高中物理必修二知识点总结(公式篇)

合集下载

高中物理必修二公式

高中物理必修二公式

高中物理必修二公式1. 速度公式速度(v)是物体在单位时间内所经过的路程(s)与单位时间(t)的比值。

公式: v = s/t在物理学中,速度的单位可以是米每秒(m/s)或千米每小时(km/h)。

2. 平均加速度公式加速度(a)是指单位时间内速度的变化率。

公式: a = (v - u) / t其中,v为结束时的速度,u为初始时的速度,t为时间。

3. 牛顿第二定律牛顿第二定律揭示了物体运动与所施加的力的关系。

它说明了物体所受的力与物体的质量和加速度的乘积成正比。

公式: F = m * a其中,F为所施加的力,m为物体的质量,a为物体的加速度。

4. 力的合成公式力的合成公式用于计算多个力的合成结果。

当多个力作用在同一个物体上时,它们可以被合成为一个单一的力。

公式:F = √(F₁² + F₂² + … + Fₙ²)其中,F₁、F₂、…、Fₙ代表不同力的大小。

5. 动能公式动能(K)描述了物体由于其速度而具有的能量。

公式: K = 1/2 * m * v²其中,m为物体的质量,v为物体的速度。

6. 功公式功(W)是物体由于施加力而移动的距离所做的功。

公式: W = F * s * cosθ其中,F为施加的力,s为移动的距离,θ为力的作用角度。

7. 弹性势能公式弹性势能(PE)是指物体由于其形变而存储的能量。

公式: PE = 1/2 * k * x²其中,k为弹性系数,x为形变量。

8. 牛顿第三定律牛顿第三定律说明了物体之间相互作用的力具有相等而相反的大小。

公式:F₁ = -F₂其中,F₁和F₂是两个物体之间作用的力。

9. 压强公式压强(P)定义为单位面积上的力。

公式: P = F/A其中,F为作用在物体上的力,A为作用的面积。

10. 气体状态方程气体状态方程描述了气体的压强、体积和温度之间的关系。

公式: PV = nRT其中,P为气体的压强,V为气体的体积,n为气体的物质量,R为气体常数,T为气体的温度。

高中必修二物理公式总结

高中必修二物理公式总结

高中必修二物理公式总结高中物理是一门涉及多个概念和现象的学科,其内容涵盖广泛,公式众多。

下面是对高中必修二物理中的一些重要公式进行总结。

1. 速度公式平均速度(v) = 位移(Δx)/ 时间(Δt)v = Δx / Δt瞬时速度(v)= (Δx / Δt)(t → 0)2. 加速度公式平均加速度(a)= 变化的速度(Δv)/ 时间(Δt)a = Δv / Δt瞬时加速度(a)= (Δv / Δt)(t → 0)3. 物体在平抛运动中的公式位移(Δx)= v₀t + (1/2)at²v = v₀ + atv² = v₀² + 2aΔxh = v₀t + (1/2)gt²4. 牛顿第二定律F = ma其中,F为物体所受的合力,m为物体的质量,a为物体的加速度。

5. 力学功公式功(W)= 力(F) ×位移(Δx)× cosθ其中,θ为力和位移之间的夹角。

6. 力与弹簧伸长的关系胡克定律:F = kΔx其中,F为弹簧的弹力,k为弹簧的系数,Δx为弹簧的伸长量。

7. 动量公式动量(p)= 质量(m) ×速度(v)p = mv8. 动量定理物体的动量变化率等于作用在物体上的合力:F = Δp / Δt9. 能量转化公式功(W)= ΔE其中,W为力所做的功,ΔE为物体能量的变化量。

