. 发酵条件的控制发酵条件包括温度、pH值、氧气供应和搅拌速度等。

不同的菌种对于发酵条件有不同的要求。

通过调节发酵条件,可以控制菌种的生长和代谢过程,从而实现氨基酸的高效产生。

三、氨基酸的提取和纯化技术氨基酸的发酵液中含有各种杂质,如菌体、代谢产物等,需要进行提取和纯化才能得到纯净的氨基酸产品。

1. 清除菌体常用的方法包括离心、滤液和超滤等。

通过这些方法可以将发酵液中的菌体分离出来,得到菌体清液。

2. 分离和纯化氨基酸常用的方法包括离子交换层析、凝胶过滤层析、逆流色谱等。

这些方法可以根据氨基酸的性质和分子大小进行分离和纯化,得到高纯度的氨基酸产品。

四、氨基酸工艺的优化和创新氨基酸工艺学的研究不仅仅是对已有工艺的总结和改进,还包括对新工艺的探索和创新。

1. 工艺优化通过对氨基酸工艺不同环节的优化,可以提高产量、降低成本和改善产品质量。

各种氨基酸的生产工艺设计

各种氨基酸的生产工艺设计

各种氨基酸的生产工艺设计
氨基酸是生命体中重要的化学物质,有多种生产工艺设计可用于其制备。

以下是几种常见的氨基酸生产工艺设计。

1.天然氨基酸提取工艺:天然氨基酸可从天然蛋白质中提取。

首先,将天然蛋白质源材料(如大豆、动物骨骼等)进行粉碎和溶解。

然后使用酶(如蛋白酶)或酸(如盐酸)将蛋白质水解为氨基酸。

接下来,通过过滤、浓缩、结晶等步骤来分离和纯化氨基酸。

2.化学合成工艺:化学合成是一种常用的氨基酸生产方法。

首先,选择合适的起始原料,如甘氨酸和苯丙氨酸,然后经过一系列的化学反应,如取代反应、羧酸酯化反应等,逐步构建氨基酸的分子结构。

最后,通过结晶、溶解、过滤等步骤来纯化合成的氨基酸。

3.微生物发酵工艺:微生物发酵是一种使用微生物(如大肠杆菌、酵母菌等)合成氨基酸的生产方法。

首先,选择合适的微生物菌种,并调节培养基中的营养成分,如碳源、氮源和微量元素等,以促进菌种的生长和代谢。

然后,通过发酵过程中的菌种培养、酶促反应等控制酶的活性和代谢产物的合成。

最后,通过纯化步骤来提取和纯化发酵产生的氨基酸。

4.生物转化工艺:生物转化是一种使用转基因生物的工艺,通过修改和调节其代谢途径来合成氨基酸。

首先,选择适合的转基因生物并导入目标氨基酸的合成途径相关基因。

然后,通过培养和生长转基因生物,并调节培养条件(如温度、PH值等)来控制氨基酸的产生。

最后,通过纯化步骤来提取和纯化生物转化产生的氨基酸。

《氨基酸工艺学》7 氨基酸分离提取和精制

《氨基酸工艺学》7 氨基酸分离提取和精制

1、常规过滤
➢ 常规过滤时,固体颗粒被截留在多孔性介质表面形成滤饼,液 体在推动力的作用下穿过滤饼和多孔性介质的微孔,从而获得 澄清的过滤液。
