七中育才2021届初二下期数学第4周周测试卷

合集下载

七中育才2021届初二下期数学第4周周练试卷

七中育才2021届初二下期数学第4周周练试卷

成都七中育才学校2021届初二下数学第4周周练习出题人:陆恒 审题人:李施颖班级: 姓名: 学号:一、填空题(每小题3分,共30分)1. 下列各式:1(1)5x -、43x y π-、222x y -、1x x+、25x x ,其中分式共有( )A .2B .3C .4D . 52. 分式22212121x xx x x x x +---++,,的最简公分母是( ) A.2()(1)x x x -+B.22(1)(1)x x -+C.2(1)(1)x x x -+D.2(1)x x +3. 下列计算错误的是( )A .0.220.77a b a ba b a b++=-- ;B .3223x y x x y y = C .1a bb a-=-- D .123c c c+= 4.如果b a >,那么下列各式中正确的是 ( ) A.33-<-b a B.33ba < C.b a 22-<- D.b a ->- 5.下列多项式中能用完全平方公式分解的是( ) A. a 2+a -41 B.a 2+b 2-2ab C.2225b a +- D.24b -- 6.下列多项式分解因式正确的是( ).A.22169(13)a a a +-=- B.2214(12)x x +=+C.D.222()x xy y x y ++=+ 7. 下列多项式,能运用平方差公式分解的是( )A .42--m B .y x -2 C .122-y x D .()()22a m a m ++-8.若不等式组⎩⎨⎧<<-ax x 312的解集是x<2,则a 的取值范围是 ( )A.2<aB.2≤aC.2≥aD.2a >9. 已知正比例函数(21)y m x =-的图象上两点11(,)A x y ,22(,)B x y ,当12x x <时,有12y y >,则m 的取值范围是( )2244(2)a a a -+=-A.12m <B.12m >C.2m <D.0m > 10.在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( ) A .221v v +千米 B .2121v v v v +千米 C .21212v v v v +千米 D .无法确定二、填空题(每小题3分,共15分)11.在实数范围内,当x 时,32--x x 有意义.12.单项式18-b a yx 与b a y x12+的公因式是13.若)5)(3(+-x x 是q px x ++2的因式分解结果,则p 为 14.已知32=+b a ,2=ab ,则222a b ab ab ++= 15. 如果分式23273x x --的值为0,则x 的值应为 。

成都七中育才学校八年级下期期末数学模拟试题

成都七中育才学校八年级下期期末数学模拟试题

八年级下期期末数学模拟试题A 卷(共100分)1. 不等式250x +>的解集是( )A .52x <B .52x >C .52x >-D .52x <-2. 下列多项式能用完全平方公式进行分解因式的是( )A .21x +B .224x x ++C .221x x -+D .21x x ++3. 若分式||11x x -+的值为0,则( ) A .1x =± B .1x = C .1x =- D .0x =4. 要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .0x ≠C .1x ≠D .1x > 5. 计算:22()ab a b-的结果是( )A .aB .bC .b -D .16. 如图,已知直线1y ax b =+与2y mx n =+相交于点A (2,1-),若12y y >,则x 的取值范围是( )A .2x <B .2x >C .1x <-D .1x >-7. 如图,在ABC △中,D 、E 分别是BC 、AC 边的中点,若3DE =,则AB 的长是( )A .9B .5C .6D .4 8. 下列一元二次方程中,无实数根的是( )A .2440x x -+=B .2(2)1x -=C .2x x =-D .2220x x -+=9. 解关于x 的方程311x mx x -=--产生增根,则常数m 的值等于( ) A .2-B .1-C .1D .210. 如图,在ABC △中,75CAB ∠=,在同一平面内,将ABC△绕点A 旋转到AB C ''△的位置,使得CC AB '∥,则BAB '∠=( )A .30B .35C .40D .50二、填空题:(每小题4分,共20分)(第6题图)B C(第7题图) ABCB 'C '(第10题图)11. 已知关于x 的方程27x a x +=-的解为正数,则实数a 的取值范围是 。

四川省成都市成都市七中育才学校2023-2024学年八年级下学期期中数学试题(原卷版)

四川省成都市成都市七中育才学校2023-2024学年八年级下学期期中数学试题(原卷版)

成都七中育才学校2023—2024学年度(下)半期学业质量监测八年级数学A 卷(共100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. 下列图形中,不是中心对称图形的是( )A. B. C. D.2. 下列从左边到右边的变形,是因式分解的是( )A. B. C. D. 3. 实数a 、b 在数轴上对应的点如图所示,则下列结论正确的是( )A. B. C. D. 4. 如图,在中,,,且,.则长为( )A. 1B. 2C. 3D. 45. 如图,已知∠1+2+∠3+∠4=280°,那么∠5度数为( )A. 70°B. 80°C. 90°D. 100°6. 先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法.已知五个正数的和等于1,用反证法证明:这五个正数的()23434m m m m --=--()()2111m m m +-=-()()22422m n m n m n +=--()224529m m m --=--0a b +<0a b +>0ab >0b a ->ABC AB AC =AD BC ⊥6BC =5AC =AD中至少有一个大于或等于,先要假设这五个正数( )A. 都大于 B. 都小于C. 没有一个小于 D. 没有一个大于7. 如图所示,在边长为1的小正方形组成的的网格中有A ,B 两个格点,在网格的格点上任取一点C (点A ,B 除外),恰能使为等腰三角形的概率是( )A. B. C. D. 8. 在直角坐标平面内,一次函数的图象如图所示,那么下列说法错误的是( )A. 当时,B. 方程的解是C. 当时,D. 不等式的解集是二、填空题(本大题共5个小题,每小题4分,共20分)9. 分解因式的结果为_________.10. 若分式的值为0,则x 的值为__________.11. 一次函数的图象经过第一、二、三象限,则m 的取值范围是___________.151515151522⨯ABC 5747372725y x =-0x >5y >-250x -=52x =0y <5x <-250x ->52x >24x y y -293x x -+()233y m x =-+12. 如图,在中,,分别以点A 、点B为圆心,大于的长为半径画弧交于两点,过这两点的直线交于点D ,连接,,,则的周长为_______cm .13. 如图,在正方形网格中,格点绕某点逆时针旋转得到格点,点A 与点,点B 与点,点C 与点是对应点,请写出旋转中心的坐标__________.三、解答题(本大题共5个小题,共48分)14. (1)解方程:;(2)解不等式组:15. 如图,在平面直角坐标系中,的三个顶点的坐标分别为,,(每个小方格都是边长为1个单位长度的正方形),请完成以下画图并填空.ABC 90C ∠=︒12AB BC AD 10cm AB =6cm AC =ACD ABC ()0180αα︒<<111A B C △1A 1B 1C 31122x x x=+--4211123x x x x +>-+⎧⎪-⎨-≤⎪⎩ABC ()2,4A -()4,2B -()1,1C -(1)将先向左平移1个单位长度,再向下平移5个单位长度,画出平移后的;(2)画出关于原点O 成中心对称的;(3)将绕点O 顺时针旋转,画出旋转后得到的,则的坐标为________.16. 如图,已知中,D 、E 、F 分别为、、边上的中点.(1)求证:四边形是平行四边形;(2)若的周长为12,求的周长.17. 小王和小明约定远足一次,他们从相距的A 、B 两地同时出发相向而行,小王从A 地出发匀速步行到B 地,小明从B 地出发匀速y 千米步行到A 地,设他们的步行时间为x 小时,小王、小明距离A 地的距离分别为千米,与x 的函数关系图象如图所示,根据图象解答下列问题:(1)求出与x 的函数关系式;(2)x 为何值时,两人相距4千米?18. 如图1,在中,,,.ABC 111A B C △ABC 222A B C △ABC 90︒333A B C △3B ABC AB AC BC AEFD ABC DEF 10km 12y y 、12y y 、12y y 、ABCD Y 60A ∠=︒4=AD 8AB =(1)请计算的面积;(2)如图2,将沿着翻折,D 点的对应点为,线段交于点M ,请计算的长度;(3)如图3,在(2)的条件下,点P 为线段上一动点,过点P 作于点N ,交的延长线于点G .在点P的长度是否为定值?如果是,请计算出这个定值;如果不是,请说明理由.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如果的值为___________.20. 若关于x 的分式方程有增根,则m 的值为__________.21. 若一个正整数k 可以写成两个正整数a 、b 的平方差的形式,即:(其中a ,b 都是正整数,且),那么我们称为正整数k 的“欢喜数对”.如:,那么正整数9的“欢喜数对”为.今年是2024年,那么正整数2024的“欢喜数对”为__________(请写出所有满足条件的“欢喜数对”).22. 如图,在锐角中,点O 为和的角平分线交点,过点O 作一条直线l ,交线段,分别于点N ,点M .点B 关于直线l 的对称点为,连接,,分别交线段于点E ,点F .连接,.若,那么的度数为____________(用含有m 的代数式表示).ABCD Y ADC △AC D ¢CD 'AB AM CM PN AC ⊥PG AD '⊥AD 'PG +a b -=222a b a b a a b ⎛⎫+-⋅ ⎪-⎝⎭21533x m x x+=---22k a b =-1a b >>(),a b 22954=-()5,4ABC CAB ∠ABC ∠AB BC B 'B M 'B N 'AC EO FO ABC m ∠=︒EOF ∠23. 如图,在平面直角坐标系中,四边形为正方形,.直线分别交线段于点E ,G .直线分别交线段OA ,BC 于点D ,F .连接DE ,FG .四边形DEFG 的面积为__________;的最小值为___________.二、解答题(本大题共3个小题,共30分)24. 随着“低碳生活、绿色出行”理念的普及,新能源汽车逐渐成为人们喜爱的交通工具.某汽车销售中心决定采购A 型和B 型两款新能源汽车,已知每辆A 型汽车进价是每辆B 型汽车进价的1.5倍,若用300万元购进A 型汽车的数量比用240万元购进B 型汽车的数量少2辆.(1)每辆A 型和B 型汽车的进价分别为多少万元?(2)该汽车销售中心购进A 型和B 型汽车共20辆,且A 型汽车数量不超过B 型汽车的数量的2倍.已知A 型汽车的售价为35万元,B 型汽车的售价为23万元.如何制定进货方案,可以使得销售中心利润最大,请求出最大利润和此时的购进方案.25 如图1,直线与x ,y 轴分别交于B ,A 两点.直线与直线交于点C.的.OABC 8OA =1:2l y x m =+AB OC ,21:3l y x n =+EF DG +1:4l y x =+2:l y =1l(1)求点A 、B 的坐标;(2)如图2,若D 为直线上一点,连接,.的面积为,求D 点坐标;(3)如图3,绕O 旋转至.在旋转一周的过程中,直线上是否存在点G ,使得点B 、E 、F 、G 四点为顶点的四边形是平行四边形?若存在,请直接写出G 点坐标;若不存在,请说明理由.26. 探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究,在中,,,,D 为线段上一点.【初步感知】(1)如图1,连接,将绕点C 逆时针旋转至.连接,求度数;【深入探究】(2)如图2,将沿折叠至.射线与射线交于点F .若,求的面积;【拓展应用】(3)如图3,,连接.G 为线段AC 上一点,作点G 关于直线对称点H ,点G 绕B 顺时针旋转至点K ,连接.当时,求的长度.的的2l AD BD ABD△16AOB FOE V 2l Rt ABC △90ACB ∠=︒=45ABC ∠︒AB =AB CD CD 90︒CE ,AE DE BAE ∠ACD CD ECD CD BE 3FE EB =CEF △BD BC =CD CD 45︒HK HB ,HK HB =CG。