10. 功率公式功率(P)= 功(W)/ 时间(t)P = W / t11. 机械能守恒定律在一个封闭系统中,系统的机械能总量保持不变。

12. 光的折射定律n₁sinθ₁ = n₂sinθ₂其中,n₁和n₂为不同介质的折射率,θ₁和θ₂为入射角和折射角。

13. 球面镜成像公式1/f = 1/v + 1/u其中,f为焦距,v为像距,u为物距。

14. 单摆运动公式周期(T)= 2π√(L/g)其中,L为摆长,g为重力加速度。

以上仅是高中必修二物理的一部分公式总结,还有其他重要公式也需要系统地学习和掌握。

高中物理必修二公式总结

高中物理必修二公式总结

高中物理必修二公式总结高中物理必修二公式总结高中物理必修二是一门重要的课程,包括了力学、热学和光学等内容。

这些内容是物理学的基础,也是学习其他科学和工程学科的前提。

在学习这门课程的过程中,我们需要掌握许多公式。

下面是我对高中物理必修二公式的总结:1. 力学1.1 牛顿第一定律:F=ma这个公式描述了物体的加速度与所受的力的关系。

其中F表示物体所受的力,m表示物体的质量,a表示物体的加速度。

1.2 牛顿第二定律:F=dp/dt这个公式描述了物体的力与其动量的关系。

其中F表示物体所受的力,p表示物体的动量,t表示时间。

1.3 动能定理:W=ΔK这个公式描述了物体所受的功与其动能变化的关系。

其中W 表示物体所受的功,ΔK表示物体动能的变化量。

1.4 动量守恒定律:p1+p2=p3+p4这个公式描述了一个系统中的物体在碰撞过程中动量守恒的情况。

其中p1和p2表示碰撞前两个物体的动量,p3和p4表示碰撞后两个物体的动量。

2. 热学2.1 热力学第一定律:ΔE=Q-W这个公式描述了一个系统的内能的变化与其所受的热量和所做的功之间的关系。

其中ΔE表示系统内能的变化量,Q表示系统所受的热量,W表示系统所做的功。

2.2 理想气体状态方程:PV=nRT这个公式描述了理想气体的状态与压强、体积、温度和物质的摩尔数之间的关系。

其中P表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R表示气体常数,T表示气体的温度。

2.3 热传导公式:Q/t=kAΔT/L这个公式描述了热量传导的速率与传导系数、传导面积、温度差和传导长度之间的关系。

其中Q/t表示单位时间内传导的热量,k表示传导系数,A表示传导面积,ΔT表示温度差,L表示传导长度。

2.4 热平衡公式:m1c1ΔT1=m2c2ΔT2这个公式描述了两个物体达到热平衡时的热量交换情况。

其中m1和m2表示两个物体的质量,c1和c2表示两个物体的比热容,ΔT1和ΔT2表示两个物体的温度差。

高中必修二物理公式总结4篇

高中必修二物理公式总结4篇

高中必修二物理公式总结高中必修二物理公式总结精选4篇(一)高中必修二物理公式总结高中物理是一门基础性和实用性很强的学科,必修二物理是高中物理教学的重要组成部分。

下面是高中必修二物理中涉及的一些重要公式的总结:1. 加速度公式:a = (v - u) / t其中,a表示加速度,v表示速度的末值,u表示速度的初值,t表示时间2. 速度与位移关系公式:v^2 = u^2 + 2aS其中,v表示速度的末值,u表示速度的初值,a表示加速度,S表示位移3. 牛顿第二定律公式:F = m * a其中,F表示作用力,m表示质量,a表示加速度4. 动能公式:E = 1/2 * m * v^2其中,E表示动能,m表示质量,v表示速度5. 功的定义公式:W = F * S * cosθ其中,W表示功,F表示力,S表示位移,θ表示力的方向与位移方向的夹角6. 功与能量关系公式:W = ΔE其中,W表示功,ΔE表示能量的变化量7. 力和库仑定律公式:F = k * q1 * q2 / r^2其中,F表示力,k表示库仑常数,q1和q2表示电荷量,r表示距离8. 单摆周期公式:T = 2π * √(L / g)其中,T表示周期,L表示摆长,g表示重力加速度9. 万有引力定律公式:F =G * (m1 * m2) / r^2其中,F表示力,G表示万有引力常数,m1和m2表示物体1和物体2的质量,r表示物体间的距离10. 焦耳定律公式:Q = U * I * t其中,Q表示电量,U表示电压,I表示电流,t表示时间11. 安培定律公式:V = I * R其中,V表示电压,I表示电流,R表示电阻12. 球体的密度公式:ρ = m / V其中,ρ表示密度,m表示质量,V表示体积13. 压强公式:P = F / A其中,P表示压强,F表示力,A表示受力面积14. 压强与液体压强公式:P = ρ * g * h其中,P表示压强,ρ表示液体密度,g表示重力加速度,h表示液体高度15. 光速公式:c = ν * λ其中,c表示光速,ν表示频率,λ表示波长以上是高中必修二物理中的一些重要公式的总结,掌握这些公式可以帮助我们更好地理解和应用物理知识。

高中物理必修二曲线运动公式

高中物理必修二曲线运动公式

高中物理必修二曲线运动公式一、曲线运动的基本概念曲线运动是指物体在空间中沿着曲线轨迹运动的过程。

在高中物理必修二中,我们主要学习的是匀速圆周运动和抛体运动这两种曲线运动。

1. 匀速圆周运动匀速圆周运动是指物体在圆周轨道上以恒定的速度做曲线运动。

在这种运动中,物体的速度大小保持不变,但速度方向不断改变,因此物体始终受到向心力的作用。

2. 抛体运动抛体运动是指物体在水平方向上受到初速度,而在竖直方向上受到重力作用,从而形成的曲线运动。

抛体运动可以分为竖直上抛、竖直下抛、水平抛和斜上抛四种情况。

二、曲线运动的基本公式1. 匀速圆周运动公式(1)线速度公式:v = rω其中,v表示线速度,r表示圆周半径,ω表示角速度。

(2)向心力公式:F = mv^2/r其中,F表示向心力,m表示物体质量,v表示线速度,r表示圆周半径。

2. 抛体运动公式(1)竖直上抛公式:h = v0t 1/2gt^2其中,h表示物体上升的高度,v0表示初速度,g表示重力加速度,t表示时间。

(2)竖直下抛公式:h = 1/2gt^2其中,h表示物体下落的高度,g表示重力加速度,t表示时间。

(3)水平抛公式:x = v0t,y = 1/2gt^2其中,x表示物体水平位移,y表示物体竖直位移,v0表示初速度,g表示重力加速度,t表示时间。

(4)斜上抛公式:x = v0cosθt,y = v0sinθt 1/2gt^2其中,x表示物体水平位移,y表示物体竖直位移,v0表示初速度,θ表示抛射角,g表示重力加速度,t表示时间。

三、曲线运动的应用曲线运动在生活中有着广泛的应用,如:1. 匀速圆周运动:汽车转弯、地球绕太阳公转等。

2. 抛体运动:投篮、投掷标枪等。

通过对曲线运动公式的学习,我们可以更好地理解生活中的各种曲线运动现象,为解决实际问题提供理论依据。

高中物理必修二曲线运动公式一、曲线运动的分类及特点在高中物理必修二中,我们学习到的曲线运动主要分为两大类:匀速圆周运动和抛体运动。

高中物理必修二知识点总结

高中物理必修二知识点总结

一、基本概念1、质点:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略时,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。

2、参考系:任何运动都是相对于某个参照物而言的,这个参照物称为参考系。

3、坐标系:定量的描述运动,采用坐标系。

4、时刻和时间间隔:1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。

两个时刻之间的间隔称为时间,时间在时间轴上对应一段。

2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h5、路程:物体运动轨迹的长度6、位移:表示物体位置的变动。