➢ 由于操作阻力较大,且固体颗粒的粒径越小,操作阻力越大, 因此,常规过滤适用于悬浮颗粒粒径在10-100μm范围内的悬浮 液。
➢ 在氨基酸工业中,常采用板框压滤机和真空转鼓式过滤机过滤 预处理后的发酵液。
1、离子交换的基本概念
➢ 树脂颗粒吸附过程大致分为5个阶段:
① 发酵液中的氨基酸阳离子扩 散至树脂颗粒表面(外扩散); ② 氨基酸阳离子穿过树脂颗粒 表面向树脂颗粒内部扩散(内 扩散); ③ 氨基酸阳离子与树脂颗粒中 的H+交换(离子交换);④ 交换产生的游离H+从树脂颗粒 内部向树脂表面扩散(内扩 散); ⑤ 游离的H+进一步扩散至发 酵液中(外扩散)。
聚糖、明胶、骨胶等天然有机高分子聚合物。 ➢ 化学合成聚合物包括有机高分子聚合物和无机高分子聚合物,
其中,常见的有机高分子聚合物有聚丙烯酰胺类衍生物、聚丙 烯酸类和聚苯乙烯类衍生物等,常见的无机高分子聚合物有聚 合铝盐和聚合铁盐等。 ➢ 氨基酸发酵液絮凝操作过程中,影响絮凝效果的因素很多,主 要有絮凝剂的种类和相对分子质量、絮凝剂用量、发酵液pH值、 搅拌速率和搅拌时间等因素。
离子型。 ➢ 离子型絮凝剂带多价电荷,且长链线状结构上的电荷密度会显
著影响其的絮凝效果。 ➢ 通过絮凝预处理过程,可将氨基酸发酵液中的微生物细胞和碎
片、菌体和蛋白质等胶体粒子聚集形成粗大絮凝团,从而提高 氨基酸发酵液的过滤速率和滤液质量。
5、絮凝
➢ 高分子絮凝剂的吸附架桥过程:
5、絮凝
➢ 高分子絮凝剂可分为天然聚合物和化学合成聚合物。 ➢ 天然聚合物包括聚糖类胶粘物、海藻酸钠、壳聚糖、脱乙酰壳

氨基酸工艺学复习题

氨基酸工艺学复习题

氨基酸复习题一、名词解释1.Glutamate Refining味精精制:谷氨酸加水溶解,用碳酸钠或氢氧化钠中和,经脱色,除铁、钙、镁等离子,再经蒸发浓缩、结晶、分离、干燥、筛选等单元操作,得到高纯度的晶体或粉体味精的过程,称为味精精制。

2.Dextrose Equivalent Value葡萄糖当量值:表示淀粉的水解程度或糖化程度。

糖化液中还原性糖全部当作葡萄糖计算,占干物质的百分比称DE值。

3.Feedback Repression反馈阻遏:即在合成过程中有生物合成途径的终点产物对该途径的一系列酶的量调节,所引起的阻遏作用。

反馈阻遏是转录水平的调节,产生效应慢。

4.Metabolic Interlock代谢互锁:某一种氨基酸的生物合成途径受到其他一种完全无关的氨基酸的控制。

一般在很高的浓度下才能显示部分抑制或阻遏作用。

5.Critical dissolved oxygen Concentration临界溶解氧浓度:谷氨酸产生菌和其它好气性微生物一样,对培养液中的溶解氧浓度有一个最低的要求,在此溶解氧浓度以下,微生物的呼吸速率随溶解氧浓度的降低而显著下降。