四川省成都七中育才学校 八年级数学下学期第3周周练试卷含解析新人教版含答案

四川省成都七中育才学校 八年级数学下学期第3周周练试卷含解析新人教版含答案

2015-2016学年四川省成都七中育才学校八年级(下)第3周周练数学试卷一.选择题1.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)2.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.73.已知一次函数y=(1﹣3m)x+1,若y随x的增大而减小,则m的取值范围是()A.m<B.m<﹣C.m>D.m>﹣4.如图,当y<0时,自变量x的范围是()A.x<﹣2 B.x>﹣2 C.x>2 D.x<25.点A(m﹣4,1﹣2m)在第三象限,则m的取值范围是()A.m>B.m<4 C.<m<4 D.m>46.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC 边于点D,交AC边与点E,连接AD,若AE=4cm,则△ABD的周长是()A.22cm B.20cm C.18cm D.15cm7.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折9.如图,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的三倍,则图中的四边形ACED的面积为()A.48cm2B.60cm2C.72cm2D.无法确定10.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C 为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)二.填空题11.如图,Rt△ABC中,AB=1cm,AC=2cm,将Rt△ABC绕点A按逆时针方向旋转26°得到△ADE,则DE=______cm,BAD=______.12.等腰三角形的周长为14,其一边长为4,那么它的底边为______.13.不等式组的解集是x<m﹣2,则m的取值应为______.14.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是______cm2.三.计算15.计算:﹣3+(2)解不等式,并将解集在数轴上表示出来:﹣>﹣2.16.一次函数y=2x﹣a与x轴的交点是点(﹣2,0)关于y轴的对称点,求一元一次不等式2x﹣a≤0的解集.(2)已知2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.四.作图题17.在如图的方格纸中,每个小正方形的边长都是为1.(1)画出将△ABC向下平移3格得到的△A1B1C1;(2)画出△A1B1C1以C1为旋转中心,顺时针旋转90°后得到的△A2B2C1;(3)求△A1B1C1旋转过程中,扫过部分的面积.五.解答题18.已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边△BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=3,AC=2.(1)求证:点A、C、E在一条直线上;(2)求∠BAD的度数;(3)求AD的长.19.某电器经营业主计划购进一批同种型号的挂式空调和电风扇.若购进8台空调和20台电风扇,需资金17400元.若购进10台空调和30台电风扇需资金22500元.(1)求挂式空调和电风扇每台的采购价格各是多少元?(2)该经营业主计划购进这两种电器共70台.而可用于购买这两种电器的资金不超过30000元.据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.试问该经营业主在保证最低利润3500元的基础上有哪几种进货方案?哪种方案获利最大?最大利润是多少?20.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.六、填空题(共4小题,每小题3分,满分20分)21.若不等式组有解,则m的取值范围是______.22.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=______度.23.如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m<360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为______.24.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度运动,连接AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为6cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由.(可在备用图中画出具体图形)2015-2016学年四川省成都七中育才学校八年级(下)第3周周练数学试卷参考答案与试题解析一.选择题1.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【考点】坐标与图形变化-平移.【分析】根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选A.【点评】此题考查了平移时,点的坐标变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.2.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.7【考点】平移的性质.【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离=BE=5﹣3=2,进而可得答案. 【解答】解:根据平移的性质, 易得平移的距离=BE=5﹣3=2,故选A .【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.3.已知一次函数y=(1﹣3m )x+1,若y 随x 的增大而减小,则m 的取值范围是( )A .m <B .m <﹣C .m >D .m >﹣ 【考点】一次函数的性质.【分析】根据y 随x 的增大而减小结合一次函数的性质即可得出关于m 的一元一次不等式,解不等式即可得出结论.【解答】解:由已知得:1﹣3m <0,解得:m >. 故选C .【点评】本题考查了一次函数的性质,解题的关键是得出关于m 的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的性质找出系数k 的取值范围是关键.4.如图,当y <0时,自变量x 的范围是( )A .x <﹣2B .x >﹣2C .x >2D .x <2 【考点】一次函数图象上点的坐标特征.【分析】通过观察函数图象,当y <0时,图象在x 轴左方,写出对应的自图象在x 轴左方变量的范围即可.【解答】解:由图象可得,一次函数的图象与x 轴的交点为(﹣2,0),当y <0时,x <﹣2. 故选:A .【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.5.点A (m ﹣4,1﹣2m )在第三象限,则m 的取值范围是( )A .m >B .m <4C .<m <4D .m >4 【考点】点的坐标;解一元一次不等式组.【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数. 【解答】解:∵点A (m ﹣4,1﹣2m )在第三象限,∴,解得<m <4. 故选C .【点评】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点.该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.6.如图:△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边与点E ,连接AD ,若AE=4cm ,则△ABD 的周长是( )A .22cmB .20cmC .18cmD .15cm【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质可得AE=EC,AD=CD,然后求出△ABD的周长=AB+BC,代入数据计算即可得解.【解答】解:∵△ABC的边AC对折顶点C和点A重合,∴AE=EC,AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=AE+EC=4+4=8,∵△ABC的周长为30cm,∴AB+BC=30﹣8=22cm,∴△ABD的周长是22cm.故选A.【点评】本题考查了翻折变换的性质,熟记翻折前后的两个图形能够完全重合得到相等的边是解题的关键.7.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°【考点】旋转的性质.【分析】首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选:B.【点评】此题主要考查了旋转的性质,关键是熟练掌握旋转前、后的图形全等,进而可得到一些对应角相等.8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【考点】一元一次不等式的应用.【分析】本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200×﹣800≥800×5%,解出x的值即可得出打的折数.【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.【点评】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.9.如图,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的三倍,则图中的四边形ACED的面积为()A.48cm2B.60cm2C.72cm2D.无法确定【考点】平移的性质.【分析】由于△DEF是△ABC平移得到的,根据平移的性质可得AD∥CF,AD=CF,那么四边形ACFD是平行四边形,又知S△ABC=12,CF=3BC,△ABC和▱ACFD的高相等,易求S▱ACFD=72,进而可求四边形ACED的面积.【解答】解:∵△DEF是△ABC平移得到的,∴AD∥CF,AD=CF,∴四边形ACFD是平行四边形,∵S△ABC=12,CF=3BC,△ABC和▱ACFD的高相等,∴S▱ACFD=12×3×2=72,∴S四边形ACED=S▱ACFD﹣S△DEF=S▱ACFD﹣S△ABC=72﹣12=60(cm2),故选:B.【点评】本题考查了平行四边形的判定和性质,解题的关键是先求出▱ACFD的面积,熟练掌握平移的性质.10.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C 为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)【考点】坐标与图形变化-旋转.【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.二.填空题11.如图,Rt△ABC中,AB=1cm,AC=2cm,将Rt△ABC绕点A按逆时针方向旋转26°得到△ADE,则DE= cm,BAD= 26°.【考点】旋转的性质.【分析】利用勾股定理可得BC的值,DE的值和BC的值相等,所求的角的度数正好等于旋转角.【解答】解:BC==,由旋转可得DE=BC=,∠BAD=旋转角的度数=26°,故答案为:,26°.【点评】考查旋转性质的应用;用到的知识点为:对应点与旋转中心连线的夹角是旋转角;旋转前后,对应线段相等.12.等腰三角形的周长为14,其一边长为4,那么它的底边为4或6 .【考点】等腰三角形的性质;三角形三边关系.【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是4时,则另两边是4,6,且4+4>6,6﹣4<4,满足三边关系定理,当底边是4时,另两边长是5,5,5+4>5,5﹣4<5,满足三边关系定理,∴该等腰三角形的底边为4或6,故答案为:4或6.【点评】本题考查了等腰三角形的性质,应从边的方面考查三角形,涉及分类讨论的思想方法,难度适中.13.不等式组的解集是x<m﹣2,则m的取值应为m≥﹣3 .【考点】解一元一次不等式组.【分析】解不等式的口诀中同小取小,所以由题可知m﹣2≤2m+1,解答即可.