第2章第9讲 函数模型及其应用
第09讲 函数(一次函数二次函数和幂函数)模型及其应用高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】一、在现实生活中有许多问题,往往隐含着量与量之间的关系,可通过成立变量之间的函数关系和对所得函数的研究,使问题取得解决.数学模型方式是把实际问题加以抽象归纳,成立相应的数学模型,利用这些模型来研究实际问题的一般数学方式;数学模型那么是把实际问题用数学语言抽象归纳,再从数学角度来反映或近似地反映实际问题时所得出的关于实际问题的数学描述.数学模型来源于实际,它是对实际问题抽象归纳加以数学描述后的产物,它又要回到实际中去查验,因此对实际问题有深刻的理解是运用数学模型方式的前提.二、函数是描述客观世界转变规律的根本数学模型,不同的转变现象需要用不同的函数模型来描述,数学应用题的建模进程就是信息的获取、存储、处置、综合、输出的进程,熟悉一些根本的数学模型,有助于提高咱们解决实际问题的能力.三、一次函数、二次函数和幂函数的图像和性质一、一次函数的一般形式为,y kx b =+当0k >时,函数单调递增,当0k <时,函数单调递减,当0k =时,函数是常数函数.二、二次函数的一般形式是2(0)y ax bx c a =++≠,当0a >时,函数的图像抛物线开口向上,极点坐标为24(,)24b ac b a a --,函数在(,)2b a -∞-单调递减,在(,)2b a -+∞2b x a=-时,函数有最小值244ac b a -.当0a <时,函数的图像抛物线开口向下,极点坐标为24(,)24b ac b a a --,函数在(,)2b a-∞-单调递增,在(,)2b a -+∞2b x a=-时,函数有最大值244ac b a -. 3、 幂函数的一般形式为(,a y x a R a x =∈是常数,是自变量),其特征是以幂的底为自变量,指数为常数,其概念域随着常数a 取值的不同而不同. 所有幂函数都在(0,)+∞有概念,而且图像都过点〔1,1〕;0,a >幂函数在(0,)+∞是增函数,0a <,幂函数在(0,)+∞是减函数.四、解决实际问题的解题进程一、 对实际问题进展抽象归纳:研究实际问题中量与量之间的关系,肯定变量之间的主、被动关系,并用x 、y 别离表示问题中的变量;二、成立函数模型:将变量y表示为x的函数,在中学数学内,咱们成立的函数模型一般都是函数的解析式;3、求解函数模型:按如实际问题所需要解决的目标及函数式的构造特点正确选择函数知识求得函数模型的解,并恢复为实际问题的解.这些步骤用框图表示:五、解应用题的一般程序1读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是根底;2建:将文字语言转化为数学语言,利用数学知识,成立相应的数学模型.熟悉根本数学模型,正确进展建“模〞是关键的一关;3解:求解数学模型,取得数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化进程;4答:将数学结论恢复给实际问题的结果.六、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、幂函数模型、分段函数模型、三角函数模型、数列函数、线性目标函数模型和综合函数模型等. 学科@网【方式讲评】【例1】某地域1995年底沙漠面积为95万公顷,为了解该地域沙漠面积的转变情况,进展了持续5年的观测,并将每一年年末的观测结果记录如下表.按照此表所给的信息进展预测:〔1〕若是不采取任何办法,那么到2010年末,该地域的沙漠面积将大约变成多少万公顷;〔2〕若是从2000年末后采取植树造林等办法,每一年改造0.6万公顷沙漠,那么到哪一年年末该地域沙漠面积减少到90万公顷?〔2〕设从1996年算起,第x年年末该地域沙漠面积能减少到90万公顷,由题意得+--=,x x950.20.6(5)90x=〔年〕解得20故到2015年年末,该地域沙漠面积减少到90万公顷.=+的图【点评】〔1〕由表观察知,沙漠面积增加数y与年份数x之间的关系图象近似地为一次函数y kx b象,这是解题的切入点和关键点.〔2〕求一次函数的解析式一般利用待定系数法.【反映检测1】某工厂在甲、乙两地的两个分厂各生产某种机械12台和6台,现销售给A地10台,B地8台,从甲地调运1台至A地、B地的运费别离为400元和800元,从乙地调运1台至A地、B地的运费别离为300元和500元.〔1〕设从乙地调运x台至A地,求总运费y关于x的函数关系式;〔2〕假设总运费不超过9000元,问共有几种调动方案?〔3〕求出总运费最低的调运方案及最低的费用.【例2】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全数租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每一个月需要保护费150元,未租出的车每辆每一个月需要保护费50元.〔1〕当每辆车的月租金定为3600元时,能租出多少辆车?〔2〕当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【点评】〔1〕在实际问题背景下,成立收益、利润的函数模型,一般是利润=收入-各项支出.〔2〕依照公司的月收益为:租出车辆⨯〔月租金-保护费〕-未租出车辆⨯保护费,将月收益视为月租金的函数,构造函数模型求解问题.【反映检测2】某化工厂引进一条先进生产线生产某种化工产品,其生产的总本钱y〔万元〕与年产量x〔吨〕之间的函数关系式可以近似地表示为24880005xy x=-+,此生产线年产量最大为210吨.〔1〕求年产量为多少吨时,生产每吨产品平均本钱最低,并求最低本钱.〔2〕假设每吨产品平均出厂价为40万元,那么昔时产量为多少吨时,可以取得最大利润?最大利润是多少?【例3】有一片树林现有木材储蓄量为7100c m3,要力争使木材储蓄量20年后翻两番,即抵达28400 c m3.〔1〕求平均每一年木材储蓄量的增加率;〔2〕若是平均每一年增加率为8%,几年可以翻两番?【点评】〔1〕增加率〔降低率〕的问题一般是指数或幂函数模型,若是时间求增加率〔降低率〕,多是幂函数模型.〔2〕“翻两番〞指此刻是原来的4倍,“翻n番〞指的是此刻是原来的2n倍.【反映检测3】〔1〕在1975年某市每千克猪肉的平均价钱是1.4元,而到了2021年,该市每千克猪肉的平均价钱是15元,假定这30年来价钱年平均增加率一样,求猪肉价钱的年平均增加率.〔2〕另一方面,1975年时该市职工月平均工资是40元,而到了2021年,该市职工月平均工资是860元,通过猪肉价钱的增加和工资增加的对照,试说明人们的生活水平是日趋提高,并计算假设按这种速度,到2021年,估量该市职工月平均工资是多少元?高中数学常见题型解法归纳及反映检测第09讲:函数(一次函数、二次函数和幂函数〕模型及其应用参考答案【反映检测1答案】〔1〕2008600(06,)y x x x z =+≤≤∈;〔2〕共有3种调运方案;〔3〕乙分厂的6 台机械全数调往B 地,从甲分厂调往A 地10 台,调往B 地2台,最小值是8600元.【反映检测2答案】〔1〕年产量为200吨时,每吨平均本钱最低为32万元;〔2〕年产量为210吨时,可取得最大利润1660万元.【反映检测2详细解析】(1)每吨平均本钱为y x(万元), 那么80008000482483255y x x x x x=+-≥-=,当且仅当80005x x =,即200x =时取等号, ∴年产量为200吨时,每吨平均本钱最低为32万元.(2)设年取得总利润为()R x 万元,那么R(x)=40x-y=40x-25x +48x-8 000=-25x +88x-8 000=-15 (x-220)2+1 680(0≤x ≤210),∵()R x 在[0,210]上是增函数, ∴210x =时,()R x 有最大值为-(210-220)2+1 680=1 660,∴年产量为210吨时,可取得最大利润1 660万元.【反映检测3答案】〔1〕8.2%;(2)4000元.【反映检测3详细解析】〔1〕设猪肉价钱的年平均增加率是%x ,那么有3015 1.4(1%)x =+.利用计算器可得8.2x =.〔2〕该市职工月工资和年平均增加率是%x ,那么有3084040(1%)x =+,利用计算器可得10.8x =.因为10.88.2>,因这人们的生活水平是日趋提高.照这样的速度到2021年,职工月平均工资是15860(110.8%)4000+≈元.。
函数模型及其应用(教案)