此一溶解氧浓度称为临街溶解氧浓度。

6.Essential Amino Acid必需氨基酸:人体自身不能合成,只能从外界食物的蛋白质中摄取的氨基酸。

7.Liquefication液化:利用液化酶使淀粉糊化,黏度降低,并水解到糊精和低聚糖的程度的过程。

8.Auxotroph营养缺陷型:指微生物等不能在无机盐类和碳源组成的基本培养基中增殖,必须补充一种或一种以上的营养物质才能生长。

9.Energy Charge能荷:细胞所处的能量状态用ATP、ADP和AMP之间的关系来表示,称为能荷。

是细胞所处能量状态的一个指标。

一、名词解释1.限速酶:是指整条代谢通路中催化反应速度最慢的酶,它不但可以影响整条代谢途径的总速度,还可以改变代谢方向。

2.同工酶:指生物体内催化相同反应而分子结构不同的酶。

氨基酸工艺学

氨基酸工艺学

氨基酸工艺学氨基酸工艺学是研究氨基酸的生产和应用的一门学科。

氨基酸是构成蛋白质的基本组成单元,对人体的生理功能起着重要的作用,同时也被广泛应用于食品、医药、化妆品等领域。

氨基酸工艺学的研究旨在提高氨基酸的生产效率和质量,以满足不同领域对氨基酸的需求。

氨基酸的生产工艺主要包括发酵法和合成法。

发酵法是指利用微生物如大肠杆菌、酵母等在发酵过程中生产氨基酸。

这种方法具有成本低、环境友好等优点,因此被广泛应用于工业生产。

合成法则是通过化学合成的方法来生产氨基酸。

这种方法虽然成本较高,但可以生产更高纯度的氨基酸。

氨基酸工艺学的研究不仅关注氨基酸的生产方法,还关注产品的提纯、分离和应用。

提纯和分离的方法包括离子交换、层析、蒸馏等。

这些方法可以有效去除产物中的杂质,提高产物的纯度和质量。

应用方面,氨基酸可以用于制备肉制品、保健品、营养品等。

此外,氨基酸还可以作为工业原料,用于生产植物肥料、染料等。

氨基酸工艺学的研究对于提高产物质量和减少生产成本具有重要意义。

科学家们通过改进发酵条件、筛选优良的菌株、优化工艺流程等方式,不断提高氨基酸的产量和纯度。

此外,研究人员还探索新的氨基酸应用领域,拓宽氨基酸产业链,提高氨基酸的经济和社会效益。

在未来,氨基酸工艺学的研究将继续深入发展。

随着生物技术和合成化学的不断进步,氨基酸的生产效率和品质将进一步提高。

同时,对于氨基酸的应用领域将会不断拓展,为人类的健康和可持续发展做出更大的贡献。

氨基酸是生命体内构成蛋白质的基本组成单元,它们不仅在人体内发挥着重要的生理功能,还被广泛应用于食品、医药、化妆品等产业领域。

因此,对氨基酸工艺学的研究已经成为当前生物工程和化学工程领域的热点之一。

氨基酸的生产工艺主要有发酵法和合成法两种。

发酵法是利用特定的微生物进行发酵生产氨基酸。

常用的发酵微生物有大肠杆菌、酵母菌和放线菌等。

通过发酵工艺,可以将廉价的原料如糖、淀粉等转化为高价值的氨基酸。

相对于合成法,发酵法具有成本低、产品质量好、环境友好等优点,因此得到了广泛应用。

氨基酸发酵工艺学

氨基酸发酵工艺学

氨基酸发酵工艺学氨基酸发酵工艺学是研究氨基酸生产过程中的发酵过程和工艺参数的科学。

氨基酸是生命体中重要的有机物质,广泛应用于医药、化工、食品等领域。

通过发酵工艺学的研究,可以优化氨基酸的生产工艺,提高产量和质量,降低生产成本。

氨基酸发酵工艺学主要包括微生物的选育与改良、发酵介质的配方和优化、发酵条件的控制等环节。

首先,通过选择适合生产目标氨基酸的微生物种类进行培养,并通过基因改造等手段提高其产酸能力和抗生素产量。

其次,合理配方发酵介质,提供微生物生长和代谢所需的营养物质,如碳源、氮源、无机盐等,并优化营养物质浓度和比例,以提高产酸效率。

同时,还需要注意控制介质的pH值、温度和氧气供应等因素,以最大程度地促进微生物生长和酸产量。

此外,还需要加入抗泡剂、抗生素等辅助物质,防止发酵过程中的杂菌污染。

在发酵过程中,通过监测微生物生长曲线、消耗和产酸速率等指标来了解反应的进程和微生物代谢状态。

根据这些数据,可以调整前述的工艺参数,如发酵温度、密度、通气量、搅拌速度等,以提高产酸效率和酸产量。

在工艺的最后阶段,通过优化酸的提取、纯化和结晶工艺,以获得高纯度的氨基酸产品。

随着生物技术的发展,氨基酸发酵工艺学还涉及到基因工程、酶工程等新技术的应用。

通过选择、改造和优化微生物的代谢途径和酶系统,可以进一步提高氨基酸的产酸效率和产量,同时降低废水和废料的排放。

总之,氨基酸发酵工艺学是一门综合知识学科,涉及到微生物学、生化学、工程学等多个领域的知识。

通过深入研究和应用,可以不断改进氨基酸生产工艺,满足市场需求,推动氨基酸产业的发展。

氨基酸发酵工艺学是一门涉及微生物学、生化学、生物工程学等多学科的综合学科,旨在通过研究发酵过程和优化工艺参数,提高氨基酸的产量和质量,降低生产成本,促进氨基酸产业的发展。