【解答】解:因为不等式组的解集是x<m﹣2,根据“同小取小”的原则,可知m﹣2≤2m+1,解得,m≥﹣3.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是cm2.【考点】解直角三角形;旋转的性质.【分析】阴影部分为直角三角形,且∠C′AB=30°,AC′=5,解此三角形求出短直角边后计算面积.【解答】解:∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=×5×tan30°×5=.【点评】本题考查旋转的性质和解直角三角形.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.三.计算15.计算:﹣3+(2)解不等式,并将解集在数轴上表示出来:﹣>﹣2.【考点】二次根式的加减法;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)根据二次根式的乘除法,可化简二次根式,根据合并同类项二次根式,可得答案;(2)根据解不等式的步骤,可得答案.【解答】解:(1)原式=4﹣+=;(2)去分母,得3(x﹣1)﹣2(x+4)>﹣12,去括号,得3x﹣3﹣2x﹣8>﹣12移项,得3x﹣2x>﹣12+3+8合并同类项,得x>﹣1.【点评】本题考查了二次根式的加减,先化简二次根式,再合并同类二次根式.16.一次函数y=2x﹣a与x轴的交点是点(﹣2,0)关于y轴的对称点,求一元一次不等式2x﹣a≤0的解集.(2)已知2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.【考点】一次函数与一元一次不等式.【分析】(1)先根据点关于y轴对称的坐标特点得到一次函数y=2x﹣a与x轴的交点是(2,0),把(2,0)代入解析式可求出a得值,然后把a得值代入2x﹣a≤0,再解不等式即可;(2)根据已知等式得a=,b=,代入a≤4<b中,解不等式组即可.【解答】解:(1)∵(﹣2,0)关于y轴得对称点为(2,0),把(2,0)在y=2x﹣a得0=4﹣a,解得a=4.当a=4时,2x﹣4≤0,解得x≤2;(2)依题意,得a=,b=,代入a≤4<b中,得,解得,∴不等式组的解集为:﹣2<x≤3.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.四.作图题17.在如图的方格纸中,每个小正方形的边长都是为1.(1)画出将△ABC向下平移3格得到的△A1B1C1;(2)画出△A1B1C1以C1为旋转中心,顺时针旋转90°后得到的△A2B2C1;(3)求△A1B1C1旋转过程中,扫过部分的面积.【考点】作图-旋转变换;作图-平移变换.【分析】(1)利用网格特点和平移的性质画出点AB、C的对应点A1、B1、C1即可;(2)利用网格特点和旋转的性质画出点A1、B1的对应点A2、B2即可;(3)△A1B1C1旋转过程中,扫过部分的面积可化为一个扇形和一个三角形,然后根据扇形面积公式和三角形面积公式计算即可.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C1为所作;(3)△A1B1C1旋转过程中,扫过部分的面积=S扇形B1C1B2+S△B2C1A2=+×2×5=π+5.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.五.解答题18.已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边△BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=3,AC=2.(1)求证:点A、C、E在一条直线上;(2)求∠BAD的度数;(3)求AD的长.【考点】旋转的性质;等边三角形的性质.【分析】(1)根据等边三角形的性质由△BCD为等边三角形得到∠3=∠4=60°,DC=DB,再根据旋转的性质得到∠5=∠1+∠4=∠1+60°,则∠2+∠3+∠5=∠2+∠1+120°,再根据三角形内角和定理得到∠1+∠2=180°﹣∠BAC=60°,于是∠2+∠3+∠5=60°+120°=180°,即可得到点A、C、E 在一条直线上;(2)由于点A、C、E在一条直线上,△ABD绕着点D按顺时针方向旋转60°后得到△ECD,则∠ADE=60°,DA=DE,得到△ADE为等边三角形,则∠DAE=60°,然后利用∠BAD=∠BAC﹣∠DAE计算即可;(3)由于点A、C、E在一条直线上,则AE=AC+CE,根据旋转的性质得到CE=AB,则AE=AC+AB=2+3=5,而△ADE为等边三角形,则AD=AE=5.【解答】(1)证明:∵△BCD为等边三角形,∴∠3=∠4=60°,DC=DB,∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠5=∠1+∠4=∠1+60°,∴∠2+∠3+∠5=∠2+∠1+120°,∵∠BAC=120°,∴∠1+∠2=180°﹣∠BAC=60°,∴∠2+∠3+∠5=60°+120°=180°,∴点A、C、E在一条直线上;(2)解:∵点A、C、E在一条直线上,而△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠ADE=60°,DA=DE,∴△ADE为等边三角形,∴∠DAE=60°,∴∠BAD=∠BAC﹣∠DAE=120°﹣60°=60°,;(3)解:∵点A、C、E在一条直线上,∴AE=AC+CE,∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴CE=AB,∴AE=AC+AB=2+3=5,∵△ADE为等边三角形,∴AD=AE=5.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质.19.某电器经营业主计划购进一批同种型号的挂式空调和电风扇.若购进8台空调和20台电风扇,需资金17400元.若购进10台空调和30台电风扇需资金22500元.(1)求挂式空调和电风扇每台的采购价格各是多少元?(2)该经营业主计划购进这两种电器共70台.而可用于购买这两种电器的资金不超过30000元.据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.试问该经营业主在保证最低利润3500元的基础上有哪几种进货方案?哪种方案获利最大?最大利润是多少?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)挂式空调价格×台数+电风扇价格×台数=总价,列出二元一次方程组,解答;(2)挂式空调单价×台数+电风扇单价×台数≤总价,挂式空调利润×台数+电风扇利润×台数≥总利润,列出一元一次不等式组,解答;【解答】解:(1)设挂式空调每台的价格是x元,电风扇每台的价格是 y元,根据题意得:,解方程组得:;答:挂式空调每台的价格是1800元,电风扇每台的价格是 150元.(2)设购买挂式空调z台,则电风扇70﹣z台,根据题意得:①200z+30(70﹣z)≥3500,②1800z+150(70﹣z)≤30000;由①②解得:8.2≤z≤11.82,因为z为整数,所以一共有3种进货方案:①当购买挂式空调9台,电风扇61台时,利润是:200×9+30×61=3630元,②当购买挂式空调10台,电风扇60台时,利润是:200×10+30×60=3800元,③当购买挂式空调11台,电风扇59台时,利润是:200×11+30×59=3970元,所以,当购买挂式空调11台,电风扇59台时,利润最大,最大利润是3970元.【点评】本题主要考查了一元一次不等式组在实际问题中的应用.20.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.【考点】正方形的性质;全等三角形的判定与性质;勾股定理;旋转的性质.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM 求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【解答】解:(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DC M=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF;(2)设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM﹣MF=BM﹣EF=4﹣x,∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=,则EF=.【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.六、填空题(共4小题,每小题3分,满分20分)21.若不等式组有解,则m的取值范围是m<2 .【考点】解一元一次不等式组.【分析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.【解答】解:由不等式1<x≤2,要使x>m与1<x≤2有解,如下图只有m<2时,1<x≤2与x>m有公共部分,∴m<2.【点评】本题考查逆向思维,给出不等式来判断是否存在解得问题,是一道好题.22.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 15 度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.【点评】本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.23.如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m<360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为30°或60°或150°或300°.【考点】旋转的性质;等腰三角形的性质.【分析】分别画出m=30°或60°或150°或300°时的图形,根据图形即可得到答案.【解答】解:如图1,当m=30°时,BP=BC,△BPC是等腰三角形;如图2,当m=60°时,PB=PC,△BPC是等腰三角形;如图3,当m=150°时,PB=BC,△BPC是等腰三角形;如图4,当m=300°时,PB=PC,△BPC是等腰三角形;综上所述,m的值为30°或60°或150°或300°,故答案为30°或60°或150°或300°.【点评】本题主要考查了旋转的性质以及等腰三角形的性质的知识,解答本题的关键是进行分类讨论求m的值,此题很容易漏解,难度一般.24.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度运动,连接AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为6cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由.(可在备用图中画出具体图形)【考点】全等三角形的判定;三角形的面积;等腰三角形的判定;勾股定理.【分析】(1)运用勾股定理直接求出;(2)首先求出△ABD中BD边上的高,然后根据面积公式列出方程,求出BD的值,分两种情况分别求出t的值;(3)假设△ABD≌△ACE,根据全等三角形的对应边相等得出BD=CE,分别用含t的代数式表示CE和BD,得到关于t的方程,从而求出t的值.【解答】解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴2AB2=BC2,∴AB==3cm;(2)过A作AF⊥BC交BC于点F,则AF=BC=3cm,∵S△ABD=6cm2,∴AF×BD=12,∴BD=4cm.若D在B点右侧,则CD=2cm,t=1s;若D在B点左侧,则CD=10cm,t=5s.(3)动点E从点C沿射线CM方向运动2秒或当动点E从点C沿射线CM的反向延长线方向运动6秒时,△ABD≌△ACE.理由如下:(说理过程简要说明即可)①当E在射线CM上时,D必在CB上,则需BD=CE.∵CE=t,BD=6﹣2t∴t=6﹣2t∴t=2证明:∵AB=AC,∠B=∠ACE=45°,BD=CE,∴△ABD≌△ACE.②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.∵CE=t,BD=2t﹣6∴t=2t﹣6∴t=6证明:∵AB=AC,∠ABD=∠ACE=135°,BD=CE∴△ABD≌△ACE.【点评】本题考查了等腰直角三角形、全等三角形的性质及面积,综合性强,题目难度适中.。