增长型函数模型及其应用复习教学目标:1、使学生在掌握函数基本知识要点的基础上,学会用函数的观点、思想与方法分析、解决实际问题;2、使学生学会正确理解题意,能够把实际问题转化为数学问题并灵活运用数学知识加以解决,提高学生数学建模、解模的能力.复习教学重点:提高学生应用函数的知识分析、解决问题的能力,采用研究、尝试、训练的方法解决. 复习教学难点:根据已知条件建立函数关系式,把实际问题抽象、转化为数学问题,即建立数学模型. 复习教学设计:一、基础梳理1、几种常见的函数模型(1) 一次函数模型:()()0f x ax b a b a =+≠、为常数,;(2) 二次函数模型:()()20f x ax bx c a b c a =++≠、、为常数,;(3) 指数函数模型:()()010x f x b a c a b c a a b =⋅+>≠≠、、为常数,且,;(4) 对数函数模型:()()log 010a f x b x c a b c a a b =+>≠≠、、为常数,且,;(5) 幂函数模型:()()0n f x ax b a b a =+≠、为常数,.(1) 审题:弄清题意,分清条件和结论,理顺数量关系,把握数学本质,选择数学模型;(2) 建模:由题设中的数量关系,将文字语言转化为数学符号语言,建立相应的数学模型,将实际问题转化为数学问题;(3) 解模:运用数学知识和方法解决转化得出的数学问题;(4) 还原:回到题目本身,检验求解结果的实际意义,得出结论.二、小试身手1、(巩固对不同函数增长速度的理解)下列命题不正确的是 ( C )(A) 函数()2f x x =在()0+∞, 是增函数;(B) 函数()2x f x =在()0+∞, 是增函数; (C) ()00+x ∃∈∞, ,当0x x >时,22x x >恒成立; (D) ()00+x ∃∈∞, ,当0x x >时,22x x >恒成立. 2、(指数型函数的应用) 某林场计划第一年造林1万亩,以后每年比前一年多造林20%,则三年后一共造林 ( D )(A) 1.4万亩; (B) 1.44万亩; (C) 3.6万亩; (D) 3.64万亩.三、热点考向探究热点1、一次函数、二次函数模型例1、有甲、乙两种商品,经营销售这两种商品所能获得的利润分别是P (万元)和Q (万元),它们与投入资金x (万元)的关系有以下公式:5x P =,Q =今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得的最大利润是多少? 解:设对甲种商品投资x 万元,则对乙种商品投资()3x -万元,总利润为y 万元,根据题意得:)035x y x =+≤≤,令t =,则230x t t --≤≤, , ∴ ()2213132130555220y t t t t ⎛⎫⎡=-+=--+∈ ⎪⎣⎝⎭,, 当32t =时,max 1.05y =,此时,0.753 2.25x x =-=, , 答:为获得最大利润,对甲、乙两种商品的资金投入应分别为0.75万元和2.25万元,能获得的最大利润是1.05万元.方法小结:利用一次函数、二次函数的单调性求最值时,要注意实际问题中自变量的取值范围,对于比较复杂的形式可用换元等方法进行化简.热点二:指数函数与对数函数模型例2、某工厂一、二、三月份的某产品产量分别为1万件、1. 2万件、1. 3万件,为了估测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量y (万件)与月份x 的关系,模拟函数可选用二次函数或(c b a c ab y x 、、+=为常数,0a ≠),已知四月份的产量为1. 36万件,试问用以上哪个函数作为模拟函数较好?请说明理由.解:若用二次函数模拟,设()20y ax bx c a =++≠,根据题意得:142 1.293 1.3a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解方程组得:177202010a b c =-==,,,∴ 2177202010y x x =-++,当4x =时, 1.3y =,与四月份实际产量误差0.06万件; 若用(c b a c ab y x 、、+=为常数,0a ≠)模拟,根据题意得:2311.21.3a b c a b c a b c ⋅+=⎧⎪⋅+=⎨⎪⋅+=⎩,解方程组得:417525a b c =-==,,, ∴ 417525xy ⎛⎫=-⋅+ ⎪⎝⎭,当4x =时, 1.35y =,与四月份实际产量误差0.01万件; 故:用(c b a c ab y x 、、+=为常数)作为模拟函数较好,417525x y ⎛⎫=-⋅+ ⎪⎝⎭. 方法小结:在日常生活中,增长问题常用指数函数模型和幂函数模型进行模拟,有时也可以选用对数函数模型模拟,需和实际情况进行对比,看用哪种模型更为合理.变式练习:根据统计数据发现,从2000年开始,某地区的森林面积y (万亩)与经过的年数x 的关系可用一个对数函数模型()lg 0y a x b a =+≠进行模拟,已知2002年该地区森林面积为3.6万亩,2005年该地区森林面积为4.4万亩,请据此估计该地区2020年的森林面积.(参考数据:lg 20.30≈)解:由题意得:lg 2 3.6lg 5 4.4a b a b ⋅+=⎧⎨⋅+=⎩,解方程组得:23a b ==,, ∴ 2lg 3y x =+,当20x =时,()2lg 20321lg 23 5.6y =+=++≈,答:估计该地区2020年的森林面积约为5.6万亩.四、课堂教学小结:解答应用题的要求:认真审题,合理建模,仔细运算,检查作答.常见的增长类函数模型:一次、二次函数模型、指数函数模型、对数函数模型、幂函数模型. 常用的数学方法:待定系数法.五、分层练习:A 级:1、(人教A 版教材第101页练习改编,检验学生对不同函数增长速度的掌握)已知()2f x x =,()2x g x =,()2log h x x =,当()4+x ∈∞, 时,对三个函数的增长速度进行比较,下列结论正确的是 ( C )(A) ()()()f x g x h x >>; (B) ()()()g x h x f x >>;(C) ()()()g x f x h x >>; (D) ()()()f x h x g x >>.2、(( B )(A) y a bx =+; (B) x y a b =+; (C) 2y ax b =+; (D) b y a x=+. 3、(检验学生对指数函数型模型的掌握) 将甲桶中的a 升水缓慢注入空桶中,t 分钟后甲桶中剩余的水符合指数衰减曲线nt y ae =,假设5分钟后甲桶和乙桶的水量相等,若再过m 分钟后甲桶的水只有8a ,则m = ( D ) (A) 7; (B) 8; (C) 9; (D) 10.4、(检验学生对数学建模的掌握) 商店经销一种洗衣粉,年销量为6000袋,每袋进价为2. 8元,销售价为3. 4元,全年分若干次进货,每次进货均为x 袋,已知每次进货运输费用为62. 5元,全年保管费为x 5.1元,要使利润最大,每次进货量应为 500 袋.B 级:1、(2011年湖北高考,检验学生对指数型函数增长情况的综合应用)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:()3002t M t M -=,其中0M 为0t =时铯137的含量.已知30t =时,铯137含量的变化率是10ln 2-(太贝克/年),则()60M = ( D )(A) 5太贝克; (B) 75ln 2太贝克; (C) 150ln 2太贝克;(D)150太贝克.2、(增长型函数模型的综合应用)某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿的市场售价与上市时间的关系用图甲的一条折线表示;西红柿的种植成本与上市时间的关系用图乙的抛物线表示:)(1) 写出图甲表示的市场售价与时间的函数关系式()t f P =;写出图乙表示的种植成本与时间的函数关系式()t g Q =;(2) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?答案:(1)()()()⎩⎨⎧≤-≤≤+-=30020030022000300t t t t t f <, , ,()()()300010015020012≤≤+-=t t t g , ; (2) 第50天上市收益最大.六、考题赏析(2011年湖北17题) 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.(I) 当0200x ≤≤时,求函数()v x 的表达式;(II) 当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()()f x x v x =⋅可以达到最大,并求出最大值(精确到1辆/小时).解:(I) 由题意:当()02060x v x ≤≤=时,;当()20200x v x ax b ≤≤=+时,设,再由已知得12000320602003a a b a b b ⎧=-⎪+=⎧⎪⎨⎨+=⎩⎪=⎪⎩,, 解得,,故函数()v x 的表达式为()()600201200202003x v x x x ≤≤⎧⎪=⎨-<≤⎪⎩, ,, . (II) 依题意并由(I)可得()()600201200202003x x f x x x x ≤<⎧⎪=⎨-<≤⎪⎩, ,, , 当()020x f x ≤≤时,为增函数,故当20x =时,其最大值为6020=1200⨯;当20200x <≤时,()()()220011100002003323x x f x x x +-⎡⎤=-≤=⎢⎥⎣⎦, 当且仅当200x x =-,即100x =时,等号成立。
高三数学一轮复习 2.9函数模型及其应用课件

f1 x , x D 1,
(6)分段函数模型:
y
f
2
x
,
x
D 2,
图象特点是每一段自变量
f
n
x
,
x
D
n
,
变化所遵循的规律不同.可以先将其当作几个问题,将各段的变
化规律分别找出来,再将其合到一起,要注意各段自变量的取值
范围,特别是端点.
3.建立函数模型解决实际应用问题的步骤(四步八字) (1)审题:阅读理解、弄清题意,分清条件和结论,理顺数量关系, 弄清数据的单位等. (2)建模:正确选择自变量,将自然语言转化为数学语言,将文字 语言转化为符号语言,利用数学知识,建立相应的数学模型. (3)求模:求解数学模型,得出数学结论. (4)还原:将数学问题还原为实际问题.