在氨基酸发酵工艺学中,微生物的选育与改良是一个重要的环节。

微生物是氨基酸发酵的生产工具,不同的微生物对于氨基酸的产量和产物特性有着不同的影响。

氨基酸工艺学

氨基酸工艺学

氨基酸工艺学以上两幅图需要了解,有助于谷氨酸发酵的复习。

氨基酸发酵的代谢控制方式:(1)菌种的代谢调;(2).控制发酵条件;(3)控制细胞的渗透性;(4)控制旁路代谢;(5)控制反馈作用物的浓度;(6)消除终产物的反馈抑制和阻遏作用;(7)促进ATP的积累,以利于氨基酸的生物合成。

谷氨酸的生物合成途径(葡萄糖对谷氨酸转化率)糖经EMP途径和HMP途径生成丙酮酸;丙酮酸氧化脱羧生成乙酰-CoA;丙酮酸经CO2固定途径生成草酰乙酸,两者形成柠檬酸进入TCA循环;TCA循环中间产物α-酮戊二酸,在谷氨酸脱氢酶的作用下,还原氨基化合成谷氨酸。

CO2固定途径:C6H12O6 + NH3 +1.5 O2 C5H9O4N + CO2 + 3 H2O1摩尔葡萄糖可以生成1摩尔的谷氨酸。

理论收率为81.7%(最高)。

乙醛酸循环途径:DCA途径发酵谷氨酸,糖的转化率大大降低6乙酰CoA + 2 NH3 + 3O2 2 C5H9O4N + 2 CO2 + 6 H2O理论转化率仅为54.4%(最低)。

所以实际转化率:在54.4%~81.7%之间。

现有葡萄糖生产主要是四个属:短杆菌属(短杆菌科),棒杆菌属、小杆菌属、节杆菌属(棒杆菌科)现有谷氨酸生产菌的主要特征:(说出特征并解释为什么有这种特征)1、细胞形态为球形,棒形以至短杆2、G+无芽孢,无鞭毛,不能运动3、都是需氧型微生物4、都是生物素缺陷型5、腺酶强阳性6、不分解淀粉、纤维素、油脂、酪蛋白及明胶等7、发酵中菌体发生明显的形态变化,同时发生细胞渗透性的变化8、、二氧化碳固定酶系活力强9、异柠檬酸裂解酶活力欠缺或微弱,乙醛酸循环弱10、a-酮戊二酸能力缺失或微弱11、还原性辅酶Ⅱ进入呼吸链能力弱12、柠檬酸合成酶、乌头羧酶,异柠檬酸脱氢酶以及谷氨酸脱氢酶活力强13、能利用醋酸,不能利用石蜡14、具有向环境中泄露谷氨酸的能力15、不分解利用谷氨酸,并能耐高浓度谷氨酸,产生谷氨酸5%以上生物素:对代谢调节与能荷的调节是不同额,能荷是对糖代谢流的调节,而生物素能够促进糖的EMP、HMP、TCA循环生物素结构式谷氨酸产生菌因环境条件的发酵转化控制发酵因子发酵转换氧不足时生成乳酸或琥珀酸;过量时生成α-酮戊二酸;适量则合成谷氨酸生物素充足时生成乳酸或琥珀酸;限量条件下即亚适量时则合成谷氨酸铵离子不足时合成α-酮戊二酸;过量时生成谷氨酰胺;适量时合成谷氨酸PH 酸性条件下:N-乙酰谷胺酰胺;中性或微碱性条件下:谷氨酸磷高浓度时:缬氨酸;适量时:谷氨酸谷氨酸的发酵控制发酵培养基:需要大量C、N源,控制生物素(1)碳源淀粉水解糖要求:目前国内谷氨酸发酵糖浓度为(125~150g/L)(2)氮源作用:1.合成菌体Pro、核酸等合成物质;2.一部分用于调节PH。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氨基酸工艺学一、名词解释氨基酸工艺学:是一门新型发酵的技术科学,以探讨氨基酸发酵工厂的生产技术为主要目的。