四川省成都市七中学育才学校2024届数学八年级第二学期期末统考试题含解析

四川省成都市七中学育才学校2024届数学八年级第二学期期末统考试题含解析

四川省成都市七中学育才学校2024届数学八年级第二学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分)1.如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是( )A .等腰梯形B .直角梯形C .菱形D .矩形2.已知点(-2,y 1),(-1,y 2),(4,y 3)在函数y =的图象上,则( )A .y 2<y 1<y 3B .y 1<y 2<y 3C .y 3<y 1<y 2D .y 3<y 2<y 13.化简()()AB CD BE DE -+-的结果是( ).A .CAB .AC C .0D .AE4.如图,在△ABC 中,∠A =45°,∠B =30°,CD ⊥AB ,垂足为D ,CD =1,则AB 的长为( )A .3B .23C .31+D .231+5.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm6.平行四边形具有的特征是( )A .四个角都是直角B .对角线相等C .对角线互相平分D .四边相等7.下列计算正确的是 ()A .822-=B .()236-=C .42232a a a -=D .()235a a -=8.在矩形ABCD 中,下列结论中正确的是( )A .AB CD = B .AC BD = C .AO OD = D .BO OD =-9.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连接EB ,EC ,DB ,下列条件中,不能使四边形DBCE 成为菱形的是( )A .AB =BE B .BE ⊥DC C .∠ABE =90°D .BE 平分∠DBC10.在二次根式2a -中,a 能取到的最小值为( )A .0B .1C .2D .2.5二、填空题(每小题3分,共24分)11.函数19y x =-自变量的取值范围是______. 12.某物体对地面的压强()2/p N m 随物体与地面的接触面积()2S m 之间的变化关系如图所示(双曲线的一支).如果该物体与地面的接触面积为20.24m ,那么该物体对地面的压强是__________()2/N m .13.平行四边形ABCD 中,∠A -∠B =20°,则∠A =______,∠B =_______.14.已知一元二次方程2816x x -=-,则根的判别式△=____________.15.已知正方形的一条对角线长为22,则该正方形的边长为__________cm .16.某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y (米)与王艳出发时间x (分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.17.如图,已知直线l 1:y =k 1x +4与直线l 2:y =k 2x ﹣5交于点A ,它们与y 轴的交点分别为点B ,C ,点E ,F 分别为线段AB 、AC 的中点,则线段EF 的长度为______.18.如图,已知矩形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD ,BC 于E ,F ,若3AB =,4BC =,则阴影部分的面积是______.三、解答题(共66分)19.(10分)如图,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,∠BAC 的平分线AE 交C 于F ,EG ⊥AB 于G ,请判断四边形GECF 的形状,并证明你的结论.20.(6分)如图,一次函数y kx b =+与反比例函数m y x =的图象交于A (1,4),B (4,n )两点. (1)求反比例函数和一次函数的解析式; (2)点P 是x 轴上的一动点,当PA+PB 最小时,求点P 的坐标;(3)观察图象,直接写出不等式m kx b x+≥的解集.21.(6分)小红帮弟弟荡秋千(如图1),秋千离地面的高度h (m )与摆动时间t (s )之间的关系如图2所示.(1)根据函数的定义,请判断变量h 是否为关于t 的函数?(2)结合图象回答:①当t=0.7s 时,h 的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?22.(8分)解不等式组:2(1)421142x x x x <-+⎧⎪⎨+-≥⎪⎩,并在数轴上表示出它的解集.23.(8分)根据要求,解答下列问题.(1)根据要求,解答下列问题.①方程x2-2x+1=0的解为________________________;②方程x2-3x+2=0的解为________________________;③方程x2-4x+3=0的解为________________________;…… ……(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x+8=0的解为________________________;②关于x的方程________________________的解为x1=1,x2=n.(3)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.24.(8分)如图,点P是正方形ABCD的边BC上的任意一点,连接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求证:DE=BF+EF.25.(10分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图1摆放时,都可以用“面积法”来证明,请你利用图1或图1证明勾股定理(其中∠DAB=90°)求证:a1+b1=c1.26.(10分)直线y=x+b与双曲线y=mx交于点A(﹣1,﹣5).并分别与x轴、y轴交于点C、B.(1)直接写出b=,m=;(2)根据图象直接写出不等式x+b<mx的解集为;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在,请求出D的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分)1、D【解题分析】首先作出图形,根据三角形的中位线定理,可以得到1EF BD2=,1GH BD2=,1EH AC2=,1FG AC.2=再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.【题目详解】解:连接AC,BD.∵E,F是AB,AD的中点,即EF是ABD的中位线.1EF BD2∴=,同理:1GH BD2=,1EH AC2=,1FG AC2=.又等腰梯形ABCD中,AC BD=.EF FG GH EH∴===.∴四边形EFGH是菱形.OP是EFG的中位线,∴EF EG ,PM //FH ,同理,NM EG ,∴EF NM ,∴四边形OPMN 是平行四边形.PM //FH ,OP //EG , 又菱形EFGH 中,EG FH ⊥,OP PM ∴⊥∴平行四边形OPMN 是矩形.故选:D .【题目点拨】本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH 和四边形OPMN 的边的关系.2、A【解题分析】把x 的取值分别代入函数式求y 的值比较即可.【题目详解】解:由 y =得,y 1==-4, y 2==-8, y 3==2 ,∴y 2<y 1<y 3 .故答案为:A【题目点拨】本题考查了函数值的大小比较,已知自变量值比较函数值有3种方法,①根据函数解析式求出函数值直接比较;②根据函数性质比较;③画出函数图像进行比较,其中①是最容易掌握的方法.3、B【解题分析】根据三角形法则计算即可解决问题.【题目详解】解:原式()()AB BE CD DE =+-+AE CE =-AE EC =+ AC =,故选:B.【题目点拨】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.4、C【解题分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.【题目详解】在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,在Rt△CDB中,∠B=30°,CD=1,则,故.