汽车轻量化的技术与方法

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车轻量化的技术与方法

汽车的轻量化,就是在保证汽车的强度和安全性能的前提下,尽可能地降低汽车的整备质量,从而提高汽车的动力性,减少燃料消耗,降低排气污染。实现汽车轻量化的途径有三条:一是通过整车优化结构设计;二是优化材料设计,即用低密度材料代替钢铁材料的应用;三是轻量化制造,即通过先进的轻量化制造技术的应用,实现轻量化设计和轻量化材料。 1.结构轻量化

车身结构轻量化也就是结构优化设计,即通过采用先进的优化设计方法和技术手段,在满足车身强度、刚度、模态、碰撞安全性等诸多方面的性能要求,以及相关的法律法规标准的前提下,通过优化车身结构参数,提高材料的利用率,去除零部件冗余部分,同时又使部件薄壁化、中空化、小型化、复合化以减轻重量,实现轻量化。

(1) CAD/CAE在汽车结构设计上的应用

轻量化的手段之一就是对汽车总体结构进行分析和优化,实现对汽车零部件的精简、整体化和轻质化。利用CAD、CAE技术,可以准确实现车身实体结构设计和布局设计,对各构件的开头配置、板材厚度的变化进行分析,并可从数据库中提取由系统直接生成的有关该车的相关数据进行工程分析和刚度、强度计算。对于采用轻质材料的零部件,还可以进行布局进一步分析和运动干涉分析等,使轻量化材料能够满足车身设计的各项要求。

(2)结构小型化

目的是在不增加成本的情况下,维持车身功能与抗击安全性的同时减轻汽车重量。采用轻量化技术可以减少车身重的25%。

2.材料轻量化

(1)轻金属在汽车上的应用

铝、镁、钛合金材料是所有现用金属材料中密度较低的轻金属材料,因而成为汽车减轻自重,提高节能性和环保性的首选材料。

铝合金:

自70年代开始,汽车用铝量不断增加。作为一种轻质材料,铝合金正日益受到汽车制造企业的青睐。目前,全世界耗铝量的12%~15%以上用于汽车工业。有些发达国家已超过25%。

镁合金:

镁是极重要的有色金属,它比铝轻,能够很好地与其他金属构成高强度的合金。

钛合金:

钛合金将是替代钢铁的轻量化和高性能的材料,是最具有潜力的汽车用材料。钛和钛合金应用的最大阻力来自于其高价格,所以钛合金的研制和生产工艺的开发重点都在于降低成本。

(2)高强度钢在汽车上的应用

高强度钢强度优于普通钢板、成本低于铝镁合金,使高强度钢板成为未来汽车结构材料的主体。

(3)其他材料的应用

蠕墨铸铁具有更高的刚度和强度,而简单地以蠕墨铸铁代替灰铸铁不会使零件质量减轻,但通过减小铸件壁厚即可减轻其质量。国外轻型发动机缸体应用蠕墨铸铁较多。在车用发动机上陶瓷基复合材料也有着广泛的应用。

3.制造轻量化

轻量化制造技术指的是以车辆轻量化设计为基础,在综合考虑所采用轻量化材料的特性和产品控制成本要求的前提下而采用的制造技术。目前使用最广泛的有激光焊接技术,液压

成形技术,高强度钢热成形技术,高强度钢辊压成形技术,电磁成形等先进的技术以及连接技术,表面处理技术,和切削技术。

(1)激光拼焊技术

它是将经不同表面处理,不同材质,不同厚度的钢板通过激光焊接组合成一个毛坯件,然后再将其冲压成所需的零部件。与传统点焊工艺的产品相比,激光焊接技术的特点如下: 1)减少零件数量。

2)减轻结构件的质量。

3)可以改进车身结构的安全性能和耐久性。

(2)液压成形技术

液压成形技术是指把管状或板状材料放在密封的模具中,再把流水介质引入管件的内腔或板件与模具的内腔,通过增加液体的压力,使工件在常温下变形,经过膨胀,压缩和成形三个阶段,最终成为所需零部件形状

(3)超高强度钢热成形技术

它是将板材加热奥氏体化,然后在模具中进行热成形,通水冷却,在保持模具良好形状的前提下得到高强度的马氏体组织。

(4)高强度钢辊压成形技术

它是以轻量化和一体化为特征的一种三维空心变截面轻体构件的新型辊压成形技术。

(5)电磁成形技术

电磁成形,是利用电流通过线圈产生的磁场,在磁力作用下使坯料产生素性变形的一种成形方法。

(6)连接技术:

1)机械连接技术。机械连接技术包括压焊,钳铆,自冲铆接,盲铆和折叠等。

2)复合连接技术。复合连接技术是将两种两种连接方法组合在一起的连接技术。

举例说明一种线控技术在汽车上的应用。

汽车转向系统是决定汽车主动安全性的关键总成,传统汽车转向系统是机械系统,汽车的转向运动是由驾驶员操纵转向盘,通过转向器和一系列的杆件传递到转向车轮而实现的。汽车线控转向系统取消了转向盘与转向轮之间的机械连接,完全由电能实现转向,摆脱了传统转向系统的各种限制,不但可以自由设计汽车转向的力传递特性,而且可以设计汽车转向的角传递特性,给汽车转向特性的设计带来无限的空间,是汽车转向系统的重大革新。

汽车线控转向系统的工作原理示意图如下图1,图2所示。用传感器检测驾驶员的转向数据,然后通过数据总线将信号传递给车上的ECU,并从转向控制系统获得反馈命令;转向控制系统也从转向操纵机构获得驾驶员的转向指令,并从转向系统获得车轮情况,从而指挥整个转向系统的运动。转向系统控制车轮转到需要的角度,并将车轮的转角和转动转矩反馈到系统的其余部分,比如转向操纵机构,以使驾驶员获得路感,这种路感的大小可以根据不同的情况由转向控制系统控制。又因为转向系统完全在转向控制系统的控制下运动,所以几乎可以在任意位置实现任意转向传动比,ECU综合这些和其他信号作出判断后,再控制前轴的转向角度。

Fig.1 线控转向

Fig.2 线控转向模型

紧急情况下,为避免驾驶员的错误判断,这个系统还会忽略驾驶员的转向输入,平稳地将车保持在最安全的状态。它适用于轿车和大型汽车。当人们使用线控转向时,在转向盘和被驾驶着的车轮之间再也不需要任何的机械连接了,系统中转向力由电子或电控液压式的激励器提供。目前存在两种形式,见下表。

形式前轮电子控制转向后轮电子控制转向

结构特点传统的转向原件被两个布置

在汽车前侧角落的两个激励

器所代替。利用传感器来确定后轮的偏转。

功能激励器从控制器获取信息,从

而驱动前轮,同时利用电动机

向驾驶员提供路面信息。以后轮的偏转为主,同时以前轮的偏转角度和车速作为参考,使系统转向更紧凑,平稳。

相关文档
最新文档