5.某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期
是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数
关系式是
.
【解析】已知本金为a元,利率为r,则 1期后本利和为y=a+ar=a(1+r), 2期后本利和为y=a(1+r)+a(1+r)r=a(1+r)2, 3期后本利和为y=a(1+r)3, … x期后本利和为y=a(1+r)x,x∈N. 答案:y=a(1+r)x,x∈N
③图(3)的建议是:提高票价,并保持成本不变;
④图(3)的建议是:提高票价,并降低成本.
其中所有正确说法的序号是( )A.①③Fra bibliotekB.①④
C.②③
D.②④
【解析】选C.对于图(2),当x=0时,函数值比图(1)中的大,表示 成本降低,两直线平行,表明票价不变,故②正确;对于图(3),当 x=0时,函数值不变表示成本不变,当x>0时,函数值增大表明票 价提高,故③正确.
第9节函数模型及其应用

第9节函数模型及其应用
函数模型是数学中的一个重要概念,它是一种关系,将一个集合的元
素映射到另一个集合的元素。
在数学中,函数模型被广泛应用于各种领域,如物理学、经济学、工程学等。
在物理学中,函数模型可以描述物理现象中的关系。
例如,牛顿第二
定律F=ma中的加速度a可以看作是力F和质量m之间的函数关系。
通过
函数模型,我们可以推导出物体在受到力作用下的运动轨迹和速度变化。
在经济学中,函数模型可以描述供求关系、价格弹性和成本效益等。
例如,需求曲线和供应曲线的交点可以表示市场均衡状态,价格弹性可以
用来衡量消费者对价格变化的敏感度,成本效益模型可以帮助企业决策时
做出合理的成本分析。
在工程学中,函数模型经常用于设计和优化过程。
例如,一个工程师
可以使用函数模型来描述一个机械系统的运动,分析其动力学和静力学特性,从而进行设计和改进。
另外,函数模型还可以用来优化一些参数,使
系统在给定约束条件下达到最佳性能。
除了以上领域之外,函数模型还广泛应用于计算机科学、统计学和生
物学等领域。
在计算机科学中,函数模型用于数据处理、算法设计和模拟
等方面。
在统计学中,函数模型用于描述变量之间的关系和概率分布。
在
生物学中,函数模型用于描述生物体的生理过程和遗传机制。
总之,函数模型是描述现实世界中各种关系的数学工具。
它不仅提供
了定量分析的方法,还可以帮助我们理解和预测复杂的现象。
通过函数模
型的应用,我们可以深入研究问题,做出合理的决策,并推动各个领域的
发展。
2023年高考数学总复习第二章 函数概念与基本初等函数第9节:函数模型及其应用(学生版)

2023年高考数学总复习第二章函数概念与基本初等函数第9节函数模型及其应用考试要求1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.指数、对数、幂函数模型性质比较函数性质y =a x (a >1)y =log a x (a >1)y =x n (n >0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图像的变化随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同2.几种常见的函数模型函数模型函数解析式一次函数模型f (x )=ax +b (a ,b 为常数,a ≠0)二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)与指数函数相关的模型f (x )=ba x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0)与对数函数相关的模型f (x )=b log a x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0)与幂函数相关的模型f (x )=ax n +b (a ,b ,n 为常数,a ≠0)1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长量越来越小.2.充分理解题意,并熟练掌握几种常见函数的图像和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.1.思考辨析(在括号内打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.()(2)函数y=2x的函数值比y=x2的函数值大.()(3)不存在x0,使a x0<x n0<log a x0.()(4)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度.()2.(易错题)已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是()A.f(x)>g(x)>h(x)B.g(x)>f(x)>h(x)C.g(x)>h(x)>f(x)D.f(x)>h(x)>g(x)3.(易错题)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是()A.8B.9C.10D.114.(2022·江苏新高考基地大联考)香农定理是所有通信制式最基本的原理,它可以用香农公式C=B log21+SN来表示,其中C是信道支持的最大速度或者叫信道容量,B是信道带宽(Hz),S是平均信号功率(W),N是平均噪声功率(W).已知平均信号功率为1000W,平均噪声功率为10W,在不改变平均信号功率和信道带宽的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为()A.0.1WB.1.0WC.3.2WD.5.0W5.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________.6.(2020·北京卷)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用-f(b)-f(a)b-a的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是__________.考点一利用函数图像刻画变化过程1.已知高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图像是()2.小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图像,拟合了记忆保持量f (x )与时间x (天)之间的函数关系f (x )-720x +1,0<x ≤1,15+920x -12,1<x ≤30.则下列说法错误的是()A.随着时间的增加,小菲的单词记忆保持量降低B.第一天小菲的单词记忆保持量下降最多C.9天后,小菲的单词记忆保持量低于40%D.26天后,小菲的单词记忆保持量不足20%3.(2022·郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论断:①0时到3时只进水不出水;②3时到4时不进水只出水;③4时到5时不进水也不出水.则一定正确的论断是________(填序号).4.(2021·西安调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图,记录了样本树的生长时间t(年)与树高y(米)之间的关系.请你据此判断,在下列函数模型:①y=2t-a;②y=a+log2t;③y=12t+a;④y=t+a中(其中a为正的常实数),拟合生长年数与树高的关系最好的是________(填写序号),估计该树生长8年后的树高为________米.考点二二次函数模型例1(1)某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元B.11万元C.43万元D.43.025万元(2)某地西红柿上市后,通过市场调查,得到西红柿种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表:时间t60100180种植成本Q11684116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t 的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a·log b t.利用你选取的函数,求:①西红柿种植成本最低时的上市天数是________;②最低种植成本是________元/100kg.训练1(1)(2021·广州模拟)某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.(2)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若每年销售量为30-52R万件,要使附加税不少于128万元,则R的取值范围是()A.[4,8]B.[6,10]C.[4%,8%]D.[6%,10%]考点三指数、对数函数模型例2(1)一个放射性物质不断衰变为其他物质,每经过一年就有34的质量发生衰变.