氨基酸:生命有机体的重要组成部分,是生命机体营养、生存和发展极为重要的物质,在生命体内物质代谢调节调控、信息传递方面扮演重要的角色。

全价氨基酸:动物性蛋白质中各种必须氨基酸之间的比值与人体构成蛋白质需要的比值基本一致,可以全被人体吸收。

限制氨基酸:各类植物蛋白质中的各种氨基酸比值不很适宜,缺少的氨基酸。

淀粉:白色无定型结晶粉末,存在于各种植物组织中,淀粉颗粒具有一定的形态和层次分明的构造,在显微镜下观察淀粉颗粒是透明的,不同淀粉具有不同的形状和大小。

直链淀粉:由不分支的葡萄糖链构成,葡萄糖分子间以α-1,4糖苷键聚合成,呈链状结构,分子比较小,聚合度在100~6000之间。

(遇碘呈蓝色)支链淀粉:由多个较短的α-1,4糖苷键直链结合而成,聚合度为1000~3000000之间。

一种膨胀性物质,置于水中加热时成为胶黏的糊状物,而且只有在加热加压的条件下,才能溶解于水。

(呈紫红色)糊化:淀粉在热水中能吸收水分而膨胀,最后淀粉粒破裂,淀粉分子溶解于水中形成带有黏性的淀粉糊,这个过程称为糊化。

酸解法:利用无机酸为催化剂,在高温高压下将淀粉水解转化为葡萄糖的方法。

酸酶法:先将淀粉用酸水解成糊精或低聚糖,然后再用糖化酶将其水解成葡萄糖的工艺。

酶酸法:将淀粉乳先用α-淀粉酶液化,过滤除去杂质后,然后用酸水解成葡萄糖的工艺双酶法:用专一性很强的淀粉酶和糖化酶为催化剂,将淀粉水解成为葡萄糖的工艺。

液化:利用液化酶使淀粉糊化,粘度降低,并水解到糊精和低聚糖的程度。

糖化:用糖化酶将液化产物进一步彻底水解成葡萄糖的过程。

老化:分子间氢键已断裂的糊化淀粉又重新排列成新氢键的过程,也就是一个复结晶的过程。

噬菌体:侵染细菌、放线菌等微生物并使其细胞破裂死亡的一类病毒。

噬菌体效价:每毫升试样中所含有具有侵染性的噬菌体的粒子数 细胞经济性:微生物活细胞是个远离平衡状态的开放体系,从微生物细胞对能量和化学物质的内外交换、增收节支、调节的规律的客观存在出发,可以把微生物细胞作为按特殊的经济规律运行的经济实体看待,并把这种特殊的经济规律运行的有利于生存竞争的新陈代谢特性称为细胞经济型细胞经济系数:生成细胞的质量与消耗基质的质量之比DE值:表示淀粉水解程度和糖化程度,也称葡萄糖值,糖化液中还原糖占干物质的百分比DX值:糖液中葡萄糖含量占干物质的百分率。

临界溶氧浓度:指不影响菌的呼吸所允许的最低氧浓度。

代谢控制发酵:就是用遗传学或其它生物化学的方法,人为的改变、控制微生物的代谢,使有用产物大量生成、积累的发酵。

发酵转换:当发酵条件发生改变时,必然会影响到生物代谢途径分支的关键酶的酶量和酶活性的改变,从而导致发酵方向发生转换,从而产生不同的代谢产物淀粉液化:利用α-淀粉酶将淀粉液化,转化为糊精及低聚糖,使淀粉的可溶性增加。