可用从起点到末点的有向线段来表示,是矢量。

位移的大小小于或等于路程。

7、速度:物理意义:表示物体位置变化的快慢程度。

分类平均速度:物体通过的位移与所用的时间之比。

瞬时速度:某一时刻(或某一位置)的速度。

与速率的区别和联系速度是矢量,而速率是标量平均速度=位移/时间,平均速率=路程/时间瞬时速度的大小等于瞬时速率8、加速度物理意义:表示物体速度变化的快慢程度定义:物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值a=(vt—v0)/t (即等于速度的变化率)a不由△v、t决定,而是由F、m决定。

方向:与速度变化量的方向相同,与速度的方向不确定。

(或与合力的方向相同)二、运动图象1、x—t图象(即位移图象)(1)、纵截距表示物体的初始位置。

(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。

(3)、斜率表示速度。

斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。

2、v—t图象(速度图象)(1)、纵截距表示物体的初速度。

(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。

(3)、纵坐标表示速度。

纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。

高中物理必修二知识点公式汇总

高中物理必修二知识点公式汇总

第7章 机械能及其守恒定律1.恒力做功:W=Flcos αα为F 方向与物体位移l 方向的夹角 1两种特殊情况:①力与位移方向相同:α=0,则W=Fl②力与位移方向相反:α=1800,则W=-Fl ,如阻力对物体做功2α<900,力对物体做正功;α=900,力不做功;900<α≤1800,力对物体做负功 3总功:⋅⋅⋅++=321W W W W 总正.、负.功代数和;αcos l F W 合总= 4重力做功:h mg W G ∆±=h ∆是初、末位置的高度差,升高为负,下降为正 重力做功的特点:只跟起点和终点的位置有关,而跟物体运动的路径无关2.功率单位:瓦特:平均功率:tW P =、-=v F P ;瞬时功率:P=Fv 瞬注意:交通工具发动机的功率指牵引力做功的功率:P=F 牵v在水平路面上最大行驶速度:阻F Pv =m ax 当F 牵最小时即F 牵=F 阻,a =0 3.重力势能:E P =mghh 是离参考面的高度,通常选地面为参考面,具有相对性 4.弹簧的弹性势能:221l k E P ∆=k 为弹簧的劲度系数,l ∆为弹簧的形变量 5.动能:221mv E K =6.探究功与物体速度变化关系:结果为如下图所示W -v 2关系 7.动能定理:在一个过程中合力对物体所做的功,等于物体在这个过程中动能的变化,即末动能减去初动能;12K K E E W -=合或21223212121mv mv W W W -=⋅⋅⋅+++ 8.机械能:物体的动能、重力势能和弹性势能的总和,P K E E E += 9.机械能守恒定律:2211P K P K E E E E +=+2221212121mgh mv mgh mv +=+动能只跟重力势能转化的 条件:只有重力....做功或只有重力、弹簧弹力做功即动能只跟势能转化思路:对求变力做功、瞬间过程力做功、只关注初、末状态的,动能定理优势大大地方便对求曲线运动、只关注初、末状态的,且不计摩擦的只有动能与势能间相互转化用机械能守恒定律较好如下面的几种情况,用机械能守恒定律方便不计阻力,若有阻力,则用动能定理来求速度、阻力做的功等;W2v 0⨯⨯⨯⨯⨯60ºL mA BhA Bhv 0AB R第5章 曲线运动1.运动的合成与分解:运动的合成与分解是指 l 、v 、 a 的合成与分解;由于位移、速度、加速度都是矢量,合成时均遵循平行四边形定则;2.平抛运动及其规律: 1平抛运动:物体以一定速度水平抛出,只受重力作用的运动a =g ,方向竖直向下2处理方法:运动的合成与分解平抛运动可看成是由水平方向的匀速直线运动和竖直方向的自由落体运动的合成3规律:分位移 水平位移 x =v 0t 竖直位移 y=h =221gt 落地时间仅由抛出点高度决定 分速度 水平速度v x =v 0 竖直速度 v y =gt某一时刻瞬时速度合速度大小:22y x v v v +=此刻瞬时速度的方向:t v gv v y0tan ==θ物体位移合位移大小:l =22y x +,方向:xy=αtan3.圆周运动: 1线速度:Trv π2=;角速度:T πω2=单位:弧度每秒rad/s2线速度与角速度、半径r 的关系:v=r ω 3转速n 与周期的关系:nT 1=1秒转多少圈叫转速,转1圈的时间叫周期 4向心加速度:22224T r r r v a n πω===,方向始终指向圆心,不断变化 5向心力:22224Tmr mr r v m F n πω===,方向始终值向圆心,不断变化 注意:向心力是指向圆心的合力..,按效果命名的,不能说物体除受到其它力外又受到一个向心力;如图所示,汽车、小球在最高低点的向心力就是重力和支持力重力和拉力、B 点:重力和轨道对球的压力的合力; 支持力与压力是作用力和反作用力,大小相等;A Bv v 1 v 2 θ)α)ORMm 60ºL m v 0AB R1k 与行星无关,仅由恒星中心天体质量决定大多数行星轨道近似为圆,这样定律中半长轴a 即为轨道半径r ,2为引力常量,由卡文迪许首先测出 3.一天体绕着另一天体称为中心天体做匀速圆周运动时,基本方程有②在地球表面质量为m 1即注意:aR 为地球星球的半径,r 为轨道半径,也是天体间的距离;M 为中心天体质量,m 为做匀速圆周运动的天体质量,g 为地球星球表面..的重力加速度 b 对卫星来说:r =R +h 推广:在星球表面质量为m常见题型:1r =R +h周期2由①与②可分析中心天体的质量、中心天体的密度及天体表面的重力加速度4.第一宇宙速度:近地..卫星的运行速度叫第一宇宙速度 由于近地卫星的h 远远小于R ,可近似认为r ≈R ,得7.9km/s 即近地..卫星的运行速度叫地球第一宇宙速度,也是最小..的发射..速度;高空卫星的运行速度小于7.9km/s ,但发射速度大于7.9km/s ;卫星1.牛顿第二定律:ma F =合 2.滑动摩擦力:N F F μ= 3.匀变速直线运动: 1位移公式:2021at t v x +=2速度公式:at v v +=0 3速度与位移公式:ax v v 2202=-4平均速度:20vv v +=-只适用匀变速直线 4.自由落体运动: 1位移公式:221gt h =2速度公式:gt v = 5.向心加速度的推导:设做匀速圆周运动的物体的线速度的大小为v ,轨迹半径为r ;经过时间△t ,物体从A 点运动到B 点;尝试用v 、r 写出向心加速度的表达式; v A 、v B 、△v 组成的三角形与ΔABO 相似当△t 很小很小时,AB =Δl 6.验证机械能守恒定律: 1打B 点时的速度:txv v AC B 2==-式中t =0.02s ;在计算时x 要注意单位.. 2器材:刻度尺、交流电源电磁打点计时器:电压为10v 以下;电火花计时器:电压为220v 、导线、铁架台其它见图 3实验步骤:A.把打点计时器固定在铁架台上,用导线连接到低压交流电源B.将连有重锤的纸带穿过限位孔,将纸带和重锤提升到一定高度C.先接通电源....,再释放纸带D.更换纸带,重复实验,根据记录处理数据 4实验原理:221mv mgh =5误差分析:数据处理结果:221mv mgh >,主要原因是重锤受到空气阻力及纸带受到摩擦阻力,这样减少的重力势能有部分转化为热,所以221mv mgh >; 7.平抛规律:左图说明竖直方向:自由落体运动右图说明水平方向:匀速直线运动上图中斜槽末端水平目的:保证小球飞出的初速度方向水平r v AB v =∆∴r v AB v ⨯=∆∴t ABr v t v a n ∆⋅=∆∆=∴v t l t AB =∆∆=∆∴r v v r v a n 2=⋅=∴。