若该物质余下质量不超过原有的1%,则至少需要的年数是()A.6B.5C.4D.3(2)(2021·唐山联考)尽管目前人类还无法准确地预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量E(单位:焦耳)与地震里氏震级M 之间的关系为lg E=4.8+1.5M.①已知地震等级划分为里氏12级,根据等级范围又分为三种类型,其中小于2.5级的为“小地震”,介于2.5级到4.7级之间的为“有感地震”,大于4.7级的为“破坏性地震”,若某次地震释放能量约1012焦耳,试确定该次地震的类型;②2008年汶川地震为里氏8级,2011年日本地震为里氏9级,问:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍?(取10=3.2)训练2(2021·贵阳调研)一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?考点四分段函数模型例3小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本3万元,每生产x万件,需另投入流动成本W(x)万元,在年产量不足8万件时,W(x)=13x2+x(万元).在年产量不小于8万件时,W(x)=6x+100x-38(万元).每件产品售价5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?训练3某校高三(1)班学生为了筹措经费给班上购买课外读物,班委会成立了一个社会实践小组,决定利用暑假八月份(按30天计算)轮流换班去销售一种时令水果.在这30天内每斤水果的收入p(元)与时间t(天)满足如图所示的函数关系,已知日销售量Q(斤)与时间t(天)满足一次函数关系(具体数据如下表所示).t(天)281624Q(斤)38322416(1)根据提供的图像和表格,写出每斤水果的收入p(元)与时间t(天)所满足的函数关系式及日销售量Q(斤)与时间t(天)的一次函数关系式;(2)写出销售水果的日收入y(元)与t的函数关系式,并求这30天中第几天的日收入最大?最大为多少元?1.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图像正确的是()2.(2022·绵阳诊断)某数学小组进行社会实践调查,了解到某公司为了实现1000万元利润目标,准备制订激励销售人员的奖励方案:在销售利润超过10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.同学们利用函数知识,设计了如下函数模型,其中符合公司要求的是(参考数据:1.0021000≈7.37,lg 7≈0.845)()A.y =0.25xB.y =1.002xC.y =log 7x +1D.y =x10-13.(2021·全国大联考)如图,矩形花园ABCD 的边AB 靠在墙PQ 上,另外三边是由篱笆围成的.若该矩形花园的面积为4平方米,墙PQ 足够长,则围成该花园所需要篱笆的()A.最大长度为8米B.最大长度为42米C.最小长度为8米D.最小长度为42米4.(2022·兰州质检)设光线通过一块玻璃,光线强度损失10%,如果光线原来的强度为k(k>0),通过x块这样的玻璃以后光线的强度为y,则y=k·0.9x(x∈N+),那么光线强度减弱到原来的13以下时,至少通过这样的玻璃的块数为(参考数据:lg3≈0.477)()A.9B.10C.11D.125.(2021·济南检测)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度x(单位:W/m2)满足d(x)=9lgx1×10-13.一般两人小声交谈时,声音的等级约为54dB,在有50人的课堂上讲课时,老师声音的等级约为63dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的()A.1倍B.10倍C.100倍D.1000倍6.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是()A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化量与4至5月份的收入的变化量相同D.前6个月的平均收入为40万元7.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h(单位:米)与时间t(单位:s)之间的关系为h(t)=-4.9t2+14.7t+17,那么烟花冲出后在爆裂的最佳时刻距地面高度约为________米.8.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.9.(2021·武汉模拟)复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%,若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息________元.(参考数据:1.02255≈1.118,1.04015≈1.217)10.候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为v=a+b log3Q 10 (其中a,b是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a,b的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?11.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元.根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=42a-6,乙城市收益Q与投入a(单位:万元)满足Q+2,80≤a≤120,,120<a≤160,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当投资甲城市128万元时,求此时公司的总收益;(2)试问:如何安排甲、乙两个城市的投资,才能使公司总收益最大?12.(2022·保定质检)分子间作用力是只存在于分子与分子之间或惰性气体原子间的作用力,在一定条件下,两个原子接近,则彼此因静电作用产生极化,从而导致有相互作用力,称范德瓦尔斯相互作用.今有两个惰性气体原子,原子核正电荷的电荷量为q,这两个相距R的惰性气体原子组成体系的能量中有静电相互作用能U,其计算式子为U=kcq2·(1R+1R+x1-x2-1R+x1-1R-x2),其中,kc为静电常量,x1,x2分别表示两个原子的负电中心相对各自原子核的位移.已知R+x1-x2=1+x1-x2R R+x1=R1+x1R R-x2=R1-x2R(1+x)-1≈1-x+x2,则U的近似值为()A.kcq2x1x2R3B.-kcq2x1x2R3C.2kcq2x1x2R3D.-2kcq2x1x2R313.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,它就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson)又提出了衡量天体明暗程度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m1-m2=2.5(lg E2-lg E1).其中星等为m i的天体的亮度为E i(i=1,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的r倍,则与r最接近的是(当|x|较小时,10x≈1+2.3x+2.7x2)()A.1.24B.1.25C.1.26D.1.2714.已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积均为定值1010,为了简单起见,科学家用P A=lg n A来记录A菌个数的资料,其中n A为A 菌的个数.现有以下几种说法:①P A≥1;②若今天的P A值比昨天的P A值增加1,则今天的A菌个数比昨天的A菌个数多10;③假设科学家将B菌的个数控制为5万,则此时5<P A<5.5(注:lg2≈0.3).则正确的说法为________(写出所有正确说法的序号).。
高考数学一轮总复习第2章函数的概念与基本初等函数(ⅰ)第9节函数模型及其应用跟踪检测文含解析