故选C.【题目点拨】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.5、D【解题分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【题目详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【题目点拨】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.6、C【解题分析】根据平行四边形的性质进行选择.【题目详解】平行四边形对角线互相平分,对边平行且相等,对角相等.故选C【题目点拨】本题考核知识点:平行四边形性质. 解题关键点:熟记平行四边形性质.7、A【解题分析】A. ==,故正确;-=,故不正确;B. ()239C. 4232与不是同类项,不能合并,故不正确;a aD. ()236-=,故不正确;a a故选A.8、C【解题分析】根据相等向量及向量长度的概念逐一进行判断即可.【题目详解】相等向量:长度相等且方向相同的两个向量.A. AB CD=-,故该选项错误;=,但方向不同,故该选项错误;B. AC BD=,故该选项正确;C. 根据矩形的性质可知,对角线互相平分且相等,所以AO ODD. BO OD=,故该选项错误;故选:C.【题目点拨】本题主要考查相等向量及向量的长度,掌握相等向量的概念是解题的关键.9、A【解题分析】根据菱形的判定方法一一判断即可;【题目详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵BE⊥DC,∴对角线互相垂直的平行四边形为菱形,故本选项正确;C、∵∠ABE=90°,∴BD=DE,∴邻边相等的平行四边形为菱形,故本选项正确;D、∵BE平分∠DBC,∴对角线平分对角的平行四边形为菱形,故本选项正确.故选A.【题目点拨】本题考查了平行四边形的判定以及菱形的判定,正确掌握菱形的判定与性质是解题关键.10、C【解题分析】根据二次根式的定义求出a的范围,再得出答案即可.【题目详解】a-2≥0,即a≥2,所以a能取到的最小值是2,故选C.【题目点拨】本题考查了二次根式的定义,能熟记二次根式的定义是解此题的关键.二、填空题(每小题3分,共24分)x>11、9【解题分析】根据分式与二次根式的性质即可求解.【题目详解】依题意得x-9>0,x>解得9故填:9x >.【题目点拨】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.12、500【解题分析】首先通过反比例函数的定义计算出比例系数k 的值,然后可确定其表达式,再根据题目中给出的自变量求出函数值【题目详解】 根据图象可得120P S =当S=0.24时,P=1200.24 =500,即压强是500Pa. 【题目点拨】此题考查反比例函数的应用,列方程是解题关键13、100°, 80°【解题分析】根据平行四边形的性质得出AD ∥BC ,求出∠A+∠B=180°,解方程组求出答案即可.【题目详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∠B=80°,故答案为:100°,80°.【题目点拨】本题考查了平行四边形的性质,能根据平行线得出∠A+∠B=180°是解此题的关键,注意:平行四边形的对边平行. 14、0【解题分析】根据一元二次方程根的判别式24b ac =-,将本题中的a 、b 、c 带入即可求出答案.【题目详解】解:∵一元二次方程2816x x -=-,整理得:28160x x -+=,可得:a 1,b 8,c 16==-=,∴根的判别式()2248411664640b ac =-=--⨯⨯=-=; 故答案为0.【题目点拨】本题考查一元二次方程根的判别式,首先把方程化成一般形式,得出一元二次方程的二次项系数、一次项系数与常数项,再根据根的判别式公式求解,解题中需注意符号问题.15、2【解题分析】根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.【题目详解】解:∵正方形的对角线长为,设正方形的边长为x,∴2x² 解得:x=2∴正方形的边长为:2故答案为2.【题目点拨】本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.16、1.【解题分析】根据函数图象可知,王艳出发10分钟后,爸爸追上了王艳,根据此时爸爸的5分钟的行程等于王艳前5分钟的行程与后5分钟的行程和,得到爸爸的速度与王艳骑自行车的速度的关系,再根据函数图象可知,爸爸到赶到公司时,公司距离演奏厅的距离为9400米,再根据已知条件,便可求得家与演奏厅的距离,由函数图象又可知,王艳到达演奏厅的时间为503秒,据此列出方程,求得王艳的速度与爸爸的速度,进而便可求得结果. 【题目详解】解:设王艳骑自行车的速度为xm /min ,则爸爸的速度为:(5x +152⨯x )÷5=32x (m /min ), 由函数图象可知,公司距离演奏厅的距离为9400米,∵公司位于家正西方3900米,∴家与演奏厅的距离为:9400﹣3900=5500(米),根据题意得,5x+5×12x +(50103-)×3(2)2x⋅=5500,解得,x=200(m/min),∴爸爸的速度为:33002x=(m/min)∴王艳到达演奏厅时,爸爸距离公司的距离为:5×300+3900﹣(50103-)×300=1(m).故答案为:1.【题目点拨】本题考查了函数图象与行程问题,解题的关键是将函数图象与实际的行程对应起来,列出方程,解出相关量.17、.【解题分析】根据直线方程易求点B、C的坐标,由两点间的距离得到BC的长度.所以根据三角形中位线定理来求EF的长度.【题目详解】解:∵直线l1:y=k1x+4,直线l2:y=k2x﹣5,∴B(0,4),C(0,﹣5),则BC=1.又∵点E,F分别为线段AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=.故答案是:.18、1【解题分析】首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△AOD的面积.【题目详解】∵四边形ABCD是矩形,∴OA=OC,AD∥BC,∴∠AEO=∠CFO.在△AOE和△COF中,∵AEO CFOOA OCAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF,∴S△AOE=S△COF,∴S阴影= S△COF +S△EOD =S△AOE+S△EOD∵S △AOD 14=BC •AD =1,∴S 阴影=1. 故答案为:1.【题目点拨】本题考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的14,是解决问题的关键.三、解答题(共66分)19、四边形GECF 是菱形,理由详见解析.【解题分析】试题分析:根据全等三角形的判定定理HL 进行证明Rt △AEG ≌Rt △AEC (HL ),得到GE=EC ;根据平行线EG ∥CD 的性质、∠BAC 平分线的性质以及等量代换推知∠FEC=∠CFE ,易证CF=CE ;从而根据邻边相等的平行四边形是菱形进行判断.试题解析:四边形GECF 是菱形,理由如下:∵∠ACB=90°,∴AC ⊥EC .又∵EG ⊥AB ,AE 是∠BAC 的平分线,∴GE=CE .在Rt △AEG 与Rt △AEC 中,{GE CE AE AE==, ∴Rt △AEG ≌Rt △AEC (HL ),∴GE=EC ,∵CD 是AB 边上的高,∴CD ⊥AB ,又∵EG ⊥AB ,∴EG ∥CD ,∴∠CFE=∠GEA ,∵Rt △AEG ≌Rt △AEC ,∴∠GEA=∠CEA ,∴∠CEA=∠CFE ,即∠CEF=∠CFE ,∴GE=EC=FC,又∵EG∥CD,即GE∥FC,∴四边形GECF是菱形.考点:菱形的判定.20、(1)反比例函数的解析式为4yx=;一次函数的解析式为y=-x+5;(2)点P的坐标为(175,0);(3)x<0或1≤x≤4【解题分析】(1)将点A(1,4)代入myx=可得m的值,求得反比例函数的解析式;根据反比例函数解析式求得点B坐标,再由A、B两点的坐标可得一次函数的解析式;(2)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,根据B的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x轴的交点P即可.(3)根据图象得出不等式mkx bx+≥的解集即可。