(完整版)高中物理必修2知识点清单(非常详细)

(完整版)高中物理必修2知识点清单(非常详细)

(完整版)高中物理知识点清单整理(必修 2 )第1章 功和功率一、功1.做功的两个必要条件:力和物体在力的方向上发生的位移.2.公式:W =Fl cos_α.适用于恒力做功.其中α为F 、l 方向间夹角,l 为物体对地的位移.3.功的正负判断(1)α<90°,力对物体做正功.(2)α>90°,力对物体做负功,或说物体克服该力做功. (3)α=90°,力对物体不做功.特别提示:功是标量,比较做功多少看功的绝对值. 二、功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式(1)定义式:P =W t,P 为时间t 内的平均功率.(2)推论式:P =Fv cos_α.(α为F 与v 的夹角)考点一 恒力做功的计算 1.恒力做的功直接用W =Fl cos α计算.不论物体做直线运动还是曲线运动,上式均适用. 2.合外力做的功方法一:先求合外力F 合,再用W 合=F 合l cos α求功.适用于F 合为恒力的过程. 方法二:先求各个力做的功W 1、W 2、W 3…,再应用W 合=W 1+W 2+W 3+…求合外力做的功. 3.(1)在求力做功时,首先要区分是求某个力的功还是合力的功,是求恒力的功还是变力的功.(2)恒力做功与物体的实际路径无关,等于力与物体在力方向上的位移的乘积,或等于位移与在位移方向上的力的乘积.考点二 功率的计算 1.平均功率的计算:(1)利用P =Wt.(2)利用P =F ·v cos α,其中v 为物体运动的平均速度.2.瞬时功率的计算:利用公式P =F ·v cos α,其中v 为t 时刻的瞬时速度. 注意:对于α变化的不能用P =Fv cos α计算平均功率. 3.计算功率的基本思路:(1)首先要明确所求功率是平均功率还是瞬时功率,对应于某一过程的功率为平均功率,对应于某一时刻的功率为瞬时功率.(2)求瞬时功率时,如果F 与v 不同向,可用力F 乘以F 方向的分速度,或速度v 乘以速度v 方向的分力求解.考点三 机车启动问题的分析 两种方式 以恒定功率启动 以恒定加速度启动v ↑⇒F =P 不变v ↓⇒a =F -F 阻m↓2.三个重要关系式(1)无论哪种运行过程,机车的最大速度都等于其匀速运动时的速度,即v m =P F min =PF 阻(式中F min 为最小牵引力,其值等于阻力F 阻).(2)机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,速度不是最大,即v =P F <v m =P F 阻. (3)机车以恒定功率运行时,牵引力做的功W =Pt .由动能定理:Pt -F 阻x =ΔE k .此式经常用于求解机车以恒定功率启动过程的位移大小.3.分析机车启动问题时的注意事项 (1)在用公式P =Fv 计算机车的功率时,F 是指机车的牵引力而不是机车所受到的合力. (2)恒定功率下的加速一定不是匀加速,这种加速过程发动机做的功可用W =Pt 计算,不能用W =Fl 计算(因为F 是变力).(3)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W =Fl 计算,不能用W =Pt 计算(因为功率P 是变化的).第2章 能的转化和守恒一、动能1.定义:物体由于运动而具有的能.2.表达式:E k =12mv 2.3.单位:焦耳,1 J =1 N ·m =1 kg ·m 2/s 2. 4.矢标性:标量. 二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W =E k2-E k1=12mv 22-12mv 21.3.适用范围(1)动能定理既适用于直线运动,也适用于曲线运动.(2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.考点一动能定理及其应用1.对动能定理的理解(1)动能定理公式中等号表明了合外力做功与物体动能的变化间的两个关系:①数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.②因果关系:合外力的功是引起物体动能变化的原因.(2)动能定理中涉及的物理量有F、l、m、v、W、E k等,在处理含有上述物理量的问题时,优先考虑使用动能定理.2.运用动能定理需注意的问题(1)应用动能定理解题时,不必深究物体运动过程中状态变化的细节,只需考虑整个过程的功及过程初末的动能.(2)若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总功,计算时要把各力的功连同正负号一同代入公式.3.应用动能定理解题的基本思路(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况:受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的初末状态的动能E k1和E k2;(4)列动能定理的方程W合=E k2-E k1及其他必要的解题方程,进行求解.考点二动能定理与图象结合问题解决物理图象问题的基本步骤1.观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义.2.根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.3.将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.4.解决这类问题首先要分清图象的类型.若是F-x图象,则图象与坐标轴围成的图形的面积表示做的功;若是v-t图象,可提取的信息有:加速度(与F合对应)、速度(与动能对应)、位移(与做功距离对应)等,然后结合动能定理求解.考点三利用动能定理求解往复运动解决物体的往复运动问题,应优先考虑应用动能定理,注意应用下列几种力的做功特点:1.重力、电场力或恒力做的功取决于物体的初、末位置,与路径无关;2.大小恒定的阻力或摩擦力的功等于力的大小与路程的乘积.三、机械能守恒定律一、重力势能1.定义:物体的重力势能等于它所受重力与高度的乘积.2.公式:E p=mgh.3.矢标性:重力势能是标量,正负表示其大小.4.特点(1)系统性:重力势能是地球和物体共有的.(2)相对性:重力势能的大小与参考平面的选取有关.重力势能的变化是绝对的,与参考平面的选取无关.5.重力做功与重力势能变化的关系 重力做正功时,重力势能减小; 重力做负功时,重力势能增大;重力做多少正(负)功,重力势能就减小(增大)多少,即W G =E p1-E p2.二、弹性势能1.定义:物体由于发生弹性形变而具有的能.2.大小:弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大.3.弹力做功与弹性势能变化的关系弹力做正功,弹性势能减小;弹力做负功,弹性势能增大. 三、机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.2.表达式(1)守恒观点:E k1+E p1=E k2+E p2(要选零势能参考平面). (2)转化观点:ΔE k =-ΔE p (不用选零势能参考平面). (3)转移观点:ΔE A 增=ΔE B 减(不用选零势能参考平面). 3.机械能守恒的条件只有重力(或弹力)做功或虽有其他外力做功但其他力做功的代数和为零.