第二章 函数的概念与基本初等函数(Ⅰ)第九节 函数模型及其应用A 级·基础过关|固根基|1.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的( )解析:选B 由题意知h =20-5t(0≤t≤4),图象应为B 项.2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析:选D 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.3.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093解析:选D M≈3361,N≈1080,M N ≈33611080,则lg M N ≈lg 33611080=lg 3361-lg 1080=361lg 3-80≈93.∴M N≈1093. 4.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x-0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析:选C 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x)辆. 所以利润y =4.1x -0.1x 2+2(16-x)=-0.1x 2+2.1x +32=-0.1⎝⎛⎭⎪⎫x -2122+0.1×2124+32.因为x∈[0,16],且x∈N,所以当x =10或11时,总利润取得最大值43万元.5.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正数).公司决定从原有员工中分流x(0<x <100,x∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18解析:选B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x)(1+1.2x%)t 万元,则由⎩⎪⎨⎪⎧0<x <100,x∈N *,(100-x )(1+1.2x%)t≥100t,解得0<x≤503.因为x∈N *,所以x 的最大值为16.6.当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11解析:选C 设该死亡生物体内原来的碳14的含量为1,则经过n 个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n,由⎝ ⎛⎭⎪⎫12n<11 000,得n≥10,所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.7.(2019届北京东城模拟)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f(x)与时间x(天)之间的函数关系f(x)=⎩⎪⎨⎪⎧-720x +1,0<x≤1,15+920x-12,1<x≤30.某同学根据小菲拟合后的信息得到以下结论: ①随着时间的增加,小菲的单词记忆保持量降低; ②9天后,小菲的单词记忆保持量低于40%; ③26天后,小菲的单词记忆保持量不足20%.其中正确结论的序号有________.(请写出所有正确结论的序号)解析:由函数解析式可知f(x)随着x 的增加而减少,故①正确;当1<x≤30时,f(x)=15+920x -12,则f(9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故②正确;f(26)=15+920×26-12>15,故③错误. 答案:①②8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计)解析:设围成的矩形场地的长为x m ,则宽为200-x 4 m ,则S =x·200-x 4=14(-x 2+200x)=-14(x -100)2+2 500.∴当x =100时,S max =2 500 m 2. 答案:2 5009.已知投资x 万元经销甲商品所获得的利润为P =x 4;投资x 万元经销乙商品所获得的利润为Q =a2x(a >0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a的最小值为________.解析:设投资乙商品x 万元(0≤x≤20),则投资甲商品(20-x)万元. 则利润分别为Q =a 2x(a >0),P =20-x4,由题意得P +Q≥5,0≤x≤20时恒成立, 则化简得a x ≥x2,在0≤x≤20时恒成立.(1)x =0时,a 为一切实数; (2)0<x≤20时,分离参数a≥x2,0<x≤20时恒成立,所以a≥5,a 的最小值为 5. 答案: 510.已知某服装厂生产某种品牌的衣服,销售量q(x)(单位:百件)关于每件衣服的利润x(单位:元)的函数解析式为q(x)=⎩⎪⎨⎪⎧1 260x +1,0<x≤20,90-35x ,20<x≤180,求该服装厂所获得的最大效益是多少元?解:设该服装厂所获效益为f(x)元,则f(x)=100xq(x)=⎩⎪⎨⎪⎧126 000x x +1,0<x≤20,100x (90-35x ),20<x≤180.当0<x≤20时,f(x)=126 000x x +1=126 000-126 000x +1,f(x)在区间(0,20]上单调递增,所以当x =20时,f(x)有最大值120 000;当20<x≤180时,f(x)=9 000x -3005·x x , 则f′(x)=9 000-4505·x ,令f′(x)=0,所以x =80.当20<x <80时,f′(x)>0,f(x)单调递增;当80≤x≤180时,f′(x)≤0,f(x)为单调递减,所以当x =80时,f(x)有极大值,也是最大值240 000.由于120 000<240 000.故该服装厂所获得的最大效益是240 000元. B 级·素养提升|练能力|11.将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =ae nt.假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4L ,则m 的值为( )A .5B .8C .9D .10解析:选A ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f(t)=ae n t 满足f(5)=ae 5n=12a ,可得n =15ln 12,∴f(t )=a·⎝ ⎛⎭⎪⎫12t 5,因此,当k min 后甲桶中的水只有a4 L 时,f(k)=a·⎝ ⎛⎭⎪⎫12k 5=14a ,即⎝ ⎛⎭⎪⎫12k 5=14,∴k =10,由题可知m =k -5=5.12.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A(a 为常数),广告效应为D =a A -A.那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)解析:令t =A(t ≥0),则A =t 2,所以D =at -t 2=-t -12a 2+14a 2,所以当t =12a ,即A =14a 2时,D取得最大值.答案:14a 213.(2019年北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________.解析:(1)当x =10时,一次购买草莓和西瓜各1盒,共60+80=140(元),由题可知顾客需支付140-10=130(元).(2)设每笔订单金额为m 元,当0≤m<120时,顾客支付m 元,李明得到0.8m 元,0.8m ≥0.7m ,显然符合题意,此时x =0; 当m≥120时,根据题意得(m -x)80%≥m ×70%, 所以x≤m8,而m≥120,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x≤⎝ ⎛⎭⎪⎫m 8min ,而⎝ ⎛⎭⎪⎫m 8min=15, 所以x≤15.综上,当0≤x≤15时,符合题意, 所以x 的最大值为15.答案:(1)130 (2)1514.十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元.扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x 户(x∈Z,1≤x≤9)从事水果包装、销售工作,经测算,剩下从事水果种植的农户的年纯收入每户平均比上一年提高x20,而从事包装、销售的农户的年纯收入每户平均为⎝ ⎛⎭⎪⎫3-14x 万元(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728).(1)至2020年底,为使从事水果种植的农户能实现脱贫(每户年均纯收入不低于1万6千元),至少要抽出多少户从事包装、销售工作?(2)至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.解:(1)至2020年底,种植户平均收入 =(100-5x )⎝ ⎛⎭⎪⎫1+x 203100-5x≥1.6,即⎝ ⎛⎭⎪⎫1+x 203≥1.6, 即x≥20(31.6-1).由题中所给数据,知1.15<31.6<1.2,所以3<20(31.6-1)<4. 所以x 的最小值为4,此时5x≥20,即至少要抽出20户从事包装、销售工作. (2)至2018年底,假设该村每户年均纯收入能达到1.35万元.每户的平均收入为5x ⎝ ⎛⎭⎪⎫3-14x +(100-5x )⎝ ⎛⎭⎪⎫1+x 20100≥1.35,化简得3x 2-30x +70≤0.因为x∈Z 且1≤x≤9,所以x∈{4,5,6}.所以当从事包装、销售的户数达到20至30户时,能达到,否则,不能.。
数学新高考第9节 函数的模型及其应用

11
函数的模型及其应用
《高考特训营》 ·数学 返 回
4.[通性通法]复利公式 (1)某种储蓄按复利计算利息,若本金为A元,每期利率为R,设存期是X, 本利和(本金加上利息)为Y元,则本利和Y随X变化的函数关系式为Y=A(1+ R)X(X∈N*) (2)人口的增长、细胞分裂的个数以及存款利率(复利)的计算等问题都可以用 指数函数模型解决.