四川省成都七中育才学校初2021届初二上数学第八周周练考试试卷(Word版,无答案)

四川省成都七中育才学校初2021届初二上数学第八周周练考试试卷(Word版,无答案)

四川省成都七中育才学校初2021届初二上数学第八周周练考试试卷(Word 版,无答案) 成都七中育才学校初 2021 届八年级上期第八周数学周练A 卷(共 100 分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分)1 )A .3B .±3C D2.下列各数中 3.14151π111 )个.A .2B .3C .4D .53.在数轴上表示不等式 x +5≥1 的解集,正确的是( )A .B .C .D .4.下列计算正确的是( )A .= C =D5.以下列各组数据为边长作三角形,其中不能组成直角三角形的是( )A .9、12、15B .1、1C .5、12、13D .13、14、156.若点 P 是第二象限内的点,且点 P 到 x 轴的距离是 4,到 y 轴的距离是 3,则点 P 的坐标是( )A .(﹣4,3)B .(4,﹣3)C .(﹣3,4)D .(3,﹣4)7 )A .5.5﹣6.0 之间B .6.0﹣6.5 之间C .6.5﹣7.0 之间D .7.0﹣7.5 之间8.若直角三角形两直角边长分别为 5,12,则斜边上的高为( )A .6B .8C .1813 D .60139.若1x y =⎧⎨=⎩是关于 x 、y 的方程 x +ay =3 的解,则 a 值为()A .1B .2C .3D .410.实数 a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )四川省成都七中育才学校初2021届初二上数学第八周周练考试试卷(Word版,无答案)A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0二、填空题(本大题共 5 个小题,每小题 4 分,共 20 分) 11有意义,则 x 的取值范围是.127,则实数 a =.13.若(m﹣1)x |m |+3>0 是关于 x 的一元一次不等式,则 m =.14.将点A (3,2)沿 x 轴负方向向左平移4 个单位长度后得到点 A ′,则点 A '关于 x轴的对称点的坐标是.15.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点 C 与点 A 重合,折痕为 DE ,则△ABE 的周长为.三、解答题(本大题共 5 个小题,共 50 分)16.(18 分)计算:(1 (2(2+(3)解方程组: 320x y x y -=⎧⎨+=⎩ (4)解不等式组253(2)123x x x x +≤+⎧⎪-⎨<⎪⎩并写出不等式组的整数解.17.(6 分)已知 2a ﹣1 的平方根是±3,3a ﹣b ﹣1 的立方根是 2,求 a + 12b 的平方根.18.(8 分)如图,在直角坐标平面内,△ABC 的三个顶点的坐标分别为 A(0,3),B (3,4),C (2,2).(1)填空:AB =,S △ABC = ;(2)画出△ABC 关于 x 轴的对称图形△A 1B 1C 1,再画出△A 1B 1C 1 关于y 轴的对称图形△A 1B 2C 2;(3)若 M 是△ABC 内一点,具坐标是(a ,b ),则△A 1B 2C 2 中,点 M的对应点的坐标为.19.(8 分)已知关于 x , y 的方程组34x y m x y m -=⎧⎨+=+⎩的解满足不等式 x + 2 y > 1 ,求满足条件的 m 的负. 整.数.值..20.(10 分)如图,△ABC 是等腰直角三角形,∠ACB =90°,AC =BC ,D 在 BC 上且∠BAD =15°,E是 AD 上的一点,现以 CE 为直角边,C 为直角顶点在 CE 的下方作等腰直角三角形 ECF ,连接 BF .(1)请问当 E 在 AD 上运动时(不与 A 、D 重合),∠ABF 的大小是否发生改变?若不改变,请求出∠ABF 的度数;若要改变,请说出它是如何改变的;(2)若 AB =62,点 G 为射线 BF 上的一点,当 CG =5 时,求 BG 的长.B 卷(共 20 分)一、填空題(每小题 3 分,共 9 分)21.已知2731240x x x +>-⎧⎨-≥⎩,则8x -+= .22.已知关于 x ,y 的二元一次组21022x y m x y m +=+⎧⎨-=⎩的解是斜边长为 5 的直角三角形两直角边长,则 m = . 23.如图所示把多块大小不同的 30°直角三角板,摆放在平面直角坐标系中,第一块三角板 AOB 的一条 直角边与 x 轴重合且点 A 的坐标为(2,0),∠ABO =30°;第二块三角板的斜边 BB 1 与第一块三角板的斜边 AB 垂直且交 x 轴于点 B 1;第三块三角板的斜边 B 1B 2 与第二块三角板的斜边 BB 1垂直且交 y 轴于点 B 2;第四块三角板斜边 B 2B 3 与第三块三角板的斜边 B 1B 2 垂直且交 x 轴于点 B 3;…按此规律继续下去,则点B 2018 的坐标为 .二、解答题(共 11 分)24. 如图,AD ∥BC ,∠DAB =90°,E 是 AB 上的一点,且 AD =BE ,∠1=∠2,作△BEC 关于直线 AB的对称图形△BEF ,连接 DC 、DF ,DF 与 AB 交于 P 点.(1)求证:△ADE ≌△BEC ;(2)若AE AD =3,计算DC DF的值; (3)设 AD =m ,若AE AD =k (k >1),取 DC 中点 O ,连接 OP ,用 m 、k 表示 S △ODP ,并说明理由.。