考点一 机械能守恒的判断方法1.利用机械能的定义判断(直接判断):分析动能和势能的和是否变化.2.用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.3.用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.4.(1)机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;“只有重力做功”不等于 “只受重力作用”.(2)分析机械能是否守恒时,必须明确要研究的系统.(3)只要涉及滑动摩擦力做功,机械能一定不守恒.对于一些绳子突然绷紧、物体间碰撞等情况,除非题目特别说明,否则机械能必定不守恒.考点二 机械能守恒定律及应用 1.三种表达式的选择如果系统(除地球外)只有一个物体,用守恒观点列方程较方便;对于由两个或两个以上物体组成的系统,用转化或转移的观点列方程较简便.2.应用机械能守恒定律解题的一般步骤(1)选取研究对象⎩⎪⎨⎪⎧单个物体多个物体组成的系统含弹簧的系统(2)分析受力情况和各力做功情况,确定是否符合机械能守恒条件.(3)确定初末状态的机械能或运动过程中物体机械能的转化情况. (4)选择合适的表达式列出方程,进行求解. (5)对计算结果进行必要的讨论和说明.3.(1)应用机械能守恒定律解题时,要正确选择系统和过程.(2)对于通过绳或杆连接的多个物体组成的系统,注意找物体间的速度关系和高度变化关系.(3)链条、液柱类不能看做质点的物体,要按重心位置确定高度.四 功能关系 能量守恒一、功能关系1.功是能量转化的量度,即做了多少功就有多少能量发生了转化.21.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化和转移的过程中,能量的总量保持不变.2.表达式:(1)E1=E2.(2)ΔE减=ΔE增.考点一功能关系的应用1.若涉及总功(合外力的功),用动能定理分析.2.若涉及重力势能的变化,用重力做功与重力势能变化的关系分析.3.若涉及弹性势能的变化,用弹力做功与弹性势能变化的关系分析.4.若涉及电势能的变化,用电场力做功与电势能变化的关系分析.5.若涉及机械能变化,用其他力(除重力和系统内弹力之外)做功与机械能变化的关系分析.6.若涉及摩擦生热,用滑动摩擦力做功与内能变化的关系分析.考点二摩擦力做功的特点及应用1.静摩擦力做功的特点(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q=F f s相对.其中s相对为相互摩擦的两个物体间的相对路程.考点三能量守恒定律及应用列能量守恒定律方程的两条基本思路:1.某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;2.某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.3.能量转化问题的解题思路(1)当涉及摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律.(2)解题时,首先确定初末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE减和增加的能量总和ΔE增,最后由ΔE减=ΔE增列式求解.第3章抛体运动一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.3.曲线运动的条件:物体所受合力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.二、运动的合成与分解 1.运算法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 2.合运动和分运动的关系(1)等时性:合运动与分运动经历的时间相等.(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响.(3)等效性:各分运动叠加起来与合运动有完全相同的效果.考点一 对曲线运动规律的理解 1.曲线运动的分类及特点(1)匀变速曲线运动:合力(加速度)恒定不变. (2)变加速曲线运动:合力(加速度)变化. 2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧.3.速率变化情况判断(1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小; (3)当合力方向与速度方向垂直时,速率不变. 考点二 运动的合成及合运动性质的判断 1.运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵循平行四边形定则.2.合运动的性质判断⎩⎨⎧加速度或合外力⎩⎪⎨⎪⎧变化:变加速运动不变:匀变速运动加速度或合外力与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动3两个互成角度的分运动 合运动的性质 两个匀速直线运动 匀速直线运动 一个匀速直线运动、一个匀变速直线运动 匀变速曲线运动两个初速度为零的匀加速直线运动匀加速直线运动两个初速度不为零的匀变速直线运动 如果v 合与a 合共线,为匀变速直线运动 如果v 合与a 合不共线,为匀变速曲线运动4.最后进行各量的合成运算.两种运动的合成与分解实例一、小船渡河模型 1.模型特点两个分运动和合运动都是匀速直线运动,其中一个分运动的速度大小、方向都不变,另一分运动的速度大小不变,研究其速度方向不同时对合运动的影响.这样的运动系统可看做小船渡河模型.2.模型分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度). (3)两个极值①过河时间最短:v 1⊥v 2,t min =dv 1(d 为河宽).②过河位移最小:v ⊥v 2(前提v 1>v 2),如图甲所示,此时x min =d ,船头指向上游与河岸夹角为α,cos α=v 2v 1;v 1⊥v (前提v 1<v 2),如图乙所示.过河最小位移为x min =dsin α=v 2v 1d .3.求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下三点:(1)解决这类问题的关键是:正确区分分运动和合运动,在船的航行方向也就是船头指向方向的运动,是分运动;船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关. 二、绳(杆)端速度分解模型 1.模型特点绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型.2.模型分析(1)合运动→绳拉物体的实际运动速度v(2)分运动→⎩⎪⎨⎪⎧其一:沿绳或杆的分速度v 1其二:与绳或杆垂直的分速度v 2(3)关系:沿绳(杆)方向的速度分量大小相等. 3.解决绳(杆)端速度分解问题的技巧(1)明确分解谁——分解不沿绳(杆)方向运动物体的速度; (2)知道如何分解——沿绳(杆)方向和垂直绳(杆)方向分解;(3)求解依据——因为绳(杆)不能伸长,所以沿绳(杆)方向的速度分量大小相等.二 抛体运动1、平抛运动1.性质:平抛运动是加速度恒为重力加速度g 的匀变速曲线运动,轨迹是抛物线. 2.