亚稳区:在溶解度曲线与过饱和溶解度曲线之间的带状区域。

末端产物阻遏:是指由某代谢途径末端产物的过量累积时而引起的反馈阻遏,是一种较为重要的反馈阻遏。

流加发酵:也叫补料分批发酵、半连续发酵、半连续培养。

它是以分批培养为基础,间歇或连续地补加新鲜培养基的一种发酵方法。

结晶:是指溶质自动从过饱和溶液中析出形成新相的过程。

只有当溶质浓度超过饱和溶解度后,才可能有晶体析出。

其中,溶液达到过饱和状态是结晶的前提;过饱和度是结晶的推动力。

1、氨基酸发酵的生物学特性氨基酸发酵是典型的代谢控制发酵,由发酵所生成的产物——氨基酸,都是微生物中间代谢产物,它的积累是建立于对微生物的正常代谢的抑制上。

2、必须氨基酸、半必须氨基酸的概念及种类必须氨基酸:人体本身不能合成,只能从食物的蛋白质中摄取,称为必须氨基酸种类:L-赖氨酸、L-色氨酸、L-苏氨酸、L-缬氨酸、L-亮氨酸、L-异亮氨酸、L-苯丙氨酸、L-蛋氨酸半必须氨基酸:凡是动物体内能合成的氨基酸种类:主要指精氨酸和酪氨酸,它们在体内分别由蛋氨酸和苯丙氨酸转变而成,如果膳食中能够直接提供这两种氨基酸,则人体对蛋氨酸和苯丙氨酸的需要可减少。

3、学习氨基酸发酵工艺学的目的使学生能运用已学过的微生物学、生物化学、化工原理和分析化学等基础知识,进一步深化与提高,来认识与解决氨基酸发酵工业生产中的具体问题:掌握选育氨基酸生产菌的基本原理,了解氨基酸代谢与代谢控制发酵的基本理论、发酵控制的关键及分离精致氨基酸的一般原理和方法,从而使学生初步具有选育新菌种、探求新工艺、新装备和从事氨基酸发酵研究能力4、淀粉糊化、老化糊化:淀粉在热水中能吸收水分而膨胀,最后淀粉粒破裂,淀粉分子溶解于水中形成带有黏性的淀粉糊,这个过程称为糊化。

老化:分子间氢键已断裂的糊化淀粉又重新排列成新氢键的过程,也就是一个复结晶的过程。

5、双酶法制淀粉糖的原理和相关酶的催化特性原理:用专一性很强的淀粉酶和糖化酶为催化剂,将淀粉水解成为葡萄糖的工艺酶的催化特性:①酶具有较高的专一性,淀粉水解的副产物少,因而水解糖液纯度高,DE值可达到98%以上,使糖液得到充分利用。

②淀粉水解是在酶的作用下进行的,酶解反应条件较温和。

因而不需要耐高温、耐高压、耐酸的设备。

③可以在较高的淀粉浓度下水解。

④可用粗原料,由于酶制剂中菌体细胞的自溶使糖液营养物质丰富,可以简化发酵培养基,少加甚至不加维生素,有利于谷氨酸发酵的稳定,有利于提到糖酸转化率,也有利于后道提取。

⑤双酶法制得的糖液颜色浅、较纯净、无苦味、质量高,有利于糖液得充分的利用。

⑥双酶法工艺同样适用于大米或者粗淀粉原料,可避免淀粉在加工过程中的大量流失,减少粮食消耗。

⑦缺点:酶反应时间长,生长周期长,夏天糖液容易变质。

酶本身是蛋白质,引起糖液过滤困难。

另外要求设备较多。

6、简述谷氨酸发酵制糖工艺对淀粉质原料及最终产品(淀粉糖)的质量要求。

①严格控制淀粉质量:对霉烂、变质的淀粉,一定要经过再精制处理后使用,否则会严重影响谷氨酸发酵。

(因霉变淀粉一般酸度比较高,甚至存在一定数量的抑制物,有残留毒素,将会影响谷氨酸产生菌的的正常生长和产物积累。

)②根据发酵粗糖浓度的要求,正确控制淀粉乳浓度高低(既要使糖液浓度符合发酵要求,又尽可能降低粉浆浓度,以提高糖液纯度。

)③糖液中不含糊精④糖液要清,色泽要浅,保持一定透光率⑤糖液要新鲜⑥若淀粉中蛋白质含量高,当糖液中和过滤时除去不彻底,培养基中含蛋白质及其水解产物时,会使发酵液产生大量气泡,造成逃液和污染杂菌的危险,而且给后道的谷氨酸分离提取带来影响。