2021-2022学年四川省成都七中育才学校八年级(下)期中数学试卷

2021-2022学年四川省成都七中育才学校八年级(下)期中数学试卷

2021-2022学年四川省成都七中育才学校八年级(下)期中数学试卷一、选择题(每小题4分,共32分,每小题只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是()A.戴口罩讲卫生B.勤洗手勤通风C.有症状早就医D.少出门少聚集2.(4分)如果a<b,那么下列各式中错误的是()A.3+a<3+b B.3﹣a<3﹣b C.3a<3b D.<3.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2﹣3x+1=x(x﹣3)+1B.x2﹣2x+1=x(x﹣2+)C.x2﹣1=(x+1)(x﹣1)D.(x﹣1)2=x2﹣2x+14.(4分)如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.OB=OD,OA=OC B.AD∥BC,AB=CDC.AB∥CD,AD∥BC D.AB∥CD,AB=CD5.(4分)一个多边形的每一个外角都是72°,这个多边形的内角和为()A.360°B.540°C.720°D.900°6.(4分)下列说法中,错误的是()A.角平分线上的点到角两边的距离相等B.平行四边形的对角线互相平分C.三角形的三边分别为a、b、c,若满足a2﹣b2=c2,那么该三角形是直角三角形D.如果两个三角形全等,那么这两个三角形一定成中心对称7.(4分)在平面直角坐标系xOy中,直线l1:y1=k1x+5与直线l2:y2=k2x的图象如图所示,则关于x的不等式k2x<k1x+5的解集为()A.x>﹣2B.x<﹣2C.x<3D.x>38.(4分)如图,将直角三角形ABC沿着点B到点C的方向平移3cm得到三角形DEF,且DE交AC于点H,AB=6cm,BC=9cm,DH=2cm,那么图中阴影部分的面积为()A.9cm2B.10cm2C.15cm2D.30cm2二、填空题(每小题4分,共20分,答案写在答题卡上)9.(4分)等腰三角形的一个底角为50°,则该等腰三角形的顶角度数为度.10.(4分)关于x的二次三项式x2+mx+6因式分解的结果是(x+3)(x+2),则m=.11.(4分)一次环保知识竞赛共有25道题,规定答对1道题得4分,答错或不答1道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),则小明至少答对道题.12.(4分)如图,在△ABC中,∠C=90°,分别以点A、点B为圆心,大于AB的长为半径画弧交于两点,过这两点的直线交BC于点D,连接AD,若AB=5cm,AC=3cm,则△ACD的周长为cm.13.(4分)如图,在直角三角形ABC和直角三角形ABD中,∠ACB=∠ADB=90°,AB=10,M是AB 的中点,连接MC,MD,CD,若CD=6,则三角形MCD的面积为.三、解答题(共48分,14题每题4分,15题每题4分,16题9分,17题9分,18题10分)14.(8分)(1)计算:+()﹣1+|﹣2|﹣;(2)求不等式组的解集:.15.(12分)分解因式:(1)3x2﹣6xy;(2)ax2+6ax+9a;(3)m2﹣2m﹣3.16.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC关于原点对称的△A1B1C1并写出点C1的坐标;(2)请画出△ABC绕点A顺时针旋转90°后的△AB2C2;(3)在△ABC旋转到△AB2C2的过程中,点C经过的路径长度为.17.(9分)如图,在平行四边形ABCD中,E、F分别是AD、BC边上的点,且∠ABE=∠CDF.(1)求证:四边形BEDF是平行四边形;(2)连接CE,若CE平分∠DCB,CF=3,DE=5,求平行四边形ABCD的周长.18.(10分)如图1,在△ABC中,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接DC,点P、Q、M分别为DE、BC、DC的中点,连接MQ、PM.(1)求证:PM=MQ;(2)当∠A=50°时,求∠PMQ的度数;(3)将△ADE绕点A沿逆时针方向旋转到图2的位置,若∠PMQ=120°,判断△ADE的形状,并说明理由.一、填空题(每小题4分,共20分)19.(4分)已知关于x的不等式组的解集为﹣1≤x≤2,则n+m=.20.(4分)已知实数a、b满足(a2+b2)2﹣(a2+b2)﹣2=0,则a2+b2=.21.(4分)如图,将平行四边形ABCD沿对角线BD折叠,使点C落在点C'处,线段BC'与线段AD交于点E,已知∠AEB=60°,∠BDC=45°,CD=,则线段BC的长为.22.(4分)如图,在平面直角坐标系xOy中,△ABC为等腰三角形,AC=AB=5,BC=8,点A与坐标原点重合,点C在x轴正半轴上,将△ABC绕点C顺时针旋转一定的角度后得到△A1B1C,使得点B对应点B1在x轴上,记为第一次旋转,再将△A1B1C绕点B1顺时针旋转一定的角度后得到△A2B1C1,使得点A1对应点A2在x轴上,以此规律旋转,则点B的坐标为,第2023次旋转后钝角顶点坐标为.23.(4分)如图,△ABC为等腰直角三角形,∠C=90°,AC=,点D是直线BC上的一个动点,连接AD,将线段AD绕点D顺时针旋转90°,得到线段DM,连接BM,取BM中点N,若DN=1,则线段BD的长为.二、解答题(共30分)24.(8分)2022年成都市中考新体考从总分50分调整为总分60分,增加了体育素质综合评价考核10分,统一考试项目由3项调整为4类,其中一类为自主选考三选一:足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.我校为了备考练习,准备购买一批新的排球、篮球,若购买10个排球和15个篮球,共需1500元;若购买12个排球和10个篮球,共需1160元.(1)求排球与篮球的单价;(2)学校决定购买排球和篮球共80个,且排球的数量超过篮球的数量,但不多于篮球数量的1.5倍,请问有多少种购买方案?最低费用是多少元?25.(10分)如图1,在平面直角坐标系xOy中,已知四边形ABCO的顶点A,C分别在y轴和x轴上.直线AE与x轴交于点E.已知∠B=90°,∠OAB=120°,∠AEO=30°,OA=3,EC=2.(1)AE的长为,点E的坐标为;(2)如图2,CF平分∠OCB,交AB于点F.若点G是平面内任意一点,当以A、E、F、G为顶点的四边形为平行四边形时,求点G的坐标;(3)如图3,点P、Q分别是线段CF、线段AE上的动点,点P与点Q分别同时从点C和点A出发,已知点P每秒运动4个单位长度,点Q每秒运动3个单位长度,连结PQ、FQ、PB、BQ.问:在运动过程中,是否存在这样的点P和点Q,使得△PFQ的面积与△PBQ的面积相等.若存在,请直接写出相应的点P的坐标,若不存在,请说明理由.26.(12分)在平行四边形ABCD中,AE⊥DC于点E,AE=AB,(1)如图1,若∠DAE=30°,DE=,求平行四边形ABCD的周长;(2)如图2,作∠ABC的平分线交AE于点F,交AD于点M.求证:DE+AF=BC;(3)如图3,在(1)的条件下,将△ADE绕点E顺时针旋转一定的角度α(0°<α<90°),得到△A'D'E,当∠A'=∠A'EA时停止旋转,此时边A'D'与边AE交于点P,点G是边DC上一动点,连接GB,在线段GB右侧作等边△GBN.连接PN,求PN的最小值.。