规律:以抛出点为原点,以水平方向(初速度v 0方向)为x 轴,以竖直向下的方向为y 轴建立平面直角坐标系,则(1)水平方向:做匀速直线运动,速度:v x =v 0,位移:x =v 0t .(2)竖直方向:做自由落体运动,速度:v y =gt ,位移:y =12gt 2.(3)合运动①合速度:v =v 2x +v 2y ,方向与水平方向夹角为θ,则tan θ=v y v 0=gt v 0.②合位移:x 合=x 2+y 2,方向与水平方向夹角为α,则tan α=y x =gt 2v 0.2、斜抛运动 1.性质加速度为g 的匀变速曲线运动,轨迹为抛物线.2.规律(以斜向上抛为例说明,如图所示)(1)水平方向:做匀速直线运动,v x =v 0cos θ. (2)竖直方向:做竖直上抛运动,v y =v 0sin θ-gt .考点一 平抛运动的基本规律及应用1.飞行时间:由t =2hg知,时间取决于下落高度h ,与初速度v 0无关.2.水平射程:x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关.3.落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v y v x =2ghv 0,所以落地速度也只与初速度v 0和下落高度h 有关.4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图甲所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.6.“化曲为直”思想在抛体运动中的应用(1)根据等效性,利用运动分解的方法,将其转化为两个方向上的直线运动,在这两个方向上分别求解.(2)运用运动合成的方法求出平抛运动的速度、位移等.第4章 匀速圆周运动一、描述圆周运动的物理量1.线速度:描述物体圆周运动的快慢,v =Δs Δt =2πrT .2.角速度:描述物体转动的快慢,ω=ΔθΔt =2πT .3.周期和频率:描述物体转动的快慢,T =2πr v ,T =1f.4.向心加速度:描述线速度方向变化的快慢.a n =r ω2=v 2r =ωv =4π2T2r .5.向心力:作用效果产生向心加速度,F n =ma n . 二、匀速圆周运动和非匀速圆周运动的比较项目 匀速圆周运动 非匀速圆周运动 定义 线速度大小不变的圆周运动 线速度大小变化的圆周运动 运动特点 F 向、a 向、v 均大小不变,方向变化,ω不变 F 向、a 向、v 大小、方向均发生变化,ω发生变化 向心力 F 向=F 合 由F 合沿半径方向的分力提供三、离心运动1.定义:做圆周运动的物体,在合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动.2.供需关系与运动如图所示,F 为实际提供的向心力,则(1)当F =m ω2r 时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出;(3)当F <m ω2r 时,物体逐渐远离圆心;(4)当F >m ω2r 时,物体逐渐靠近圆心.考点一 水平面内的圆周运动1.运动实例:圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等.2.重力对向心力没有贡献,向心力一般来自弹力、摩擦力或电磁力.向心力的方向水平,竖直方向的合力为零.3.涉及静摩擦力时,常出现临界和极值问题. 4.水平面内的匀速圆周运动的解题方法(1)对研究对象受力分析,确定向心力的来源,涉及临界问题时,确定临界条件; (2)确定圆周运动的圆心和半径; (3)应用相关力学规律列方程求解. 考点二 竖直面内的圆周运动1.物体在竖直平面内的圆周运动有匀速圆周运动和变速圆周运动两种.2.只有重力做功的竖直面内的圆周运动一定是变速圆周运动,遵守机械能守恒. 3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题.4.一般情况下,竖直面内的变速圆周运动问题只涉及最高点和最低点的两种情形. 考点三 圆周运动的综合问题 圆周运动常与平抛(类平抛)运动、匀变速直线运动等组合而成为多过程问题,除应用各自的运动规律外,还要结合功能关系进行求解.解答时应从下列两点入手:1.分析转变点:分析哪些物理量突变,哪些物理量不变,特别是转变点前后的速度关系.2.分析每个运动过程的受力情况和运动性质,明确遵守的规律. 3.平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速等于平抛运动的水平初速;若物体平抛后进入圆轨道,圆周运动的初速等于平抛末速在圆切线方向的分速度.竖直平面内圆周运动的“轻杆、轻绳”模型1.模型特点在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接、小球在弯管内运动等),称为“轻杆模型”.2.模型分析轻绳模型 轻杆模型v 2(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.(2)确定临界点:v 临=gr ,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N 表现为支持力还是拉力的临界点.(3)定规律:用牛顿第二定律列方程求解.第5章 万有引力定律及其应用一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式:F =Gm 1m 2r,其中G =6.67×10-11 N ·m 2/kg 2. 3.适用条件:严格地说,公式只适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,其中r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离.二、宇宙速度三、经典力学的时空观和相对论时空观1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观同一过程的位移和时间的测量与参考系有关,在不同的参考系中不同.3.经典力学的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界.考点一 天体质量和密度的估算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R . 由于G Mm R 2=mg ,故天体质量M =gR 2G, 天体密度ρ=M V =M 43πR 3=3g 4πGR . (2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT2; ②若已知天体半径R ,则天体的平均密度ρ=M V =M 43πR 3=3πr 3GT 2R 3; ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.3.(1)利用圆周运动模型,只能估算中心天体质量,而不能估算环绕天体质量.(2)区别天体半径R 和卫星轨道半径r :只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径. 考点二 卫星运行参量的比较与运算1.卫星的各物理量随轨道半径变化的规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理必修二知识点总结(公式篇)有不少同学把提物理成绩的希望寄托在大量做题上,搞题海战术。