⑦水解糖液得质指标:色泽:浅黄、杏黄色、透明液体糊精反应:无还原糖含量:18%左右DE值:90%以上透光率:60%以上PH:4.6~4.87、谷氨酸发酵菌中生成谷氨酸的主要酶反应及其主导反应。

(1)谷氨酸脱氢酶催化的还原氨基化反应(2)转氨酶催化的转氨反应(3)谷氨酸合成酶的催化反应(课本P35)6、谷氨酸生物合成的理想途径及其理论糖酸转化率。

(课本P36)7、简述乙醛酸循环在谷氨酸发酵中的作用及其控制。

(课本P38)8、谷氨酸发酵的主要菌种。

棒杆菌属、短杆菌属、小杆菌属、节杆菌属9、谷氨酸生物合成的调节机制及其高产菌株的育种策略。

谷氨酸生物合成的调节机制:(P39)高产菌株的育种策略:(1)日常菌种工作:①定期分纯。

②小剂量诱变刺激③高产菌制作安瓿管(2)选育耐高渗透压菌种(3)选育不分解利用谷氨酸的突变株(4)选育细胞膜渗透性好的突变株(5)选育强化CO2固定反应的突变株(6)选育减弱乙醛酸循环的突变株(7)选育强化三羧酸循环中从柠檬酸到α-酮戊二酸代谢的突变株(8)选育解除谷氨酸对谷氨酸脱氢酶反馈调节的突变株(9)选育强化能量代谢的突变株(10)选育减弱HMP途径后段酶活性的突变株10、简述糖蜜原料强制谷氨酸发酵工艺原理。

谷氨酸发酵主要是以糖蜜为发酵原料,采用大种量、添加青霉素低糖流加工艺。

(1)表面活性剂:使用生物素过量的甜菜糖蜜发酵谷氨酸时,通过添加表面活性剂(如吐温-60)或是高级饱和脂肪酸(C16~18)及其亲水聚醇酯类,都能清除渗透障碍物,使胞内的谷氨酸浓度不能积累到引起反馈调节的浓度,谷氨酸就会在细胞内继续不断的优先合成,又不断地透过细胞膜分泌于发酵培养基中,得以积累。

(2)青霉素:在发酵对数生长期早期,添加青霉素能抑制菌体细胞壁的合成,主要可抑制糖肽转化酶,影响细胞壁肽聚糖的生物合成,形成不完整的细胞壁,进而导致不完整的细胞膜,除去阻碍谷氨酸向外渗透的障碍物,使谷氨酸得以大量积累。

11、谷氨酸温度敏感突变株发酵生产谷氨酸的机理及优点。

12、低糖流加高糖谷氨酸发酵工艺的优点。

13、谷氨酸污染噬菌体及杂菌后的挽救措施。

14、谷氨酸等电点提取法与离子交换法的基本原理15、单柱法、双柱法提取谷氨酸的概念及其优缺点。

16、简述谷氨酸发酵液的综合利用。

17、味精的化学名称及其等电点。

18、谷氨酸制味精为何要除铁?除铁的主要方法及其原理。

19、谷氨酸中和液脱色的方法与原理。

20、简述影响味精结晶质量和速度的主要因素。

21、味精结晶操作分哪几个过程。

22、简述味精结晶末道母液的主要回收方法。

23、简述细胞的经济性、细胞经济系数、竞争型经济细胞、导向型经济细胞的含义。

24、简述酶反馈抑制和反馈阻遏的主要类型。

25、氨基酸生物合成的调节机制有哪几种。

26、简述氨基酸高产菌株的育种策略,并以例说明。

29、简述L-赖氨酸、L-蛋氨酸、L-异亮氨酸、L-苏氨酸、L-色氨酸高产菌株的育种策略及其主要出发菌株。

相关文档
最新文档