2021-2021学年四川省成都七中育才学校八年级(下)期末数学试卷

2021-2021学年四川省成都七中育才学校八年级(下)期末数学试卷

2021-2021学年四川省成都七中育才学校八年级(下)期末数学试卷2021-2021学年四川省成都七中育才学校八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(3分)(2021?安阳二模)下列图形中,是中心对称但不一定是轴对称图形的是() A.等边三角形 B.矩形C.菱形 D.平行四边形 2.(3分)(2021?东阳市)使分式A.x≥ B.x≤ C.x>D.x≠3.(3分)(2021春?成都校级期末)一元二次方程x��4x��1=0配方后正确的是()2222A.(x��2)=1 B.(x��2)=5 C.(x��4)=1 D.(x��4)=5 4.(3分)(2021秋?淮南期末)在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标为() A.(��2,3) B.(��3,2)C.(2,��3) D.(3,��2) 5.(3分)(2021春?成都校级期末)下列命题正确的是() A.一组对边相等,另一组对边平行的四边形一定是平行四边形 B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是正方形D.两条对角线相等且互相垂直平分的四边形一定是正方形 6.(3分)(2021春?台儿庄区期末)如图,△ABC中,AB=AC,AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,对于结论:①DE=DF;②BD=CD;③AD上任一点到AB、AC的距离相等;④AD上任一点到B、C的距离相等.其中正确的是()2有意义的x的取值范围是()A.仅①② B.仅③④ C.仅①②③ D.①②③④27.(3分)(2021?芜湖)关于x的方程(a��5)x��4x��1=0有实数根,则a满足() A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 8.(3分)(2021春?成都校级期末)若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是()A.6 B.8 C.18 D.27 9.(3分)(2021?南宁校级模拟)甲、乙两人同时从A地出发,骑自行车行30千米到B地,甲比乙每小时少走3千米,结果乙先到40分钟.若设乙每小时走x千米,则可列方程() A.B.��= C.��= D.��=第1页(共6页)10.(3分)(2021春?成都校级期末)用边长相等的下列两种正多边形,不能进行平面镶嵌的是()A.等边三角形和正六边形 B.正方形和正八边形C.正五边形和正十边形 D.正六边形和正十二边形二、填空题11.(3分)(2021?丹东模拟)当x= 时,分式2的值为0.212.(3分)(2021?江宁区二模)若实数a满足a��2a��1=0,则2a��4a+5= . 13.(3分)(2021?烟台)如图,?ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.14.(3分)(2021?浦东新区二模)如图,面积为12cm的△ABC沿BC方向平移至△DEF2位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是 cm.215.(3分)(2021?滨州)如图,?ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为.三、解答题:16.(2021春?成都校级期末)解方程:2��1.17.(2021春?成都校级期末)解方程:(2x+3)=3(2x+3) 18.(2021春?成都校级期末)先化简,再求值:,其中.四、解答题 19.(2021春?成都校级期末)如图,方格纸中的最小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C坐标为(0,��1)①画出△ABC向上平移3个单位后得到的△A1B1C1;第2页(共6页)②画出△ABC绕点C顺时针旋转90°后得到的△A2B2C2;③画出△ABC关于点C中心对称后得到的△A3B3C3.20.(2021?营口)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元? 21.(2021?株洲)已知关于x的一元二次方程(a+c)x+2bx+(a��c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=��1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根. 22.(2021春?成都校级期末)矩形ABCD中,M是BC的中点,DE⊥AM,E是垂足.(1)求证:△ABM∽△DEA;(2)求证:DC?AE=DE?MC;(3)若AB=4,BC=6,求ME的长.2五、填空题(共5小题,每小题3分,满分15分) 23.(3分)(2021?黄冈中学自主招生)若关于x的方程的解为正数,则a的取值范围是. 24.(3分)(2021?江西)如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是.第3页(共6页)25.(3分)(2021?昆都仑区一模)若关于x的一元二次方程x+kx+4k��3=0的两个实数根x1,x2,且满足x1+x2=x1?x2,则k的值为. 26.(3分)(2021?福建)如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交22于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB=3CM;④△PMN是等边三角形.正确的有()22A.1个 B.2个 C.3个 D.4个 27.(3分)(2021?苏州)如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号).二、解答题 28.(2021秋?安岳县期末)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2021年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2021年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2021年底共建设了多少万平方米廉租房. 29.(2021?盐城)情境观察第4页(共6页)将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是,∠CAC′= °.问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.拓展延伸如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由. 30.(2021?靖江市二模)如图,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE.(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明,若不成立,说明理由.(2)若正方形GFED绕D旋转到如图3的位置(F在线段AD上)时,延长CE交AG于H,交AD于M,①求证:AG⊥CH;②当AD=4,DG=时,求CH的长.第5页(共6页)(3)在(2)的条件下,在如图所示的平面上,是否存在以A、G、D、N为顶点的四边形为平行四边形的点N?如果存在,请在图中画出满足条件的所有点N的位置,并直接写出此时CN的长度;若不存在,请说明理由.第6页(共6页)感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中育才学校2021届初二下数学第4周周测试
出题人:陆恒 审题人:李施颖
班级: 姓名: 学号:
一.选择题(每小题3分,共30分)
1.在2x ,2
+a b ,2x x ,x y π-,1a a
+中,分式个数有( )
A.1个
B.2个
C.3个
D.4个
2.下列从左到右的变形中,是因式分解的是( ) A.()()2
224x x x -+=-
B.()2
111x x x x --=--
C.()()2
4162424x x x -=-+
D.()()2
221x x x x --=-+
3.不等式21x ->的解集为( ) A.12
x >-
B.12
x <-
C.2x >-
D.2x <-
4.方程
21
01
x x -=+的解是x=( ) A.1或1-
B.1-
C.1
D.0
5.如果把分式m n
n m
+-中n 和m 都扩大3倍,新分式是原来的( ) A.1倍
B.3倍
C.6倍
D.9倍
6.分式
222
12121
x x
x x x x x +---++,,的最简公分母是( ) A.2
()(1)x x x -+
B.2
2
(1)(1)x x -+ C.2
(1)(1)x x x -+
D.2
(1)x x +
7 .下列运算正确的是( ) A .a b a b 11+-=+- B .b
a b
a b a b a 321053.02.05.0-+=-+ C .
123
16+=+a a D .x y x
y y x y x +-=+- 8.如果分式
x 211
-的值为负数,则的x 取值范围是( ) A.21≤x B.21<x C.21≥x D.2
1>x
9.若分式
112x y
-=,则分式
4543x xy y
x xy y +---的值为( ) A.4
5-
B.
45
C.35
-
D.
35
10.如果(3)26m x m +>+的解集为2x <,则m 的取值范围是( ) A .0m <
B .3m <-
C .3m >-
D .m 是任意实数
二.填空题(每小题3分,共15分)
11.要使
有意义,则x 的取值范围为_____________. 12.已知
47(1)(2)12
x A B
x x x x -=+-+-+,其中A 、B 是常数,则A+B=___________
13.若△ABC 的三边长为c b a ,,,且()()0=-+-a b b b a c ,则△ABC 为_______三角形. 14.若3a -是2a a m ++的一个因式,则m 的值为_________.
15.已知 0132
=+-a a ,则)1)(1
(22
a a a
a --
=______________ 三.解答题
16.因式分解(每小题4分,共16分)
(1)2
44a - (2) 3256x x x -+-
(3)2
2222)(4b a b a +- (4)222
(9)36x x +-
17.计算(每小题4分,共16分)
(1

9
3
2
3
4
9
62
2
2
-

+
-
÷
-
+
-
a
a
b
a
b
a
a
(2)
4
2
2
a
a
+-
-
(3))
1
(
1
1
1
1
1
2-





-
+
+
-
x
x
x
(4)
18.如图,BD是平行四边形ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.(6分)
19. 如图,在平面直角坐标系中,平行四边形ABCD的一边BC在x轴上,OC=2,点D 的坐标为(-3,3),BC=4。

(7分)
(1)求点A的坐标;
(2)若一条过点(0,2)的直线将平行四边形ABCD分割成周长相等的两部分,求出这条直线的函数解析式。






-
-
-
÷
-
-
2
2
5
2
6
2
x
x
x
x
20.如图,在等腰三角形ABC中,底边BC=16cm,腰长为10cm,以BC所在直线为x轴,以BC边上的高所在的直线为y轴建立平面直角坐标系.一动点P以0.5cm/s的速度沿底边从点C向点B运动(P点不运动到B点),设点P运动的时间为t(单位:s).(10分)
①当t为何值时,△APB为等腰三角形?并写出此时点P的坐标.
②当t为何值时PA与等腰三角形ABC一腰垂直?。

相关文档
最新文档