这是不妥当的,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高、目的要达到。

今天小编在这给大家整理了高中物理必修二知识点总结,接下来随着小编一起来看看吧!高中物理必修二知识点总结高中怎么才能学好物理学好物理的技巧在哪里物理是高中理科的一门重头戏,学好物理对于理科生提分十分重要。

物理这门自然科学课程比较难学,靠死记硬背是学不会的,那么,高中怎么学好物理?具体内容如下:就是在上课的前一天晚上对第二天所要学习的课本内容进行预习,通过课前的阅读了解知识重、难点和疑点,以便上课时有目的地听讲,提高学习效率。

通过课前预习,还可以培养自学能力和自学习惯。

上课要认真听讲,不走神。

不要自以为是,要虚心向老师请教,不要以为老师讲得简单而放弃听讲,如果真出现这种情况可以当成是复习、巩固。

尽量与老师保持一致、同步,不能自搞一套,否则就等于是完全自学了。

另一方面,还要注意学习老师分析问题解决问题的思路和方法,提高思维能力。

上课以听讲为主,还要有一个笔记本,有些东西要记下来。

知识结构、好的解题方法、好的例题、听不太懂的地方等等都要记下来。

课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。

笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的“好题本”。

辛辛苦苦建立起来的笔记本要进行编号,以后要经常看,要能做到爱不释手,一直保存。

要及时复习巩固所学知识。

对课堂上刚学过的新知识,课后一定要把它的引入、分析、概括、结论、应用等全过程进行回顾,并与大脑里已有的相近的旧知识进行对比,看看是否有矛盾,如果有矛盾就说明还没有真正弄懂。