至5月份的收入的变化率相同 D.前6个月的平均收入为40万元
14
函数的模型及其应用
《高考特训营》 ·数学 返 回
解析:由题图可知,收入最高值为 90 万元,收入最低值为 30 万元,其比是 3∶1,故 A 正确;由题图可知,7 月份的结余最高,为 80-20=60(万元), 故 B 正确;由题图可知,1 至 2 月份的收入的变化率与 4 至 5 月份的收入的 变化率相同,故 C 正确;由题图可知,前 6 个月的平均收入为61×(40+60+ 30+30+50+60)=45(万元),故 D 错误.
6
函数的模型及其应用
《高考特训营》 ·数学 返 回
2.几种常见的函数模型
函数模型 一次函数 二次函数 指数函数 对数函数 幂函数
函数解析式 f(x)=ax+b(a,b为常数,a≠0) f(x)=ax2+bx+c(a,b,c为常数,a≠0) f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0) f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0) f(x)=axn+b(a,b,n为常数,a≠0)
202函2届数的模型及其应用
《高考特《训高营考》特·训数营学》 ·返数回学
第9节 函数的模型及其应用
1 1
函数的模型及其应用
高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理

第二章 函数(hánshù)、导数及其应用
第九节 函数模型(móxíng)及其应用
第一页,共33页。
栏
考情分析 1
(fēnxī)
目
基础自主(zìzhǔ) 2
3 考点疑难(yí
nán)突破
导
梳理
航
4 课时跟踪检测
第二页,共33页。
1
考情分析
第三页,共33页。
考点分布
考纲要求
第十三页,共33页。
3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品 x 万件时的生产成本为 C(x)=12x2+2x+20(万元).一万件售价是 20 万元,为获取更大 利润,该企业一个月应生产该商品数量为________万件.
解析:利润 L(x)=20x-C(x)=-12(x-18)2+142,当 x=18 时,L(x)有最大值. 答案:18
第三十页,共33页。
指数函数与对数函数模型的应用技巧 (1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会 合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于 1)的一 类函数模型,与增长率、银行利率有关的问题都属于指数函数模型. (2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函 数解析式,再借助函数的图象求解最值问题.
二次函数模型
f(x)=ax2+bx+c (a,b,c 为常数,a≠0)
第六页,共33页。
f(x)=bax+c 指数函数模型
(a,b,c 为常数,b≠0,a>0 且 a≠1)
对数函数模型
f(x)=blogax+c
(a,b,c 为常数,b≠0,a>0 且 a≠1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9讲函数模型及其应用基础知识整合1.常见的函数模型函数模型函数解析式一次函数型f(x)=ax+b(a,b为常数,a≠0)二次函数型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数型f(x)=ax n+b(a,b为常数,a≠0)2.指数、对数及幂函数三种增长型函数模型的图象与性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性□01单调递增□02单调递增□03单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与□04y轴平行随x的增大逐渐表现为与□05x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a]和[a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.(2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a .1.(2019·嘉兴模拟)为了预防信息泄露,保证信息的安全传输,在传输过程中需要对文件加密,有一种加密密钥密码系统(Private -Key Cryptosystem),其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文(解密).现在加密密钥为y =kx 3,若明文“4”通过加密后得到密文“2”,则接收方接到密文“1256”,解密后得到的明文是( )A .12B .14C .2D .18答案 A解析 由已知,可得当x =4时,y =2,所以2=k ·43,解得k =243=132,故y =132x 3.令y =132x 3=1256,即x 3=18,解得x =12.故选A .2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:x 0.50 0.99 2.01 3.98 y-0.990.010.982.00则对x ,y 最适合的拟合函数是( ) A .y =2x B .y =x 2-1 C .y =2x -2 D .y =log 2x答案 D解析 根据x =0.50,y =-0.99,代入各选项计算,可以排除A ;根据x =2.01,y =0.98,代入其余各选项计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.故选D .3.(2019·山东烟台模拟)某城市对一种售价为每件160元的商品征收附加税,税率为R %(即每销售100元征税R 元),若年销售量为⎝ ⎛⎭⎪⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( )A .[4,8]B .[6,10]C .[4%,8%]D .[6%,10%]答案 A解析 根据题意,要使附加税不少于128万元,需⎝ ⎛⎭⎪⎫30-52R ×160×R %≥128,整理得R 2-12R +32≤0,解得4≤R ≤8,即R ∈[4,8].4.某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( )A .100台B .120台C .150台D .180台 答案 C解析 设利润为f (x )万元,则 f (x )=25x -(3000+20x -0.1x 2) =0.1x 2+5x -3000(0<x <240,x ∈N *). 令f (x )≥0,得x ≥150,所以生产者不亏本时的最低产量是150台.故选C .5.(2019·湖北黄冈模拟)在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,经过x (x ∈R ,x ≥0)年可增长到原来的y 倍,则函数y =f (x )的图象大致为( )答案 D解析 由题意可得y =(1+10.4%)x .故选D .6.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大广告效应,投入的广告费应为________(用常数a 表示).答案 14a 2解析 令t =A (t ≥0),则A =t 2, ∴D =at -t 2=-⎝ ⎛⎭⎪⎫t -12a 2+14a 2.∴当t =12a ,即A =14a 2时,D 取得最大值.核心考向突破考向一 利用函数图象刻画实际问题例1 (2019·广西钦州第三次质量检测)图甲中的两条曲线分别表示某理想状态下捕食者和被捕食者数量随时间的变化规律,对捕食者和被捕食者数量之间的关系描述错误的是( )A .捕食者和被捕食者数量与时间以10年为周期B .由图可知,当捕食者数量增多的过程中,被捕食者数量先增多后减少C .捕食者和被捕食者数量之间的关系可以用图乙描述D .捕食者的数量在第25年和30年之间数量在急速减少 答案 C解析 由已知中某理想状态下捕食者和被捕食者数量随时间的变化规律,可得捕食者和被捕食者数量与时间以10年为周期呈周期性变化,捕食者的数量在第25年和30年之间数量在急速减少,正确;由图可知,当捕食者数量增多的过程中,被捕食者数量先增多后减少,故捕食者和被捕食者数量之间的关系应为环状,捕食者和被捕食者数量之间的关系可以用图乙描述,显然不正确.故选C.用函数图象刻画实际问题的解题思路将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可.[即时训练] 1.(2019·北京东城区模拟)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油答案 D解析从图中可以看出当乙车的行驶速度大于40 km/h时的燃油效率大于5 km/L,故乙车消耗1升汽油的行驶路程可大于5千米,所以A错误;由图可知甲车消耗汽油最少,所以B错误;甲车以80 km/h的速度行驶时的燃油效率为10 km/L,故行驶1小时的路程为80千米,消耗8 L汽油,所以C错误;当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D 正确.考向二 已知函数模型解决实际问题例2 (1)(2019·中山模拟)据统计,一名工人组装第x 件某产品所用的时间(单位:min)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,cA,x ≥A (A ,c 为常数).已知某工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16答案 D解析由题意可知4<A ,则⎩⎪⎨⎪⎧f (4)=c4=30,f (A )=cA=15,解得⎩⎨⎧c =60,A =16,故选D .(2)对于一个声强为I (单位:W/m 2)的声波,其声强级L (单位:dB)可由如下公式计算:L =10lg II 0(其中I 0是能引起听觉的最弱声强).设声强为I 1时的声强级为70 dB ,声强为I 2时的声强级为60 dB ,则I 1是I 2的________倍.答案 10解析 依题意,可知70=10lg I 1I 0,60=10lg I 2I 0,所以70-60=10lg I 1I 0-10lgI 2I 0,则1=lg I 1I 2,所以I 1I 2=10.利用已知函数模型解决实际问题的步骤若题目给出了含参数的函数模型,或可确定其函数模型的图象,求解时先用待定系数法求出函数解析式中相关参数的值,再用求得的函数解析式解决实际问题.[即时训练] 2.某种出口产品的关税税率t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:p =2(1-kt )(x -b )2,其中k ,b 均为常数.当关税税率为75%时,若市场价格为5千元,则市场供应量约为1万件,若市场价格为7千元,则市场供应量约为2万件.(1)试确定k ,b 的值;(2)市场需求量q (单位:万件)与市场价格x 近似满足关系式:q =2-x .当p =q 时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.解 (1)由已知得,若t =75%,当x =5时,p =1,当x =7时,p =2.所以⎩⎨⎧1=2(1-0.75k )(5-b )2,2=2(1-0.75k )(7-b )2,解得k =1,b =5. (2)由于k =1,b =5,则p =2(1-t )(x -5)2, 当p =q 时,2(1-t )(x -5)2=2-x , 所以(1-t )(x -5)2=-x , 所以t =1+x(x -5)2,x ∈(0,4], 设0<x 1<x 2≤4,则t 1-t 2=⎝ ⎛⎭⎪⎫1+x 1(x 1-5)2-⎝ ⎛⎭⎪⎫1+x 2(x 2-5)2 =x 1(x 1-5)2-x 2(x 2-5)2=x 1(x 2-5)2-x 2(x 1-5)2(x 1-5)2(x 2-5)2=x 1(x 22-10x 2+25)-x 2(x 21-10x 1+25)(x 1-5)2(x 2-5)2=(x 1-x 2)(25-x 1x 2)(x 1-5)2(x 2-5)2,由于0<x 1<x 2≤4, 则x 1-x 2<0,(x 1-5)2(x 2-5)2>0,x1x2<16,所以25-x1x2>0,所以t1<t2,在区间(0,4]上是增函数,所以t=1+x(x+5)2取得最大值,为5,所以当x=4时,t=1+x(x-5)2即当市场平衡价格为4千元时,关税税率的最大值为500%.考向三构建函数模型解决实际问题例3(1)(2019·马鞍山模拟)某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2018年全年投入科研经费1300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)() A.2020年B.2021年C.2022年D.2023年答案 C解析若2019年是第1年,则第n年全年投入的科研经费为1300×1.12n万元,由1300×1.12n>2000,可得lg 1.3+n lg 1.12>lg 2,所以n×0.05>0.19,得n>3.8,即n≥4,所以第4年,即2022年全年投入的科研经费开始超过2000万元,故选C.(2)设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正常数).公司决定从原有员工中分流x(0<x<100,x∈N*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A的年产值不减少,则最多能分流的人数是()A.15 B.16C.17 D.18答案 B解析由题意,分流前每年创造的产值为100t(万元),分流x人后,每年创造的产值为(100-x )(1+1.2x %)t ,则由⎩⎨⎧0<x <100,x ∈N *,(100-x )(1+1.2x %)t ≥100t ,解得0<x ≤503.因为x ∈N *,所以x 的最大值为16.故选B .构建数学模型一定要过好的三关(1)事理关:通过阅读、理解,明确问题讲的是什么,熟悉实际背景,为解题找出突破口.(2)文理关:将实际问题的文字语言转化为数学符号语言,用数学式子表达数学关系.(3)数理关:在构建数学模型的过程中,对已知数学知识进行检索,从而认定或构建相应的数学模型.[即时训练] 3.(2020·山东实验中学月考)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元、0.5万元.(1)分别写出两类产品的收益与投资额的函数关系;(2)若该家庭有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益是多少万元?解 (1)设两类产品的收益与投资的函数关系分别为f (x )=k 1x ,g (x )=k 2x . 由已知得f (1)=18=k 1,g (1)=12=k 2, 所以f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资股票类产品为x 万元,则投资债券类产品为20-x 万元. 依题意得y =f (20-x )+g (x )=20-x 8+12x =-x +4x +208(0≤x ≤20).所以x=2,即x=4时,收益最大,y max=3万元.故投资债券类产品16万元,投资股票类产品4万元时获得最大收益,为3万元.课时作业1.某物体一天中的温度T(单位:℃)是时间t的函数:T(t)=t3-3t+60,当t =0时表示中午12时,其后t取正值,则上午8时的温度是() A.8 ℃B.112 ℃C.58 ℃D.18 ℃答案 A解析由题意得上午8时t=-4,因此T=(-4)3-3×(-4)+60=8,故选A.2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()答案 C解析出发时距学校最远,先排除A;中途交通堵塞停留,距离没变,再排除D;堵塞停留后比原来骑得快,因此排除B.3.(2019·蚌埠模拟)某种动物的繁殖数量y(单位:只)与时间x(单位:年)的关系式为y=a log2(x+1),若这种动物第1年有100只,则到第7年它们发展到() A.300只B.400只C.500只D.600只答案 A解析由题意,得100=a log2(1+1),解得a=100,所以y=100log2(x+1),当x=7时,y=100log2(7+1)=300,故到第7年它们发展到300只.4.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是(参考数据lg 2≈0.3010)()A .3B .4C .5D .6答案 B解析 设至少要洗x 次,则⎝ ⎛⎭⎪⎫1-34x ≤1100,∴x ≥1lg 2≈3.322,因此至少需洗4次.故选B .5.(2019·辽宁五校联考)一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t 秒内的路程为s =12t 2米,那么,此人( )A .可在7秒内追上汽车B .可在9秒内追上汽车C .不能追上汽车,但期间离汽车的最近距离为14米D .不能追上汽车,但期间离汽车的最近距离为7米 答案 D解析 已知s =12t 2,车与人的间距d =(s +25)-6t =12t 2-6t +25=12(t -6)2+7.当t =6时,d 取得最小值7.故选D .6.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲、乙两车的速度曲线分别为v 甲和v 乙,如图所示,那么对于图中给定的t 0和t 1,下列判断中一定正确的是( )A .在t 1时刻,甲车在乙车前面B .t 1时刻后,甲车在乙车后面C .在t 0时刻,两车的位置相同D .t 0时刻后,乙车在甲车前面 答案 A解析由图象可知,曲线v甲比v乙在0~t0,0~t1与t轴所围成的图形面积大,则在t0,t1时刻,甲车均在乙车前面.故选A.7.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2-m1=52lg E1E2,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg 10.1 D.10-10.1答案 A解析由题意知,m1=-26.7,m2=-1.45,代入所给公式得-1.45-(-26.7)=5 2lg E1E2,所以lg E1E2=10.1,所以E1E2=1010.1.故选A.8.某公司在甲、乙两地销售同一种品牌汽车,利润(单位:万元)分别为L1=5.06x-0.15x2,L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆汽车,则能获得的最大利润为()A.45.606万元B.45.6万元C.45.56万元D.45.51万元答案 B解析依题意可设在甲地销售了x辆汽车,则在乙地销售了(15-x)辆汽车,总利润S=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30=-0.15(x-10.2)2+45.606(0≤x≤15且x∈N),所以当x=10时,S max=45.6.故选B.9.