这时就要重新思考,重新看书学习。

在弄懂所学知识的基础上,要及时完成作业,有能力的同学还可适量地做些课外练习,以检验掌握知识的准确程度,巩固所学知识。

要独立地(指不依赖他人),保质保量地完成一些题目。

题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。

任何人学习数理化不经过这一关是学不好的。

独立解题,可能有时慢一些,有时走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。

另外,对于完成作业要有如下的五点要求:①书写工整;②作图规范;③表达清楚;④推理严密;⑤计算准确。

还有作业批改完发下去以后,有错的要认真订正并装订保存好,留待以后复习时用。

有什么疑问或是弄错的地方要随手拿专门的本子记下,然后通过再思考琢磨或请教老师和同学来解决。

专门的本子命名为“疑难问题记录本”,记完一本要再换一本,每本都要编号保存着。

每学完一个板块,要把分散在各章的知识点连成线、铺成面、结成网,使学到的知识系统化、规律化、结构化,这样运用起来才能联想畅通、思想活跃。

要重视知识结构,要系统地掌握好知识结构,这样才能把零散的知识系统化起来。

大到整个物理的知识结构,小到力学的知识结构,甚至具体到章,如静力学的知识结构等等。

阅读适量的课外书籍,丰富知识,开阔视野。

实践表明,物理成绩优秀的同学,无不阅读了适量的课外书籍。

这是因为,不同的书籍,不同的作者会从不同角度用不同的方式来阐述问题,阅读者可以从各方面加深对物理概念和规律的理解,学到很多巧妙简捷的解题思路和方法。

见识一多,思路当然就活了。

总之,学习物理大致有六个层次,即:首先听懂,而后记住,练习会做,逐渐熟练,熟能生巧,有所创新,这样才能最终达到学习物理的最高境界。

物理学中的10个未解之谜当一个“事物”的某些性质是无限的时候,就会出现奇点,因此我们所知道的物理定律就会崩溃。

在黑洞的中心有一个无限小的点(里面塞满了有限数量的物质),这个点被称为奇点。

在数学中,奇点总是不断出现,例如坐标平面上的垂直线有一个“无限”的斜率。

实际上,垂直线的斜率是没有定义的。

裸奇点”是一个可以与宇宙其他部分互动的奇点。

黑洞有一个球形区域的视界,任何东西(包括光)都不能从中逃脱。

乍一看,你可能会认为裸奇点的问题至少在一定程度上已经被黑洞解决了,因为没有任何东西可以离开视界,奇点也不会影响到宇宙的其他部分。

但是奇点是否可以在没有事件视界的情况下形成,这仍然是一个悬而未决的问题。

如果它们能够存在,那么阿尔伯特·爱因斯坦的广义相对论将需要修正,因为当系统太接近奇点时,它就会崩溃。

裸奇点可能是虫洞,也可能是时间机器,但在自然界没有证据证明这一点。

测量是如何使量子波函数坍缩的在电子、光子和其他基本粒子的奇异领域,量子力学就是定律。

粒子的行为不像小球,而是像散布在大面积上的波。

每个粒子都由一个“波函数”或概率分布来描述,它告诉我们它的位置、速度和其他属性可能是什么,但不告诉我们这些特性是什么。

实际上,粒子的所有属性值都有一系列值,直到你通过实验测量其中一个属性时,粒子的波函数在该点“坍缩”。

但是,为什么测量一个粒子会使它的波函数坍缩,产生我们认为存在的具体现实。

这个问题被称为测量问题,似乎看起来很深奥。

弦理论正确吗当物理学家假设所有的基本粒子实际上都是一维环或“弦”,每一个都以不同的频率振动时,物理学就容易多了。

弦理论使物理学家能够调和控制粒子的量子力学定律和控制时空的广义相对论定律,并将四种基本的自然力统一到一个框架中。

但问题是,弦理论只能在一个有10或11维的宇宙中成立:3个大的空间维度,6或7个压缩的空间维度,和一个时间维度。

压缩的空间维度以及振动的弦本身大约是原子核的万亿分之一的十亿分之一。

我们没有办法探测到这么小的东西,也没有办法通过实验验证弦理论。

混沌中有秩序吗物理学家不能精确地解出描述流体行为的方程组。

事实上,我们不知道所谓的N-S方程的通解是否存在,如果存在一个解,它是否描述了各处的流体,或者包含了称为奇点的内在不可知的点。

因此,人们对混沌的本质并没有很好地理解。

物理学家和数学家想知道,天气仅仅是难以预测,还是本质上不可预测?湍流是否超越了数学描述,或者当你用正确的数学来处理它时,一切都有意义?四种基本力会统一吗宇宙地四种基本力:电磁力、强核力、弱核力和引力。

物理学家们知道,如果你把能量调到足够大,其中的三种力就会“结合”成一种力。

物理学家运行粒子加速器,理论上可以将电磁力和弱核力统一起来,在更高的能量下,强核力和引力也会发生同样的事情。

但是到目前为止,还没有一种粒子加速器能达到足够高的能量来统一电磁力和弱核力。

除了能量的问题外,大统一理论仍然存在一些问题,因为它们预测了迄今尚未证实的其他观测结果。

我们可能只是没有一个足够强大的粒子加速器,又或者物理学家关于宇宙如何运行的观点是错误的。

为什么物质比反物质更多有人假设宇宙会对称地对待物质和反物质,因此,在大爆炸的那一刻,应该产生等量的物质和反物质。

但如果这种情况真的发生了,那么这两种物质就会完全湮灭:质子与反质子相互抵消,电子与反电子(正电子)相互抵消,中子与反中子相互抵消,最终在一片无物质的广阔空间里,留下一片沉闷的光子海洋。

由于某种原因,有多余的物质没有被湮灭,但是这仍然没有公认的解释。

宇宙的最终命运会是如何宇宙的命运在很大程度上取决于一个未知的因素:Ω,一个测量整个宇宙物质和能量密度的指标。

如果Ω大于1,时空就会像一个巨大球体的表面一样“闭合”。

如果没有暗能量,这样的宇宙最终会停止膨胀,相反会开始收缩,最终在一场被称为“大收缩”的事件中坍缩。

如果宇宙是封闭的,但存在暗能量,球形宇宙将永远膨胀。

如果Ω小于1,那么空间的几何结构就将像马鞍的表面一样“开放”。

在这种情况下,它的最终命运是“大冻结”,接着是“大撕裂”:首先,宇宙的向外加速会撕裂星系和恒星,让所有物质变得寒冷而孤独。

接下来,加速度会变得如此之大,以致于它会压倒把原子结合在一起的力的作用,一切都会被扭开。

如果Ω=1,宇宙将是平的,像一个无限大的平面向四面八方延伸。

如果没有暗能量,这样的平面宇宙将永远膨胀,但速度会不断减速,接近停滞。

如果有暗能量,平坦的宇宙最终会经历失控的膨胀导致大撕裂。

声音会发光?虽然粒子物理学解释了许多未解决的问题,但在实验室的实验装置上还是可以观察到一些未解之谜,声致发光就是其中之一。

如果你拿一些水,用声波打它,就会形成气泡。

这些气泡是被高压包围的低压区,外部压力推动低压空气,气泡迅速破裂。

当这些气泡破裂时,它们会发出光,闪烁持续万亿分之一秒。

问题是,目前还不清楚光源是什么。

物理学家们测量了这些气泡内部的高温,温度达到了数万华氏度,并拍摄了许多它们发出的光的照片。

但是没有很好的解释声波是如何在气泡中产生这些光的。

标准模型之外还有什么标准模型是迄今为止最成功的物理理论之一。

四十年来,它经受住了实验的考验,新的实验不断证明它是正确的。

标准模型描述了构成我们周围一切的粒子的行为,并解释了为什么。

但是标准模型并不能解释一切。

引力到底是什么引力到底是什么?其他的力是由粒子介导的。

例如,电磁就是光子的交换。

弱核力由W玻色子和Z玻色子携带,而胶子携带将原子核结合在一起的强核力。

所有其他的力都可以被量化,这意味着它们可以被表示成单个的粒子,并具有不连续的值。

引力不是这样的。

大多数物理理论认为它应该由一个假设的称为引力子的无质量粒子携带。

问题是,目前还没有人发现引力子,而且我们也不清楚是否可以建造粒子探测器来观测它们,因为如果引力子与物质相互作用,它们会非常少地这样做,以至于在背景噪音的作用下它们是看不见的。

甚至还不清楚引力子是否有质量,如果它们有质量的话,它也非常非常小。

相关文档
最新文档