(2019·乌兰察布模拟)某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y1,y2分别是2万和8万,那么要使这两项费用之和最小,仓库应建在离车站()A.5千米处B.4千米处C.3千米处D.2千米处答案 A解析 设仓库建在离车站x 千米处,则y 1=k 1x ,y 2=k 2x ,根据给出的初始数据可得k 1=20,k 2=0.8,两项费用之和为y =20x +0.8x ≥8,当且仅当x =5时,等号成立.10.(2019·武汉模拟)国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为( )A .3000元B .3800元C .3818元D .5600元答案 B解析 由题意可建立纳税额y 关于稿费x 的函数解析式为y =⎩⎪⎨⎪⎧0,x ≤800,0.14(x -800),800<x ≤4000,0.11x ,x >4000,显然由0.14·(x -800)=420,可得x =3800.11.(2019·南昌模拟)近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资120万元,根据行业规定,每座城市至少要投资40万元,由前期市场调研可知:甲城市收益P (单位:万元)与投入a (单位:万元)满足P =32a -6,乙城市收益Q (单位:万元)与投入A (单位:万元)满足Q =14A +2,则投资两座城市收益的最大值为( )A .26万元B .44万元C .48万元D .72万元答案 B解析 设在甲城市投资x 万元,在乙城市投资(120-x )万元,所以总收益f (x )=32x -6+14(120-x )+2=-14x +32x +26,由题意,知⎩⎨⎧x ≥40,120-x ≥40,解得40≤x ≤80.令t =x ,则t ∈[210,45],所以y =-14t 2+32t +26=-14(t -62)2+44,当t =62,即x =72时,y 取得最大值44,所以当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.故选B .12.(2019·深圳模拟)某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( )A .甲食堂的营业额较高B .乙食堂的营业额较高C .甲、乙两食堂的营业额相同D .不能确定甲、乙哪个食堂的营业额较高 答案 A解析 设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可得,m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=m (m +8a ),因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2,故本年5月份甲食堂的营业额较高.13.某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元.又知总收入K 是单位产品数Q 的函数,K (Q )=40Q -120Q 2,则总利润L (Q )的最大值是________万元.答案 2500解析 由已知得L (Q )=K (Q )-10Q -2000=⎝ ⎛⎭⎪⎫40Q -120Q 2-10Q -2000=-120(Q -300)2+2500,所以当Q =300时,L (Q )max =2500(万元). 14.(2020·银川月考)大气温度y (℃)随着距离地面的高度x (km)的增加而降低,当在高度不低于11 km 的高空时气温几乎不变.设地面气温为22 ℃,大约每上升1 km 大气温度降低6 ℃,则y 关于x 的函数关系式为________.答案 y =⎩⎨⎧22-6x ,0≤x <11,-44,x ≥11解析 由题意,知y 关于x 为分段函数,x =11为分界点,易得其解析式为y =⎩⎨⎧22-6x ,0≤x <11,-44,x ≥11.15.(2019·唐山模拟)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________ m.答案 20解析 设矩形花园的宽为y m ,则x 40=40-y40,即y =40-x ,矩形花园的面积S =x (40-x )=-x 2+40x =-(x -20)2+400,当x =20 m 时,面积最大.故填20.16.(2019·四川德阳诊断)将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =a e nt .假设过5 min 后甲桶和乙桶的水量相等,则n 的值为________;若再过m min 甲桶中的水只有a4 L ,则m 的值为________.答案 15ln 12 5解析 ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f (t )=a e nt 满足f (5)=a e 5n =12a ,可得n =15ln 12;由n =15ln 12,得f (t )=a ·⎝ ⎛⎭⎪⎫12t5,设k min 后甲桶中的水只有a 4 L ,则f (k )=a ·⎝ ⎛⎭⎪⎫12k 5=a 4,所以⎝ ⎛⎭⎪⎫12k 5=14,解得k =10,所以m =k -5=5(min). 17.某公司制订了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的15%进行奖励;当销售利润超过10万元时,若超出A 万元,则额外奖励2log 5(A +1)万元.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型;(2)如果业务员小李获得3.5万元的奖金,那么他的销售利润是多少万元? 解 (1)由题意,得该公司激励销售人员的奖励方案的函数模型为y =⎩⎨⎧0.15x ,0≤x ≤10,1.5+2log 5(x -9),x >10.(2)由(1),知当x ∈[0,10]时,0≤0.15x ≤1.5, 因为业务员小李获得3.5万元的奖金,即y =3.5, 所以x >10,因此1.5+2log 5(x -9)=3.5, 解得x =14.所以业务员小李的销售利润是14万元.18.(2019·郑州模拟)已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律:θ=m ·2t +21-t (t ≥0,并且m >0).(1)如果m =2,求经过多少分钟,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. 解 (1)若m =2,则θ=2·2t +21-t =2⎝ ⎛⎭⎪⎫2t +12t ,当θ=5时,2t+12t =52,令2t=x ≥1,则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去), 此时t =1.所以经过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度,即θ≥2恒成立, 亦即m ·2t +22t ≥2⇔m ≥2⎝ ⎛⎭⎪⎫12t -122t 恒成立.令12t =x ,则0<x ≤1,不等式化为m ≥2(x -x 2), 由于x -x 2≤14⎝ ⎛⎭⎪⎫当x =12,即t =1时取等号,所以m ≥12.19.(2019·河北石家庄一模)已知某公司生产某款手机的年固定成本为40万美元,每生产1万只还需另投入16万美元.设该公司一年内共生产该款手机x 万只并全部销售完,每万只的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7400x-40000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万只)的函数解析式;(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的利润最大?并求出最大利润.解 (1)当0<x ≤40时,W =xR (x )-(16x +40)=-6x 2+384x -40, 当x >40时,W =xR (x )-(16x +40)=-40000x -16x +7360. 所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40000x -16x +7360,x >40.(2)①当0<x ≤40时,W =-6(x -32)2+6104, 所以当x =32时,W 取得最大值,W max =6104; ②当x >40时,W =-40000x -16x +7360, 由于40000x +16x ≥240000x ×16x =1600,当且仅当40000x =16x ,即x =50∈(40,+∞)时,取等号,所以W 取最大值,为5760.综合①②,当x =32时,W 取最大值,为6104.20.(2019·沈阳模拟)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?解 (1)设每年砍伐面积的百分比为x (0<x <1). 则a (1-x )10=12a ,即(1-x )10=12,解得x =1-⎝ ⎛⎭⎪⎫12110.(2)设经过m 年剩余面积为原来的22,则a (1-x )m =22a ,即⎝ ⎛⎭⎪⎫12m 10=⎝ ⎛⎭⎪⎫1212,m10=12,解得m =5,故到今年为止,已砍伐了5年. (3)设从今年开始,最多还能砍伐n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, ⎝ ⎛⎭⎪⎫12n 10≥⎝ ⎛⎭⎪⎫1232,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.。